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ABSTRACT
Although Android’s permission system is intended to allow users
to make informed decisions about their privacy, it is often ineffec-
tive at conveying meaningful, useful information on how a user’s
privacy might be impacted by using an application. We present
an alternate approach to providing users the knowledge needed to
make informed decisions about the applications they install. First,
we create a knowledge base of mappings between API calls and
fine-grained privacy-related behaviors. We then use this knowl-
edge base to produce, through static analysis, high-level behavior
profiles of application behavior. We have analyzed almost 80,000
applications to date and have made the resulting behavior profiles
available both through an Android application and online. Nearly
1500 users have used this application to date. Based on 2782 pieces
of application-specific feedback, we analyze users’ opinions about
how applications affect their privacy and demonstrate that these
profiles have had a substantial impact on their understanding of
those applications. We also show the benefit of these profiles in
understanding large-scale trends in how applications behave and
the implications for user privacy.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access controls

General Terms
Security
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1. INTRODUCTION
The rise of mobile devices has lead to new concerns regarding

application privacy and security. Not only are these devices now
nearly as powerful and functional as personal computers, but they
also carry detailed information about users’ personal lives, such as
their location, phone calls, and SMS messages. Much attention
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has been given to the threat of malware targeting these systems.
Furthermore, these new capabilities mean that otherwise legitimate
applications can become a significant privacy concern as well.
Recent events, such as the outcry surrounding Carrier IQ [6] and
concern over the Facebook application’s behavior [14] suggest that
the general public would appreciate being better informed about
how the software on their phones impacts privacy. Furthermore,
different users may have different expectations and needs with
regards to privacy. Merely filtering out malicious applications is no
longer sufficient; users also need to better understand the behavior
of legitimate applications. Our goal is to produce a system that
allows users to understand the privacy implications of applications
they install by providing profiles of privacy-related application
behavior.

The Android permission system is an important step towards
addressing this problem, allowing users to make informed de-
cisions by requiring that applications declare which capabilities
they intend to use at install time. However, as we discuss in
§2.1, this system has significant limitations. As the permission
system is tightly integrated into Android, any substantial changes
would require rewriting existing applications, meaning it lacks the
flexibility needed to adapt to the rapidly changing world of appli-
cation privacy. Furthermore, as it also serves as a capability en-
forcement mechanism, the descriptions it provides of applications
are excessively broad, in order to meet the needs of developers.
Because of these limitations, we argue permissions are the wrong
abstraction to use in helping end users understand application
behavior. We propose instead analyzing applications offline to
create behavior profiles, separating the problem of understanding
application behavior from that of capability enforcement.

To do this, it is necessary to automatically extract information
about application behavior from applications. In traditional op-
erating systems, work has been done on observing application
behavior at a low level, e.g., by monitoring system calls [23]. This
level of abstraction provides detailed and accurate information,
but is hard to translate to something meaningful to users. The
permission system provides very high-level information about ap-
plication behavior, but is not specific enough to be useful, as we
discuss in §2.1. In between the two, in API-driven systems such
as mobile systems, applications access most sensitive information
and functionality through API calls. In order to make use of these
API calls, we start by building a knowledge base which consists
of a series of rules translating API calls to application behaviors.
We have identified 221 distinct application behaviors for which we
have created rules. For example, we have identified four specific
API calls that compare the user’s distance to a given location. The
mapping of these API calls to this behavior category is an example
of a rule.



Given such a knowledge base, we create behavior profiles that
provide more insightful information than the existing permission
system. For example, consider an application requesting permis-
sion to access the GPS. The associated profile would indicate that
the application is additionally concerned with the user’s proximity
to a location, and requests GPS updates at a rapid rate. An excerpt
from a behavior profile, compared with the equivalent permission,
is shown in Table 1, §4.2. To provide these profiles we use a second
mapping, from matched rules to profile entries.

This two-step translation approach has significant advantages
over the permission system as well. It gives a great deal of
flexibility in how we present information. We can provide high-
level profiles to non-technical users, but just as easily we can
provide detailed technical information to security experts, using the
same information extracted using the knowledge base.

We give users access to these profiles through an Android ap-
plication and a web page. We do not address the problem of
determining if an application’s behavior is acceptable, leaving it to
the user to make that judgment based upon their own requirements.
For this paper, we have focused on Android, but in principle this
approach would work for any system relying on API calls for access
to important functionality.

Our work has the following novel contributions:

• A method of creating a knowledge base mapping API calls to
application descriptions, and then using this knowledge base
to create profiles of application behavior.

• An efficient application of this method to the large-scale,
automated analysis of applications in Google Play. We
currently analyze an average of 500 applications per day on a
single server, and our approach is completely parallelizable.
So far we have analyzed almost 80,000 applications.

• A large-scale survey of the privacy- and security-relevant
behavior of a significant cross-section of Google Play, as well
as user perceptions of these behaviors. Some of our find-
ings include determining users are concerned about behavior
which is most prevalent in ad libraries, and determining that
many applications are less intrusive than they appear from
the permissions they request.

• We identify a number of ways in which permissions do not
provide information that users care about (e.g., user-triggered
SMS messages vs. those occurring in the background) and
offer suggestions to improve the permission system.

The paper is organized as follows. §2 summarizes related work
in this area. We provide an overview of our approach and threat
model in §3. In §4 we discuss how to create and use the knowledge
base, how to make this analysis scalable and automatic, and how
we make the results available to the public. In §5, we examine how
well our system performs against a variety of application types,
examine a number of prominent applications in depth, look at large-
scale trends in application behavior, and examine how users of our
AppProfiles application make use of our profiles.

2. BACKGROUND AND RELATED WORK
We first give some background on the Android permission sys-

tem followed by a summary of related work.

2.1 Android Permission System and its Limi-
tations

In the permission system, applications declare the capabilities,
or “permissions”, they intend to use at install time. Permissions

cover broad classes of functionality, like “Internet” or “Read Phone
State”, and they must have been declared for an application to ac-
cess that functionality. There are several issues with this approach.

1. Some permissions are so prevalent that users are likely to
ignore them, such as the Internet permission [4, 17].

2. Permissions generally cover broad, vague categories of func-
tionality and give insufficiently detailed information for users
to make meaningful decisions [15]. For example, Read
Phone State covers everything from reading the phone num-
ber to reading the OS software version [16].

3. Applications often request permissions they don’t use, so
permissions don’t necessarily correspond to application be-
havior [16, 4].

4. Occasionally behavior which should be protected with a
permission is not, allowing applications to bypass the per-
mission system [26, 21].

5. If a problem is found with the permission system, it is hard to
fix due to tight integration with the Android system, making
problems 1, 2, and 4 hard to address. This results in a trade-
off between OS stability and fine-grained permissions [3].

These issues suggest that the permission system’s ability to provide
useful information to end users is limited.

2.2 Related Work
Previous work has approached the problem of understanding

application behavior in different ways. One much-studied area is
the permission system. It has significant limitations, and many
papers have explored or attempted to address these limitations.
Recent work by Grace et al. [22] detects mechanisms by which
permissions granted to one application can be leaked to another,
either inadvertently or deliberately through collusion. The Apex
system [30] proposed by Nauman et al. illustrates that the permis-
sion system may be too broad to be useful, and implements a more
sophisticated permission system that allows users to limit the scope
of key permissions. Roesner et al. [32] present a permission system
where users directly grant permissions to applications at runtime
in a non-intrusive manner by integrating permission granting with
existing UI elements. Extensive misuse of the permission system
by developers has been identified by Barrera et al. [4]. Kirin [12]
detects potentially dangerous applications at install-time based on
combinations of permissions and intent strings. TISSA [36] gives
users more control over how applications with permissions access
their data. However, any change to the permission system would
require fundamental changes to Android, which may limit how
likely these solutions are to be implemented.

Other work seeks to understand applications at the system level.
The use of low-level features like system calls to detect anomalous
behavior is a technique that has been used in traditional operating
systems [23], but it has also been successful for Android. Crow-
droid [5] detects malicious applications masquerading as other
applications using Linux-level system calls to detect anomalous
behavior among applications with the same name and version
number. Information gleaned at this level is more accurate and fine-
grained than at the permission level, but it is likely not of direct use
to the average user in understanding application behavior.

The limitations of these two approaches — permissions and
system-level information — suggest that it is worth looking else-
where for a solution. The Android Framework API has the benefit
of providing extensive and accurate information, like the system
layer. We show that it can also be used to accurately and flexibly



emulate the kind of high-level profiling the permission system at-
tempts to do. We leverage results from several papers to accomplish
this. Work by Felt et al. [16], and PScout, by Au et al. [3] maps
API calls to permissions and allows developers to determine what
permissions they should use. We have made extensive use of their
data set as a starting point to understanding the Android API. Un-
like them, however, we address the problem that permissions may
not provide sufficient information to users. Our work also builds
upon a paper by Enck et al. [11], which demonstrates the feasibility
of using existing static analysis tools for Java to detect malicious
behavior in Android applications. Similarly, Lu et al. [29] have
constructed a system to statically detect certain Android-specific
security vulnerabilities. Unlike these papers, we take the approach
of creating a comprehensive picture of privacy-relevant application
behavior rather than identifying specific instances of malicious or
vulnerable behavior.

Several other studies have developed complementary mecha-
nisms to improve user and developer control of applications. For
example, AppFence [24] introduces innocuous shadow data to
replace sensitive data and introduces new privacy controls for
existing applications. Quire [9] provides a framework to allow
applications to determine the call chain of requests made, allowing
applications to protect themselves from other malicious applica-
tions. A recent study by Szydlowski [34] explores the feasibility
of detecting malicious behavior dynamically in iOS applications.
Finally, TaintDroid, by Enck et al., [10] modifies the operating
system to track the flow of sensitive data to detect when this data is
exfiltrated. All of these have goals orthogonal to ours, however.

3. OVERVIEW
In AppProfiles, we create descriptions of security- and privacy-

relevant behavior which enable users to make informed decisions
about what applications to allow on their phones. As the Android
API imposes a structure on how applications access sensitive in-
formation or functionality, we leverage it to detect behaviors of
interest using static analysis (with a few limitations, as described in
§5.1). This approach is complementary to the permission system
and does not attempt to replace existing malware detection tools
such as antivirus software. We do not seek to constrain application
behavior, the way the permission system does, or to detect mali-
cious applications that attempt to subvert the constraints imposed
by the Android API.

In order to do this, we start by creating a knowledge base of
mappings between API calls and application behavior types. Such
a mapping necessarily involves some degree of manual effort,
but there are several tools and techniques we use to minimize
the effort involved. We start with a list of key security- and
privacy-relevant API calls, which we map to behavior descriptions.
Existing research [16, 3] allows this mapping to be constructed
easily and automatically. Next, we identify API calls which benefit
from having more specific entries in our knowledge base associated
with them. For example, it may be valuable to detect if certain
arguments are passed to a given API call. We describe in § 4.1
how to refine our rules more systematically. Borrowing from the
terminology used by our static analysis tool, we call each entry in
the knowledge base a rule.

Next, this knowledge base is used to create application behavior
profiles. We use an existing static analysis tool to detect the code
patterns in our knowledge base. We translate this data into profiles
using a second mapping between rule matchings and higher-level
descriptions, which are intended to be accessible to end users.
This mapping to high-level descriptions also allows behavior to
be inferred from combinations of rules triggered. For example,

consider an application where a rule involving taking a photograph
has been triggered, but a rule for showing the user a preview of the
image has not been triggered. The corresponding behavior profile
entry would indicate to the user that the application is capable of
taking photographs without displaying anything on the screen.

There are two major concerns in producing our knowledge base:
accuracy, and completeness. As there is no ground truth to compare
against, these are hard to evaluate. However, as we use permissions
as a starting point and then add a significant amount of additional
data, it is necessarily more complete than the permission system.
Furthermore, the feedback we have collected indicates that users
have found the new information gathered to be substantial and
useful (see §5.4). We have also added rules based on security
threats from known malware, as anti-viruses do (for example,
sending SMS messages without user input), but unlike them we can
cover behavior that is not explicitly malicious and which requires
human judgment to evaluate (for example, collecting different
types of location data.) As new privacy threats become apparent
we can easily add new rules. We evaluate the overall accuracy of
the entire system in §5.1.

An important feature of this approach is that we have sep-
arated the collection of data (using our knowledge base) from
the interpretation of this data (as profiles). This allows for a
wide range of different types of profile information to be created
without modifying the data collection method. We only provide
information to ordinary users which is designed to be comprehen-
sible and of relevance in trying to determine whether to use an
application. However, advanced users might want to have access to
more technical details. These advanced profiles also allow us, and
potentially other researchers, to perform further analysis. We give
some examples of the types of analysis enabled by these profiles in
§5.2 and §5.3.

The final step is to use these profiles to evaluate whether this
application is appropriate to run on a given device. This will vary
with the needs of the user, so we allow users to make that decision
based on their needs. As we have been collecting feedback from
users regarding their views on application behavior, future work
could include making an application privacy rating available to
users based on the profiles as well as user feedback.

We emphasize that our focus is on allowing users to make
informed decisions about legitimate applications, not on detecting
malware. We do not attempt to deal with native code or applications
that take extraordinary steps to prevent analysis — we are focused
on detecting how the Android API is used and anything that is
external to this API, or that attempts to subvert its protections, is
outside the scope of this work. We also do not attempt to determine
what is an unacceptable privacy violation. Much of the behavior
we discover may, in context, be harmless. For example, an app
that covertly tracks a phone in case it is stolen is indistinguishable
from spyware. Others may differ from user to user. For example,
not all users may be concerned with applications that track their
location. The goal of AppProfiler is to give users the ability to make
informed decisions about the applications they install, something
which we believe cannot currently adequately be done.

4. DESIGN AND IMPLEMENTATION
There are four significant aspects to the design of the system.

First, we describe how we create our knowledge base. Second,
we explain how this knowledge base is used to generate behavior
profiles. Third, we discuss how to develop a scalable system to
produce such profiles for the available applications in Google Play.
Finally, we discuss how we make these profiles readily available to
end users.
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Figure 1: Conceptual overview of profile creation process.

4.1 Creating a Knowledge Base
We wish to identify a set of privacy-relevant API calls and map

them to appropriate behavior types which summarize the privacy
implications of those calls. For example, if the API call "an-
droid.telephony.SmsManager.sendTextMessage" is detected and its
first argument is a constant, we wish to map this to the behavior,
“sends text messages to a fixed phone number". As the range
of these possible mappings is very large, a method is needed to
systematically create rules and determine which API calls to detect.
We use the Android permission system to do some of the work,
taking advantage of research [16, 3] on automatically mapping
permissions to function calls. While this is sufficient for our
system to function, substantially more detailed information can be
provided by a deeper examination of the Android API.

Our approach to enhancing the knowledge base in this manner
is summarized in Figure 1. We start by creating a list of rules
that match very broad types of behavior, mostly at the level of
classes (step A in the figure), based on existing API-to-permission
mappings, as well as through manual effort. As the API classes are
well-documented and clearly-named, manually identifying which
additional classes are of interest required little effort. We then
increase the quantity and specificity of the information we provide.
This also requires some manual effort, but this can be significantly
reduced by first determining which parts of the API would benefit
from more detailed analysis, then covering the remaining, less
interesting, parts of the API with more general rules.

To do so, we first refer again to previous research to identify key
areas of the API (step B1). For example, previous work [15, 4]
suggests that the Location, Internet and Phone State permissions
are among the most commonly used, as well as highly privacy-
sensitive. Therefore, adding more detail in these areas would allow
users to better understand a wide range of applications.

We also ran additional tests to identify and confirm which classes
are significant (step B2). We ran a preliminary version of our pro-
filer on a selection of applications, including popular and randomly
selected applications from several markets, as well as a selection
of malware [7]. By doing so we confirmed the results of existing
research and identified other areas in which more detail would be
helpful, focusing on more common or dangerous behavior.

Once we narrow down a number of classes of interest in this
manner, we manually examine the methods of each class and
determine which are of potential significance to users (Step C). For
example, detecting the API call that reads the phone number of a
device, or reads device-specific IDs, is likely to be of interest to
users. Detecting the API call that specifies a format for the name
of the network operator, prior to retrieving that name, likely is not.
For large, complex parts of the API we iterate over steps B2 and C
to further refine our knowledge base.

Most of our rules deal with short, specific API patterns, such
as function calls and their arguments, or combinations of function
calls, as it makes it easier to build up complex profiles from this
information later.

To make this process more concrete, here is an example of how
two sets of rules get developed.

1. Using an existing mapping of permissions to API calls (step
A), we identify which classes use the "Location" permission.
We spend more effort here because previous research sug-
gests location data is important to users (step B1). We create
a preliminary set of rules that match any use of the Location
classes.

2. After running these rules on a preliminary set of applications,
we determine that the LocationManager and Address classes,
among others, are widely used (Step B2).

3. We examine the methods of these classes. We identify
those that look interesting: these include a series of methods
in "LocationManager" concerned with how often location
updates are given. In "Address", there are a series of methods
concerned with various types of address data, ranging from
the user’s country to their street address. We create a new set
of rules that match with each of these API calls (Step C).

4. We use the results of the rule matchings to decide where
more detail is needed.

• We determine that many of the specific functions from
the Address class are rarely used, so for our final
set of rules we combine similar functions. For ex-
ample, we place all those related to human-readable,
fine-grained addresses together (e.g. getAddressLine,
getThoroughfare), and we place all those pertaining
to the user’s country together (e.g. getCountryCode,
getCountryName). We are now done with creating the
set of rules for “Address." (step D).

• Conversely, many of the specific API calls in Location-
Manager are very common. Therefore, it is worthwhile
to expend more effort in creating more specific rules to
describe these, and so we iterate again over step B and
C. For example, we notice “requestLocationUpdates"
is very common. It takes arguments determining how
often these updates happen, which may be of interest to
users, as the frequency of updates impacts their battery
life. We create rules for different update frequencies
and again run these rules on our set of applications.

5. Finally, we notice a lot of applications retrieve location data
at the maximum possible rate. We manually examine a few,



and determine that what is actually happening is they request
repeated updates, but stop the request as soon as they have
adequate data. Older versions of the API did not allow a
single location update to be requested. We treat this pattern
separately so as to not claim that applications which do this
are wasting battery. We now can add these rules to our
knowledge base (step D).

As a result of this process, we have now identified twelve rules
for our knowledge base. One, associated with LocationManager,
identifies if the method “requestLocationUpdates" has been used
at all. Seven more narrow down the frequency of these updates.
Four are associated with “Address": one checks if the application
requests information about the user’s country, another about the
user’s state, another about the user’s postal code, and the last about
the user’s street address. Several more rules are associated with
these classes: the full knowledge base can be seen at http://
appprofiles.eecs.umich.edu/tech.html. We give an
example of the knowledge base entry for checking the user’s state
below:

Category:
Location - Type
Subcategory: Regional data - State

FunctionCall call:
call.function.enclosingClass.name startsWith
"android.location.Address"
and call.function.name == "getAdminArea"
FunctionCall call:
call.function.enclosingClass.name startsWith
"android.location.Address"
and call.function.name == "getSubAdminArea"

4.2 Developing Profiles
This knowledge base is then applied to better understanding

application behavior. We start by extracting the API calls in our
knowledge base from the application source code. In order to do
this, we use a tool called the Fortify Static Code Analyzer [18],
which is able to use the rules in our knowledge base to identify
code in each application that matches our rules.

Once we have a complete list of which rules in our knowledge
base have been triggered for a given application, we process this
data in order to produce an easily understandable final product. We
combine redundant rules (E1) and detect behavior inferred from
the total set of rules (E2). Some forms of analysis are best done
by inferring results from several rules. For example, we wish to
know if a SMS message was sent in the context of a background
service. We have one rule for detecting SMS messages being sent,
and another for detecting classes that run as background services.
By looking at where the former rule was triggered, if it occurs in a
class that runs as a background service, we know it happened in the
background. In fact, we can then determine if any rule is triggered
in the background in the same way.

To make this approach more concrete, here is an example of how
this process occurs.

1. We run the rules against the application, which reveals which
rules are triggered and in which classes they occur. Rules are
triggered which indicate:

• The application asks for the fine-grained or coarse-
grained location, whichever is most recent.
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Figure 2: Overview of the application analysis system

• Location updates are requested every five minutes in
one location; every ten minutes in another.

• The application requests that the distance to a fixed
location be calculated.

• The phone’s IMEI is requested.
• We also identify, where possible, which classes are

run in the foreground and which run as background
services. Looking at which methods are called by
classes in other files sometimes does not work reliably.

2. We organize the results of these rule matches, incorporating
data on whether classes run into the foreground or back-
ground, as well as data on which classes belong to which
ad library (Step E2). Of the two rules indicating how often
the application requests updates, we only report the worst-
behaving one (Step E1).

• The application selects the best of the fine-grained
or coarse-grained location; this happens in the back-
ground.

• The application requests updates every 5 minutes (this
being the worst-case).

• The application cares about proximity to a location; this
occurs in the foreground.

• A unique, personally-identifiable ID is requested by
Google’s ad library. We cannot determine if this hap-
pens in the foreground or background.

Additionally, we adjust our profiles based on our audience. A
technical user might be interested in knowing which phone-specific
IDs are being tracked, for example, whereas a more casual user
might only care that they are being tracked. As our profiles are cre-
ated by a script that maps combinations of triggered rules to higher-
level descriptions, it is straightforward to create different types of
profiles by changing this mapping. Essentially, we separated data
collection from processing, analyzing, and displaying the data to
gain flexibility in the amount and nature of data that we present to
various audiences. This also made it easy to add functionality as
needed. For example, we added the ability to determine if behavior
originates from third-party libraries without requiring substantial
changes to our system.

http://appprofiles.eecs.umich.edu/tech.html
http://appprofiles.eecs.umich.edu/tech.html


Table 1: Comparison of feedback types with the associated permission in a sample app. We use the following notation: <text>
indicates the context in the application in which the rule is triggered, such as in an activity (i.e., the foreground). [text] indicates an
associated major ad library.

Permissions Our User Summaries Our Technical Summaries

• fine (GPS) location - Access
fine location sources such
as the Global Positioning
System on the phone, where
available. Malicious apps
may use this to determine
where you are, and may
consume additional battery
power.

• Gathers fairly precise location data (e.g.
GPS)

• Reads your latitude or longitude

• Uses more of your phone’s resources than
recommended by Google to retrieve your
location data.

• Concerned with your proximity to a given
location (for example, may be alerted if
you are near a particular store.)

• Can use GPS OR network <context
unknown>

• Latitude/Longitude <broadcast>
[googleads]

• Updates every 1s or less <activity>
[jumptap.adtag]

• Asks for periodic updates <activity>

• Proximity to location <on click> <activ-
ity>

We currently produce two forms of output (see Table 1). One
is more technical and detailed, and primarily for the benefit of
researchers and security professionals. We used this to perform
analysis on trends in application behavior, such as comparing the
behavior of third-party code with application-specific code. We
plan to make it available in the near future. The second is simpler,
and is aimed at security-conscious but non-technical end users. We
have made these profiles available through an application in Google
Play which to date has seen almost 1500 downloads.

4.3 Large-Scale Application Analysis
Next, we demonstrate that these profiles can be used, in the long

term, to analyze all the available (i.e., free) applications in Google
Play.

We start with an existing list of all applications in the mar-
ket [27], containing 276,016 apps, around 45% of which appear to
be no longer be accessible. Building off of the Unofficial Android
Market API [1], a script downloads these applications. (This is step
A in Figure 2).

For the next stage (step B in Figure 2) we use ded [11] to
decompile each application. Once we produce the source code,
we analyze it using Fortify (step C) and the rules we derived as
described above. We pass the resulting data to another set of
scripts, which uses the set of rules triggered to create higher-level
descriptions of application behavior (Step D).

We processed over 33,000 applications in 67 days on one server,
a time period which included a number of interruptions as we
tweaked our system. We analyzed on average about 500 applica-
tions per day. An additional 27,000 applications were queried but
unreachable. We investigated a number of cases to confirm that
there was no application with that package name currently active in
the market, and that likely the application had been removed. Using
a few servers of various speeds, we have already processed 65% of
our app list. Furthermore, the system could be further optimized.
For example, a system using a custom static analysis tool operating
on disassembled Dalvik bytecode would be able to eliminate the
time spent decompiling applications, which we found accounted
for over 90% of the time spent.

There are a number of technical limitations due to artifacts of
how we implemented the system. The decompilation process is
not perfect [11]. We examine some randomly selected applications
in §5.1.1 to better understand the impact of these errors. Alter-
nately, the application could be disassembled using a tool like

baksmali [33], although in that case a custom analyzer would also
need to be built.

We make results available through an android application, App-
Profiles (Step E in Figure 2). It allows users to select an appli-
cation to look up from a list of applications installed. We give
users a less technical version of the profiles (see Figure 1 for
a brief example.) We also allow users to submit feedback on
application behavior. They can toggle actions they don’t like and
indicate whether the application behaves as expected overall. Since
we download applications from Google Play and not the user’s
phone we are limited to free applications. We additionally made
the profiles viewable on our website using a similar interface, at
http://appprofiles.eecs.umich.edu.

5. RESULTS AND ANALYSIS
We present several types of analysis below. First, we measure the

accuracy of our system and identify any limitations that may impact
its accuracy. Second, we examine three applications in depth to
better understand these limitations, as well as demonstrate the sort
of information our profiles make available. Third, we look at how
our profiles can be used to quickly and easily gain an understanding
of the market as a whole. We compare trends in library-specific
and application-specific code and look at how popular applications
differ from other applications. Finally, we examine feedback that
users have given us about our profiles and what they indicate about
the applications they run.

5.1 Testing Profile Accuracy
In order to evaluate the accuracy of our profiles, we first examine

a set of popular applications and of one of randomly selected
applications, which we examine manually to determine what our
profiles should detect. We also examine a set of malware that has
well-studied behavior as a worst-case analysis of the accuracy of
our system.

5.1.1 Confirmation through dynamic analysis
In order to measure how often the behaviors we detect occur in

practice, we created a dynamic analysis testing framework based
on TaintDroid [10], with the added ability to detect behavior cor-
responding to that found in our profiles. This testing framework
is somewhat limited, as certain types of functionality cannot be
detected by this dynamic testing system. For example, the technical
version of our profiles distinguishes between applications using

http://appprofiles.eecs.umich.edu


HTTP libraries and those using TCP libraries, but the former results
in the latter being called at runtime. Nevertheless, it helps illustrate
the limitations of our system.

We analyzed a selection of two types of applications: popular
applications and randomly chosen ones. For the latter, we excluded
two that would not run at all, and two where language barriers
prevented us from understanding the application’s behavior and
thus prevented us from thoroughly exercising the application. We
compared against our more technical profiles, but when accounting
for the accuracy of these profiles, we combined similar rules
regarding Internet use, as these are very common, often appear
together and are usually correctly detected — they would tend to
artificially inflate the accuracy of our profiles.

We selected 10 popular applications from the front page of
Google Play. They cover a range of different application types
and publishers. Overall we found that applications that make
extensive use of third-party libraries may have higher rates of false
positives. For example, one application uses a debugging library
whose behavior is not triggered at runtime but whose source code
is included in the APK. This is an inherent problem with static
analysis — however, using static analysis allowed us to cover far
more applications. Conversely, errors in decompilation can result
in behavior not being detected in our rules. Given the limitations of
our testing framework, any values on accuracy should be taken with
a grain of salt. However, an average of 10% of behavior triggered
dynamically did not appear in our profiles; we had a 23% false
positive rate.

We selected 15 applications at random, discarding four for the
reasons described above. We had a 16% false positive rate and 15%
false negative rate; most false negatives were caused by a single
application which failed to decompile correctly. The lower false
positive rate may be due to these applications being much simpler
and easier to exercise thoroughly. For both application sets, there
was no clear pattern in the behaviors we missed, as these appear to
be due to decompilation errors or the use of native code.

5.1.2 Testing Malware With Known Behavior
We would like to reiterate that the goal of this project is not to

detect malicious software, and in particular not to detect malicious
software that takes extraordinary steps to hide its behavior from re-
searchers. Nevertheless, examining the behavior of known malware
is useful for several reasons. First, many malicious applications
have been well-studied and analyzed by a third party, which means
that a ground truth for their expected behavior exists. The same is
not true of most legitimate applications. Furthermore, as many of
them take extensive steps to obfuscate their behavior, they allow
us to do a worst-case evaluation and determine the limitations of
our system. We downloaded the entire Contagio mobile malware
sample on January 7, 2011, and randomly selected a number of
applications to analyze in detail (see Table 2). We could find a
description of 28 of these randomly selected applications from a
security researcher or organization [28, 25, 19, 35]. Overall, our
profiles detected an average of 59% of the expected behavior.

SMS-related behavior was one of the most common and serious
behavior types we detected, and we were able to detect this in
applications that rely on root exploits or native code. We also
frequently detected these applications collecting location data and
unique phone IDs, and using the Internet, although legitimate
applications do this as well. Frequently, suspicious behavior occurs
in the background (i.e., in Services or broadcast receivers). Our
highest rate of failure was in detecting applications that download
additional binaries, likely because malware does not generally use
the provided API for doing so.

Table 2: Accuracy of our profiles for 28 malware samples. The
last row applies to apps that exhibit suspicious behavior in a
background application component. The false positive rate is
likely an overestimate as security researchers may have felt
some behavior is not worth listing.
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Suspicious SMS 9 1 1
Normal SMS 0 0 0
Phone calls 1 1 2
Interacts with other apps 1 1 4
Downloads/installs apps 1 11 0
Collects list of apps 1 1 1
Runs Linux commands/root 4 2 1
Collects location data 8 0 4
Collects phone IDs 16 1 2
Adds bookmarks 0 1 0
Uses the Internet 16 0 2
Behavior occurs in background 17 N/A N/A

We may also have detected some previously unknown behavior
in some of the malware samples. In a few cases, the detected
behavior was entirely different from the behavior we expected
based on the behavior profiles written by security experts. Not only
did we fail to detect the expected malicious behavior, but we also
detected previously unknown malicious behavior. We manually
verified, by examining the application source code, that our profiles
in these cases matched the malware’s actual behavior. A likely
explanation is that these applications were mislabeled.

Overall, while the accuracy of our profiles is somewhat limited
when it comes to malware, and we specifically did not aim to
be able to detect malware with this system, we were nevertheless
successful more often than not, and we have furthermore been able
to detect previously overlooked behavior in malicious applications.

5.2 Case Studies
We have chosen three popular applications to analyze in depth

in order to demonstrate the behavior these profiles can reveal. Two
were found by our users to have a great deal of concerning behavior,
and one was overwhelmingly rated as harmless.

5.2.1 Facebook [13]
As many of our users were concerned about the behavior of the

Facebook application, we selected it for detailed examination. In
our profile, we predict it can exhibit intrusive location behavior.
It asks for the user’s latitude and longitude and proximity to
other locations. It also accesses video functionality as well as
information about the carrier and the phone number. Based on our
survey results, users seemed especially concerned about its ability
to access their phone number and location, including the fact that it
appears to query their location very frequently. On the other hand,
they were not concerned about its use of the Internet.

Our technical profile suggests that the location related actions
and those related to the user’s phone number happen in an “Ac-
tivity”, i.e., a component the users interact with directly, whereas



much of the Internet-related functionality happens in a background
process with which users do not interact. Our profiles did not
detect certain behavior for which permissions are requested; in
particular, we detected nothing related to SMS messages. We used
our dynamic testing tool to determine that our profiles were correct,
at the time of analysis, and the application is over-requesting
permissions.

Although its permissions and our user-friendly profiles paint the
application as being overly aggressive in its use of privacy-sensitive
functionality, it is less intrusive than it might seem, as much of
its controversial behavior is only triggered by the explicit actions
of the user. Nevertheless, our profiles are more accurate than the
permissions in determining its behavior. This suggests determining
the context of privacy-affecting behavior may be worth including in
our more user-friendly profiles — we may need to expand this part
of our analysis to be able to determine this context in every case.

5.2.2 Angry Birds [2]
This is another application which is both popular among Android

users in general and distrusted among users of our application.
As with Facebook, users seem particularly concerned about its
location-related behavior; they also object to the use of cookies
and personally identifiable phone identifiers. Unlike Facebook, this
application appears to make use of native code, which we cannot
analyze. Nevertheless, we were able to detect much behavior of
concern.

Our profiles predict that the application itself is not very intru-
sive. However, like many free applications it contains ad libraries
(we detected code from five) and these ads are responsible for much
of the privacy-intrusive behavior. Dynamic testing confirmed this
trend. It also determined that a great deal of of information is
written to the debug log, including personal IDs and information
about the carrier. The only discrepancy between our profiles and
our testing is that the latter did not detect any use of the telephony
manager or the sensor manager, behaviors which were in our
profiles.

This example indicates two important features of our analysis.
First of all, false positives will always be an issue in static analysis,
as code may be present but never triggered. Secondly, our results
confirm that a significant amount of concerning behavior occurs in
ad libraries. This is a strong reminder that ad-supported applica-
tions might have a hidden cost in terms of privacy.

5.2.3 Reddit is Fun [31]
We chose this application as it was the most frequently ranked

as having acceptable behavior by users and we wish to determine
how a positively ranked application might differ from a negatively
ranked one. The permissions, and the author’s writeup, indicate
that it should access the Internet, store data on the SD card,
access the network connectivity state and start automatically on
boot. Our profiles suggest that it can additionally update the user’s
browser history, process phone numbers in some manner, and use
cookies. It accesses the Internet using both Webviews (a library to
present information to users) and direct HTTP connections. All the
behavior in our profiles was confirmed to exist through our dynamic
verification framework.

The biggest difference between this application and the above
ones is that this one does not collect location data, which as
we discuss later seems to generally be of great concern to users.
Furthermore, the developers explain in detail in the market writeup
what the application does, which may make users feel more com-
fortable with its behavior.

Table 3: A comparison of types of behavior seen in the top 9
most common third-party libraries.
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Internet * * * * * * * * *
Internet - webview * * * * * * *
Location - passive * * * *
Location - active * *
Audio manager * * *
Hardware sensors * *
Cookies * *
Camera *
Unique ids *
Phone number *
Bookmarks *
Detect other tasks *

5.3 Large-scale Analysis of App Behavior

5.3.1 Third-Party Library Use
Given that many applications make extensive use of third-party

libraries, and prior research suggests that ad libraries are often
quite intrusive in terms of privacy [20], we examine these more
closely. First, we used a simple heuristic to identify these libraries.
We counted the occurrence of every class name and its associated
package name, keeping track of duplicates. As a common code
obfuscation tool seems to also produce identical class names and
package names across applications (e.g., a.b.java) we excluded
class names fitting such a pattern. We then created a list of
frequently repeated classes, using 100 unique instances across
distinct applications as a cutoff. While this might exclude some
minor libraries, it should cover any of significance. We then reran
our behavior aggregation script, only this time dividing behavior
into that unique to the application and that originating from a third-
party library.

The behavior of the top 9 are summarized in Table 3. The
overall trends — the widespread use of location data and personally
identifiable information — is consistent with existing research [20].
There is a lot of variation in the behavior of these libraries, but in
general those that merely integrate with an existing service (like
Facebook and Twitter) are fairly non-intrusive, whereas ad libraries
tend to be more intrusive. However, many of the top ad libraries are
less intrusive than those seen in our case studies. This suggests it
may be possible for ad libraries to meet user privacy expectations
while still remaining commercially viable. Phonegap is an unusual
case. Since it is a platform for assisting in creating applications it
exhibits a wide range of behavior.

We also compared the behavior common in our total set of third-
party libraries with that which is common in regular applications.
We have show the most common behaviors from both cases in
Figure 3. Sometimes, their behavior is quite similar — both use
webviews a great deal (the standard API for rendering a webpage
from a URL) and Internet-related behavior in general is common
for both. In other cases, they behave quite differently. Third-party



Figure 3: Comparison of the most common behavior in application-specific code versus that in third-party library code.

Figure 4: Comparison of the most common behavior for all apps versus that in 170 popular apps (application-specific code only).

libraries make greater use of cookies, for example. It is common for
either to access a user’s location, but there are some fundamental
differences in how they do it. Third-party libraries are more likely
to ask for a cached location, and applications are more likely to
specify that they need to use the GPS exclusively. Overall, our
results are consistent with existing research [20].

5.3.2 Popular Applications
It is also interesting to observe how the most popular applications

compare with all other applications. A comparison can be seen
in Figure 4, which shows application-specific code only— library-
specific code exhibits the same trends. Of our total set of apps, at
least one rule has been triggered in application-specific code for
66% of applications, and in third-party library code for 55% of
applications (note that not all apps use third-party libraries). Of the
popular applications, 74% have relevant behavior in application-
specific code, and 79% in third-party code. This trend is reflected
in Figure 4, where it can be seen that more popular applications
exhibit all but two types of behavior more commonly than aver-
age. This difference is more pronounced in behaviors related to
monitoring the system status; popular applications are more likely
to monitor memory usage, power state, connectivity state, and the
status of other applications. These differences suggest that research
focusing only on the most popular applications may not reflect
behavior in the market as a whole.

One other interesting fact is that the most common behavior
detected in all cases is to print to the debug log, something which
Google recommends that developers turn off in published applica-
tions [8]. This could leak important information, such as a user’s
private information, as we found in our case studies.

5.4 User Feedback from AppProfiles
The release of our application has demonstrated that there is

interest in better understanding what smartphone applications do.
Within the first week, we had 833 downloads, and a total of 1482
at the time of writing. Feedback has been positive, with an average
rating of 4.1. Users have indicated that they feel such an app is
much-needed.

We gave users the option of anonymously submitting feedback
on the applications they use (see Figure 5). These results are not
representative of the entire population of smart phone users, as the
findings are likely to be skewed towards those who are interested in
security and privacy issues. However, as the use of this application
is entirely voluntary and only useful to the privacy-conscious, this
is arguably the demographic whose responses are most relevant.

We surveyed the feedback submitted roughly a week after up-
loading our application. At the time, we had 1839 distinct items of
anonymous feedback covering a total of 456 unique applications.
63% of those applications were ranked as acceptable by at least
one user, 28% as exhibiting surprising but acceptable behavior, and
43% as exhibiting unacceptable behavior.

The most commonly rated applications are summarized in Ta-
ble 4. Ad-driven popular games and social media applications seem
to be particularly controversial, likely for the reasons discussed in
§5.2. It was also fairly uncommon for an application to exhibit
unexpected behavior without users also considering that behavior
objectionable. The least controversial applications tend to be
work-oriented or provide some basic utility, such as Dropbox,
Google Docs or Flash Player. The "reddit is fun" application is
an exception, perhaps because it is not ad-oriented.



Table 4: Top most common applications in each category by number of ratings; percent of feedback items in that category also
shown for each app.

Acceptable Surprising Not Acceptable
com.andrewshu.android.reddit 56 (90%) com.facebook.katana 13 (14%) com.facebook.katana 53 (58%)
com.dropbox.android 40 (83%) com.pandora.android 6 (26%) com.zynga.words 31 (86%)
com.alensw.PicFolder 27 (90%) com.amazon.kindle 6 (22%) com.rovio.angrybirds 29 (91%)
com.bigtincan.android.adfree 22 (88%) com.devuni.flashlight 5 (13%) org.zwanoo.android.speedtest 19 (68%)
com.adobe.flashplayer 21 (95%) org.zwanoo.android.speedtest 5 (18%) com.imdb.mobile 13 (76%)
com.google.android.apps.docs 19 (100%) com.evernote 4 (23%) com.amazon.kindle 14 (63%)
com.google...chrometophone 17 (81%) com.game.CeramicDestroyer 4 (50%) mobi.mgeek.TunnyBrowser 14 (78%)
org.connectbot 17 (100%) com.google...googlevoice 4 (28%) com.skype.raider 12 (50%)
com.facebook.katana 16 (18%) com.linkedin.android 4 (40%) com.farproc.wifi.analyzer 12 (60%)
com.agi.android.augmentedreality 14 (15%) com.skype.raider 4 (17%) com.weather.Weather 9 (53%)

Table 5: Variability of user opinions on behavior within major permission types. Each percentage indicates how often users flag
it as objectionable in applications where it occurs. "Location" includes only API calls that can be performed with both location
permissions.

Permission Average standard deviation notes
camera 27% 30% 66% photo without preview; video 37%; preview, no photo 2.6%
read phone state 24% 13% detecting phone calls 40%, IMEI 26%
location (either) 16% 9% heavy resource usage 29%.
read sms 7% 7% reading message contents 13%
internet 6% 7% cookies 23%
write sms 5% 5%

Users also had the option of indicating if they object to specific
behaviors. Interestingly, the behaviors users object to do not
overlap significantly with those exhibited by malware (see Table 6).
For example, users seem most concerned with applications access-
ing their location, and less concerned about SMS behavior, even
accounting for the fact that location behavior is more common. The
fact that there is a marked difference between the set of unpopular
behavior and the set associated with malware, in addition to the
fact that there are many popular applications from well-established
companies which are criticized heavily by users, suggests that there
is a segment of users which are strongly concerned about privacy in
general. Simply focusing on overtly malicious applications is not
sufficient as there is a demand for transparency in the behavior of
all applications.

Additionally, user opinions on different behavior types covered
by the same permission varied greatly. This strongly suggests that
permissions are providing information at the wrong granularity. On
average, wherever any given behavior appears in an application
profile, it is flagged as objectionable 11% of the time (standard
deviation of 14%). Behavior falling under the Internet permission,
for example, was flagged as objectionable 5.8% of the time on aver-
age, but the use of cookies specifically was flagged as objectionable
23% of the time. Some more data on common behaviors can be
seen in Table 5.

Most notably, users only care about certain types of behavior
covered by the "read phone state" permission. In particular, they
object to anything that could be used to track them, or detect when
they’re making phone calls. For location, users care first about
high resource usage, then about how fine-grained the data on their
location is. Additionally, for an application to determine the user’s
distance to a given location, or to determine the direction in which
they are traveling, is viewed as objectionably as using fine-grained
location data. For camera-related behavior, users’ opinions varied

considerably between the four associated rules. In particular, using
the camera to show a preview only was viewed as far less objec-
tionable than the other behavior, which involved actually taking a
picture. However, we have very few data points for some camera-
related behavior. Finally, users are not particularly concerned about
SMS messages, but they are slightly more concerned about SMS
messages being read than messages being sent. The former has
privacy implications, whereas the latter could cost them money and
is common in malware. Perhaps privacy issues are viewed as a
bigger threat than malware.

Additionally, there are 19 behavior types which correspond to
none of the currently existing permissions. Of these, 6 never
actually occur in any application we were given feedback on. These
six all involve using obscure sensors. Users flagged the remainder
as objectionable, on average, 5.5% of the time. Some, such as
writing to the debug log or looking at phone orientation data, were
never flagged as objectionable at all, and so perhaps not being
covered by a permission makes sense in those cases. Being alerted
when packages are installed, and using the accelerometer, however,
were highly unpopular, both being flagged 9.5% of the time.

We later created a second feedback form with additional ques-
tions asking whether the users intend to uninstall the application,
and whether the profiles had an impact on their view of the ap-
plication. 71% of feedback items indicated that the profiles had
changed the users’ opinions, and 8.8% indicated that they would
uninstall the application as a result of our profiles.

5.5 Lessons Learned
We have demonstrated that users find these profiles to be useful

and informative, and that extracting this kind of data allows us to
better understand behavior trends in the application market as a
whole. We have also learned a great deal about user expectations
of application behavior and the limitations of the permission system



Table 6: Comparison of the top ten most frequent behaviors
observed in malware versus behaviors rated as objectionable
by users.

Indicative of malware disliked by users
SMS Location
Send Text Message Reads latitude or longitude
Copy SMS object High resource use
Deprecated SMS manager Misc. location use
Read contents of SMS Use cached location
Privacy Privacy
Get a unique id Uses cookies
Get phone number Get a unique id
Get carrier info Detects phone calls
Internet Internet
Send HTTP post Check connection status
Miscellaneous Miscellaneous
Use telephony manager Take video
Triggered on boot completed Uses the audio manager

Figure 5: Example of feedback form

as it currently stands, and so we offer a few suggestions as to how
a permission system should be designed.

The permission system does not seem to be fine-grained enough
to meet the needs of users. For example, the “Internet” permission
may be too broad — for example, users care a great deal about
the use of cookies, but not all kinds of network use. They care
more about some types of location data than others, and care about
reading phone IDs and phone numbers but not other aspects of the
phone state. However, many of these distinctions cannot be made
with the current permission system; permissions should be fine-
grained enough to allow users to make these distinctions.

Furthermore, it seems valuable to differentiate between actions
performed by users and actions performed in the background. For
example, malware frequently sends SMS messages without the
input of the user. It would be valuable to differentiate user-triggered
actions from other actions in some cases and require different per-
missions accordingly, as has been suggested in previous work [32].

Finally, it seems that there are significant differences between
third-party library code (such as that used by advertisements) and
code written as part of a specific application. If users are greatly
concerned about privacy, then they may be more concerned about
libraries which might monitor them across applications, than an
individual application. Differentiating between permissions unique
to an application and those used by third-party libraries may be
useful.

6. CONCLUSION
We have described a method for systematically detecting privacy-

related application behavior in mobile systems where the most
significant aspects of application behavior are mediated through a
well-defined application framework. This method has two com-
ponents; creating a knowledge base of API calls with privacy-
relevant behavior, and using this knowledge base to produce be-
havior profiles for applications. We have demonstrated that it is a
highly effective method of allowing both end users and researchers
to better understand how applications behave. Finally, we have
demonstrated that it is possible to create such profiles efficiently,
given the almost 80,000 applications we have analyzed to date.
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