
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

An Empirical Analysis of Hazardous Uses of
Android Shared Storage

Shaoyong Du, Pengxiong Zhu, Jingyu Hua �, Zhiyun Qian,
Zhao Zhang, Xiaoyu Chen, and Sheng Zhong �

Abstract—Android shared storage is shared with all the applications (apps for short) and the user. It is common to see that a large
amount of apps store different kinds of files on it. It is well known that apps granted the read or write permissions can freely access any
files in the shared storage. As a consequence, the shared storage has been demonstrated to expose sensitive information and
jeopardize users’ privacy.
In this paper, we systematically study a simple but overlooked threat related to the shared storage — the lack of input validation (e.g.,
integrity verifications) when consuming files on the shared storage. We argue that the untrusted input from the shared storage is a
much ubiquitous problem. By undertaking an empirically study through a static analysis tool we develop, we find over 30% of the
13,746 analyzed popular apps on the market suffer from such problem. By investigating the types of files consumed, we find shockingly
a large fraction of apps store and consume sensitive files, which allows us to construct end-to-end attacks. Considering the ubiquity of
this class of vulnerabilities, we finally define better access control policies for external storage to eliminate them for most apps.

Index Terms—Shared Storage, Android, Data Security, Static Analysis, Integrity Verification, Attacks.

F

1 INTRODUCTION

With the storage volume of smartphones increased year
by year, the apps tend to store more and more different files
locally to enrich the user experience. Android, one of the
most popular mobile operating systems to date, provides
apps with two kinds of ways to save the files on the users’
smartphones. One way is to save the files in the private di-
rectory specified by Android, where the strict access control
and isolation policies are enforced to guarantee that each
app can only access its own data. The other way is to use
the shared storage that is shared with all apps and the user.
Once an app is granted to access the shared storage, it can
manipulate any files in the shared storage. Though the first
way guarantees the security of the data, it is still common
to see that the apps save a large amount of data on the
shared storage. The shared storage also can be expanded
by the extra TF card or U disk. According to Android
development documents [1], they call the shared storage

• This work was supported in part by NSFC under Grant 61425024, Grant
61402223, and Grant 61321491, in part by the Jiangsu Province Double
Innovation Talent Program, and in part by the Fundamental Research
Funds for the Central Universities. The work of S. Du was supported by
the Program B for Outstanding PhD Candidate of Nanjing University
under Grant 201701B026. The work of J. Hua was supported by NSFC
under Grant 61300235. The work of Z. Qian was supported by NSF under
Grant CNS-1619450.

• S. Du, J. Hua, Z. Zhang, X. Chen and S. Zhong are with the State Key
Laboratory for Novel Software Technology, Nanjing University, Nanjing,
210023, China, and also with Department of Computer Science and
Technology, Nanjing University, Nanjing, 210023, China.
E-mail: shaoyong.du.cs@gmail.com, huajingyu@nju.edu.cn,
ericzz0727@gmail.com, traumcxy@163.com, zhongsheng@nju.edu.cn

• P. Zhu and Z. Qian are with the Department of Computer Science and
Engineering, University of California, Riverside, CA, 92521.
E-mail: pzhu011@ucr.edu, zhiyunq@cs.ucr.edu

• Both of J. Hua and S. Zhong are the corresponding authors.

external storage, while the private directory as internal storage.
In the following parts, we also use the item external storage
to refer the shared storage and use the item internal storage
to refer the private directories in the first way.

It is well known that the lack of access control in external
storage can have security and privacy implications. Re-
searchers have reported that much data kept in the external
storage contain sensitive information such as the raw voice
messages stored by some social networking apps [2], [3].
Once granted with the permissions to access the external
storage, the attacker can not only read but also manipulate
any files that he wants on external storage. In this way, the
files on external storage should be considered untrusted.
Prior work [4], [5], [6] has reported vulnerabilities related
to manipulations on executable files, .apk, .so and .py files.
However, several studies only point to instances of vulnera-
bilities [5], and it is unclear how widespread the problem is.
In addition, it is unclear what other types of files are stored
on external storage and what vulnerabilities they entail. In
this paper, instead of just focusing on specific types of files,
we conduct a comprehensive survey on the untrusted files
stored on external storage and analyze their security impact.

Compared to many other sources of untrusted input
such as socket [7] and Intent [8], we argue that the problem
of “untrusted input from external storage” is an elephant
in the room. Fortunately, to alleviate this security concern,
Google does offer two concrete suggestions to develop-
ers [9]: (1) sensitive files should not be stored on external
storage; (2) if developers have to do so, the file content needs
to be validated prior to consumption (e.g., files can be signed
cryptographically and verified). Unfortunately, as history
shows us, when security is a responsibility of individual
developers (instead of being addressed at the system level),
mistakes are bound to happen [7], [10], [11]. In this paper, we

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

set out to study empirically how well these two suggestions
are implemented by developers. Specifically, we attempt to
answer the following questions:
• What types of files are placed on external storage? Are

they sensitive or not? Who places these files and who
consumes them?
• Do apps perform any input validation? Are they effective

(possible to bypass)?
• What are the consequences of consuming unvalidated

files? Is it straightforward to exploit such vulnerabilities?
To answer the questions in the first two bullet points, we

develop a static analysis tool ExInspector. Its main goal is to
check an app’s usage of external storage, e.g., what types of
files are read, how they are consumed, and whether input
validation is performed. Although seemingly trivial, there
are a few technical challenges. For instance, we find that it
is not easy to distinguish external storage read operations
from the internal ones (as the open and read APIs are the
same). This means that one will need to use the path param-
eter as indication, which is often dynamically constructed.
Sometimes part of the file path could even be stored in
an internal database, which further complicates things. We
are able to overcome these challenges by reconstructing or
inferring the origin of the file path (recursively when part
of the file path also requires reconstruction or inference). We
use our tool to scan 9,889 apps from Google Play and 3,874
apps from a third-party market APKPure.com [12]. The
results show that a large fraction of developers indeed store
sensitive files such as .apk, .html, .js, and voice message files
on external storage, which violates Google’s first suggestion.
The tool is also able to understand and characterize a set
of known input validation techniques employed by these
apps. Our finding is that for all the file types, there are
always more than 90% of the apps not performing any input
validations prior to consuming the untrusted data, which
means Google’s second suggestion is also being violated by
a large fraction of developers.

To answer the questions in the last bullet point, we
sample apps that consume a variety of types of files and
build targeted exploits against them. As we will discuss
later in detail, besides being useful for storing data and
sharing them (e.g., pictures), external storage is often used
as a communication channel either between different app
components or across apps. Interestingly, we also find that
many such communication are transient, i.e., files are read
immediately after they are written, therefore leaving a very
small time window for tampering. For instance, third-party
market apps may temporarily store a downloaded apk file
on external storage and pass it immediately afterwards to
the system for installation. We are able to overcome these
challenges and construct reliable exploits by leveraging
appropriate file replacement techniques. We conduct both
large-scale analysis of apps to understand the overall land-
scape of such threats and detailed case studies that demon-
strate end-to-end attacks such as impersonating a friend in
a voice chatting session in the context of instant messenger
apps, replacing downloaded apk files to install phishing
software without the user’s knowledge and replacing web
resources passed to WebViews to show phishing pages. At-
tack demos can be found on our anonymous project website

https://sites.google.com/site/externalstorageattacks/.
In summary, we make the following contributions:

• We study empirically an overlooked threat of data tam-
pering against files on Android external storage. Based
on a static analysis tool we develop, we are able to
understand how well Google’s security guidelines are
followed by app developers in practice.
• After scanning 13,746 popular apps on the market, we

find over 30% of them suffer from the overlooked threat.
Various sensitive files are indeed stored on external stor-
age by a large fraction of apps. We also report most read
operations are not protected by any input validation. Even
when input validation is present, it can often be bypassed.
What’s worse, by tracing the same set of apps in the last
three years, we show that things have not changed and
this problem is still being seriously overlooked.
• We demonstrate the consequences by constructing sev-

eral serious exploits against a number of popular apps
overcoming practical challenges such as attack timing.
We also suggest several practical countermeasures against
this class of attacks.

2 BACKGROUND

We discuss the background of storage system in Android
and its security concerns in the context of Android security
model.

2.1 Android Security Model – Untrusted Input
In Android, there are a multitude of ways an app can face
untrusted input. This ranges from network input, input
from Inter-Process Communication (IPC) channels such as
Intent and Unix domain socket, as well as input from files.
To date, a number of research studies have shown that
apps suffer from untrusted input through network sockets
and open ports [13], Intent [8], [14], [15], Unix domain
socket [7]. However, shared external storage is also a form of
untrusted input that has not been scrutinized. Interestingly,
Android-specific communication channels such as Intent
and Broadcasts are much more heavily studied in terms
of their security implications compared to the native Linux
communication channels such as file systems, which is the
focus of this paper. Our hypothesis is that app developers
are generally not accustomed to the idea of verifying input
from file systems (including external storage) even when
Google does make such a recommendation [9].

2.2 Storage Management of Android
Just as we have talked in § 1, Android-compatible devices
offer apps two kinds of ways to locally store the files. One is
to keep the files in its private directory (i.e., “/data/data/App
Package Name/”) specified by Android. With the strict access
control and isolation policies, the stored files can be only
manipulated by their owners. However, when the app is
removed, the associated private directory will be deleted,
too. Different from the above one, the shared storage makes
it possible for apps to permanently keep the files, even
when the apps are removed. Meanwhile, an app can also
share the files with other apps through it. For instance,

https://sites.google.com/site/externalstorageattacks/

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

File Name/Type
Detector

Authentication
Detector

External Storage
Operation DetectorAPI-based FiltersApp

Dex code
App

Dex code
App

Dex code

Fig. 1. Overview of ExInspector

pictures taken by a camera app can be stored in the shared
storage and a photo editing app can subsequently read the
files. Users may use the removable storage media (e.g. TF
card) to increase the volume of the shared storage. In the
remaining paper, we do not distinguish these two types of
shared storage, as they share the same security policy and
only differ in their file paths. Moreover, the default shared
storage location depends on the user’s settings.

Android has two permissions to man-
age the access to the shared storage, an-
droid.permission.READ EXTERNAL STORAGE and
android.permission.WRITE EXTERNAL STORAGE for
complete read and write access respectively. Since Android
4.4, even without the permissions mentioned above, apps
are allowed to read and write its own files in the shared
storage “/sdcard/Android/data/App Package Name” [1]. Note
that these files are not private as they are exposed to apps
that have read or write permissions granted, and they will
be deleted when the app is removed.

2.3 Threat Model and Capability Analysis
Shared external storage can be accessed through apps that
are installed on an Android device, as well as any autho-
rized PC that attaches to the device. For the purpose of this
paper, we assume that the threat comes from a malicious
app co-located with a victim app. The malicious app needs
to acquire proper permissions in order to tamper with files
on the external storage.

It is important to also test what malware can do when it
has read/write access to the external storage. In the Linux
world, for instance, if an under-privileged program can
write to a directory in which a privileged program will
read, there are various name resolution attacks that can be
carried out [11], e.g., replacing the file with a symbolic/hard
link to a sensitive file that the privileged program will
read on behalf of the under-privileged program (confused
deputy attack). On Android, however, symbolic/hard links
are explicitly disabled on external storage [16]. Therefore,
the only attack vector here is to modify the file content and
cause victim apps that read the file to behave in undesirable
ways.

3 EXINSPECTOR DESIGN AND IMPLEMENTATION

The goal of ExInspector is to examine the use of external
storage in apps, and identify those that are most likely
vulnerable for further analysis. In this section, we describe
our design and implementation of ExInspector. ExInspector
is built on Soot [17] to analyze the apk files. Fig. 1 shows the
system modules and overall analysis steps of ExInspector.
First, ExInspector will screen apps through an API-based
filter and check whether an app will ever access external
storage. We then further conduct analysis to confirm that

an app indeed reads/writes the files on external storage
(by reconstructing the file access path). After that, we will
conduct further analysis to answer the two questions we
posed in the beginning. First, we will understand what file
types are stored on the external storage and how the files
are consumed — this will help us infer whether the files are
sensitive. Second, we will check if the apps perform input
validation before consuming the file — this will allow us to
discover potentially vulnerable apps.

3.1 Identifying File Accesses on External Storage
It turns out that it is not easy to distinguish exter-
nal storage file operations from the internal ones (as
they share the same set of open and read/write APIs).
As a result, it is necessary to evaluate or infer value
of the path parameter that gets passed to the open or
read/write APIs such as java.io.FileInputStream
openFileInput(java.lang.String). The evaluation
of this parameter could be complex where multiple state-
ments across different functions need to analyze.

ExInspector starts out by locating the read/write APIs
invoked by the app, e.g., APIs in the java.io package. Once
such an API is found, if the path parameter is not a constant,
it will perform a backward inter-procedural dataflow analy-
sis to find all the variables that contribute to the value of the
path parameter. We will introduce the details of this process
later. Here, we just emphasize that this is a “may analysis”.
In other words, we say that the path is from external storage
as long as one of the backward execution chains satisfies the
following conditions:
C1. Reaches a definition that is a constant assignment indicating

external storage. Once a definition is a constant that
begins with strings such as “/sdcard”, we will know
that it comes from external storage.

C2. Reaches a definition whose return value is from a specific
method provided by Android, listed in Table 1. Examples
include return values of getExternalFilesDir().
If this condition is satisfied, we can directly identify
whether the path comes from the external storage.

This backward dataflow analysis is illustrated in Fig. 2.
In this example, C2 is satisfied because ultimately it leads
to an API that returns an external storage path. Note that
the path at some point is assembled from two different
values: directory and “/subDir1/tgt.txt”. If we are
interested in locating only the origin of the path (internal or
external), it is sufficient to backtrack to directory alone.
However, as we are also interested in knowing what type
of files are being produced or consumed, we also need to
resolve the second part of the file path (to identify the file
name suffix).

One serious challenge is that sometimes the back-
tracking of the file path will lead to more complex
sources such as a SQL query result from a table. Typ-
ically, this occurs when an app writes a file to inter-
nal/external storage and wants to keep track of them. In
such cases, we’ll need to model the database or key value
stores (e.g., android.content.Intent, android.os.Bundle and an-
droid.content.SharedPreferences) and trace its real value fur-
ther. For instance, as we show in Fig. 3, when we encounter
the get function Intent.getStringExtra() during the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

TABLE 1
List of APIs that access the internal and external storage

Class
Method Storage

Internal Storage External Storage

android.content.
Context

String[] databaseList()
String[] fileList()
File getCodeCacheDir()
File getDataDir()
File getDir(String name, int mode)
File getDatabasePath(String name)
File getCacheDir()
File getFileStreamPath(String name)
File getFilesDir()
File getNoBackupFilesDir()
FileInputStream openFileInput(

String name)
FileOutputStream openFileOutput(

String name, int mode)

File getExternalCacheDir()
File[] getExternalCacheDirs()
File getExternalFilesDir(String type)
File[] getExternalFilesDirs(String type)
File[] getExternalMediaDirs()
File getObbDir()
File[] getObbDirs()

android.os.
Environment

File getDataDirectory()
File getRootDirectory()

File getDownloadCacheDirectory()
File getExternalStorageDirectory()
File getExternalStoragePublicDirectory(

String type)

android.support.
v4.content.

ContextCompat

File getCodeCacheDir(
Context context)

File getDataDir(Context context)
File getNoBackupFilesDir(

Context context)

File[] getExternalCacheDirs(
Context context)

File[] getExternalFilesDirs(
Context context, String type)

File[] getObbDirs(Context context)

public String getFilePath(){
 File exRoot = Environment.getExternalStorageDirectory();
 ...

String directory = exRoot.getAbsolutePath();
 ...
 String filePath = directory+"/subDir1/tgt.txt";
 return filePath;
}

public void a(){
 ...
 String filePath = getFilePath();
 ...
 byte[] content = readFile(filePath);
 ...
}

public byte[] readFile(String filePath){
 ...
 File file = new File(filePath);
 byte[] buffer = new byte[1024];
 FileInputStream reader = new FileInputStream(file);
 ...

while(reader.read(buffer) != -1){
 ...
 }
 ...
}

Fig. 2. An example of backward tracking a target variable

backward analysis, we will need to first resolve the “key”
(PathKey in the example), which will recursively trigger
the same backward dataflow analysis. More importantly,
we need to find out what “value” corresponds to that
key. To this end, we search through the function calls that
contain put function invocations (intent.PutExtra() in
the example) to understand what value can be stored corre-
sponding to the same key. Similarly, for database operations,
we attempt to resolve what file path has been written by
correlating the database read/write operations (e.g., they
have to be operating on the same table).

3.2 Identifying File Types and Consumers
Knowing there are file accesses in external storage is only
the first step. An app can read different kinds of files for

public static final String PathKey = "PATH";

public void getFilePath(Intent intent){
 return intent.getStringExtra(PathKey);
}

public Intent putFilePath(String filePath){
 Intent intent = new Intent();
 intent.putExtra(PathKey, filePath);
 return intent;
}

Fig. 3. An example of tracking file paths through the key-value store

different purposes — could be as simple as loading an image
or as sensitive as installing an apk file. To find out the
“sensitive” uses of “sensitive” files, we set out to investigate
the file types and their consumers.

We have already discussed how to reconstruct the file
path (including the file name and its suffix) which can
be a good indication of the file type. However, there can
be two issues. Firstly, the suffix is not always reliable.
Secondly, the same file type can still lead to different uses:
some may be sensitive, while some may be not. Therefore,
besides file suffix, we also take the consumers of the files
into consideration. Specifically, there are well-known Java
APIs to handle different kinds of files. For instance, zip
files are typically processed by input stream obtained by
getInputStream() of java.util.zip.ZipFile. Such APIs are
indicative of the file type even when the file suffix is not zip
or jar. By the way, we find in some cases that identifying
file consumers may help us to understand how the data
will be used and further determine whether such uses are
sensitive or not. For instance, if the consumer of an apk file
is the PackageManager API to install apps, we can safely
conclude that the use of this file is sensitive. However, in
many other cases (e.g., scores of APIs are used to read
text/config files, but do not specify the “sensitivity” of

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

TABLE 2
Examples classes of consumers

Class File Type
java.util.Properties properties

android.graphics.BitmapFactory image
android.media.SoundPool audio

android.media.MediaPlayer audio/video
android.widget.VideoView video
android.webkit.WebView html/js
android.database.sqlite.

SQLiteDatabase database

org.sqlite.database.sqlite.
SQLiteDatabase database

the config). Understanding those types of consumers will
require substantial domain knowledge of an app, which
indicates it is not straightforward to use them to identify
the “sensitive” uses of data. In our following evaluation, we
totally discovered 122 final file consumers. About 39.34% of
them are unambiguously sensitive.

To this end, we perform a static taint analysis that file
data as taint and any APIs that subsequently process the
data as sinks (we omit the details of the methodology as
it is fairly standard). The outcome is a list of APIs (sinks)
and their corresponding Java classes that have processed
the data. As will be discussed later, we report a common
set of Java classes (that process file data). Table 2 gives
some examples. Note that there may be very much custom-
written data consumers (especially for custom data), which
we may not characterize well (e.g., a configuration file
specific to an app). Understanding those types of consumers
will require substantial domain knowledge of an app.

3.3 Identifying Input Validation Checks

Once we know where an app performs readings on the
external storage, we need to check whether there are any
input validation surrounding them. As Google suggested,
any data read from the external storage should be con-
sidered untrusted. Here we do not consider application-
layer checks as they are typically not meant for security.
For instance, an image reader app may check whether an
image file conforms to its expected/supported format. For
such checks, an attacker can likely create a malicious file
that satisfies the format requirement.

The checks we consider are mostly concentrated on
validating the integrity of the files that were produced by
the same app. For instance, an app that initially created this
file may store its corresponding SHA256 hash in its internal
storage (computed on the file in memory), which then can be
cross-checked with the actual file read later. After analyzing
and characterizing a small handful of apps, we summarize
the most common behaviors (the complete set of checks we
consider is in Table 8).

• Prior Verification: The main checks are on the
file’s size and last modified time, through stan-
dard APIs such as java.io.File.length(),
java.io.InputStream.available() for file
sizes, and java.io.File.lastModified() for
last modified time. If the information recorded in the
internal storage does not match the ones from the

actual file about to be read, then the integrity check
will fail and the file will not be read.

• Post Verification: The main checks are regarding to
the file’s content. For instance, they could verify the
digest() provided by java.security.MessageDigest,
to check whether the file’s content has been modified.
This type of integrity check is typically strong and
not easy to bypass. Meanwhile, they can also verify
the checksum of a data stream, by java.util.zip.CRC32
and java.util.zip.Adler32.

Note that the first class of checks based on size and
last modified time can be potentially bypassed, as it is not
particularly difficult for an attacker to create malicious files
satisfying both requirements. In Android, the precision of
the file’s last modified time is truncated from millisecond
to second. It provides the attacker with a chance to make
the malicious file’s value the same as the original one’s, if
the attacker manages to tamper with the file as it is being
written. In contrast, the hash based check is much harder
to bypass as hash collisions are usually hard to produce.
There are caveats however in implementing these checks:
(1) the stored integrity information has to be in the internal
storage; otherwise an attacker can easily tamper with them.
(2) The initial integrity information needs to be computed
from a trusted source (ideally in memory before it persists
to external storage).

To identify integrity checking logics around the exter-
nal read operations, we exhaustively search through the
statements between the open and read operations for prior
verification, and between read and last consumption of the
data for post verification. Sometimes, it is possible that these
checks are not directly called by the same method as the one
containing the read invocation.

4 LIMITATIONS

In fact, there are still some limitations in our analysis. Firstly,
our analysis does not handle native code at the moment.
It is entirely possible that external storage operations are
performed only in native code and therefore will be missed.
When we ignore the application-layer checks in § 3.3, we
may also miss some logical input validations that an app
uses to check some key metadata values in a file. How-
ever, its impact on our analysis result can be small mainly
in that the logical input validation cannot guarantee the
integrity of the whole data read and as a result attackers
still can tamper with some metadata values that are used
without being checked. When we rebuild the file path, the
encoded file path is not considered, which also can result
in missing some external storage operations. In addition,
as our analysis largely depends on the knowledge of APIs
for identifying file operations and input validations, it is
possible the incompleteness will lead to missing certain app
behaviors that invoke APIs outside of the common set we
identify in our analysis. Our analysis tool does not analyze
any metadata values in the file (e.g., in json/xml files)
that may contain integrity-sensitive application configura-
tions/account details. To better understand the content of
these files, a significant manual effort is required. Therefore,
we leave it out for our future work. Since our analysis only
considers standard Java libraries used for certain types of

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

TABLE 3
Summary of analyzed apps

Total
Num

Apps reading
from external
storage (%)

Apps writing
to external
storage (%)

Vulnerable
apps (%)

13,746 4,799
(34.91%)

5,612
(40.83%)

4,700
(34.19%)

input validation, we may miss some other input validation
methods implemented by third parties. Finally, since the
dataflow analysis that we can conduct is a “may” analysis
and can generate false positives, some program paths may
not actually be feasible.

5 EVALUATION

We obtained the apk files from two app markets: 9,899 apps
are from Google Play and 3,847 apps are from a third-party
app market APKPure.com [12]. All of the apps are top free
apps in each category (we spread the apps roughly evenly
across categories). We now apply ExInspector to analyze
the downloaded apps. As we mentioned earlier, this tool
may have to reconstruct the file path to distinguish external
storage read operations from the internal ones or identify
file types. The real experiments show 4,764 apps involve
such path reconstruction.

Apps that read/write files on external storage. Before we
apply ExInspector to the downloaded apps, we conduct
a survey about the permissions declared in AndroidMani-
fest.xml by each app, to get a sense on how many apps
“claim” that they need read or write access to external
storage. We find that there are more than 60% apps that
have read or write access (although they may or may not
actually be exercised due to permission overclaim [18]). As
it is such a commonly requested permission, users may
ignore the potential security risks when installing apps. As
we show in Table 3, according to the scan of ExInspector, we
are able to detect 34.91% apps reading from external storage
and 40.83% apps writing to external storage. It is possible
that we have missed some apps that do not use regular
read/write APIs, which we plan to include in our future
work.

File types. We first show the identified types of files read
by apps from external storage. The statistics are shown in
Table 4. As we can see, it is very diversely containing a few
dozens of common file types — the file name suffix (.txt,
.jpg, etc) and the corresponding number (and percentage) of
apps that read them. Below we focus on a few sensitive file
types:

Multimedia files. We can find that various multimedia
data (images, audio files, videos, etc.) are the most com-
mon files read from the external storage. In particular,
the percentage of apps reading image files reaches 43.95%
(accumulating the statistics of all image types) and other
multimedia files (e.g., audio and video) take more than 22%.
This may be because that the apps just want to permanently
store these multimedia files or want to share them with
other apps. Nevertheless, multimedia data not only contain
significant amount of sensitive information, but are also
subject to tampering. For instance, as will be described

later, many popular instant messaging apps (e.g., WeChat
and WhatsApp), which support voice messages, directly
save audio messages onto external storage. This allows a
malicious app in the background to effectively hijack the
communication.

Apk and related files. As prior work [6] states, apk file
replacement can be completely transparent and not visible
to users. In a successful attack, a user may be tricked into
using a fake or phishing app, thinking that he or she is using
a legitimate app. However, it is unclear if the vulnerability
still occurs and is prevalent today. From our latest study
though (shown in Table 4), we show that besides apk files,
obb (opaque binary blobs) files, apk expansion files, are
also commonly consumed yet not widely known (they were
designed as a workaround for Google Play’s size limit on
apk files). Surprisingly, we can see that there are 400 (8.34%)
apps storing the apk files on the external storage and 362
(7.54%) apps storing obb files, totaling 16% of analyzed
apps! To understand what obb files contain, we sample
104 obb files from our dataset. The detailed information
about files contained in obb files can be found in Table 5.
In summary, obb files also contain multimedia files as well
as .html, .dex, .so files which can alter the behavior of the
app as well and are as dangerous as apk files. Of course, we
still need to check if integrity check is performed when the
apk and related files are consumed.

Executable files. In addition, from Table 4, we can see
that 59 apps read js (Javscript) files and 45 apps read html
files, which are usually cached or prefetched web resource
files. An attacker may tamper with them to inject malicious
Javascript code or create phishing pages (such attacks are
demonstrated in § 6.4). Also, there are 27 apps reading jar
files. The tampering of this kind of files can lead to serious
security problems as they can be loaded dynamically into
the victim’s address space [6].

Json/xml files. Different from the executable files, there are
some kinds of files (e.g., xml files and json files) that help
app developers to store their own data in the customized
formats defined by themselves. In Table 4, we can see that a
fair amount of apps read these kinds of files, i.e., 317 apps
read xml files and 213 apps read json files. It is easy for
attackers to follow the customized formats to tamper with
these files. Once the tampered files are successfully parsed
by the original app, attackers can influence the original
app’s normal actions. For example, we find that a news app,
ZAKER, stores each piece of news in a separated json file.
Each time a user clicks to read an item of news, the app will
read and parse the targeted json file. By tampering with the
data attributes/values in this file, attackers can replace the
text and images (to publish fake news or launch phishing
attacks) or alter the web resource addresses (i.e., URLs) to
trick the app into downloading different web resources from
a malicious server.

Others. Besides above, it is not hard to imagine that other
tampered file types can wreck havoc. For instance, .config
and .properties files can potentially alter the behavior of a
victim app. .bak and .cache files may cause a victim app to
restore or load tampered critical data.

File consumers. Besides file types, we also use ExIn-
spector to identify file consumers. We present the de-

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

TABLE 4
Types of files read from external storage

File Type App
Num (%) File Type App

Num (%) File Type App
Num (%) File Type App

Num (%)

unknown file1 2436 (50.76%) .bin 134 (2.79%) .ini 34 (0.71%) .ncl 16 (0.33%)
image file1 1201 (25.03%) .debug 119 (2.48%) .info 30 (0.63%) .3gp 15 (0.31%)

.jpg 615 (12.82%) .db 86 (1.79%) .nomedia 27 (0.56%) .appodeal 15 (0.31%)

.zip 573 (11.94%) .mmsyscache 61 (1.27%) .jar 27 (0.56%) .result 14 (0.29%)
media file1 420 (8.75%) .properties 61 (1.27%) .dk 25 (0.52%) .sqlite 14 (0.29%)

.txt 418 (8.71%) .js 59 (1.23%) .bugsense 22 (0.46%) .m4a 13 (0.27%)
.apk 400 (8.34%) .mp3 56 (1.17%) .wav 21 (0.44%) .ba 13 (0.27%)
.obb 362 (7.54%) properties file1 56 (1.17%) .referrer 21 (0.44%) .bak 13 (0.27%)
.dat 355 (7.40%) .mp4 55 (1.15%) .udid 21 (0.44%) .raw 13 (0.27%)
.xml 317 (6.61%) .adobepassdb 52 (1.08%) .uid 21 (0.44%) .gif 12 (0.25%)

video file1 292 (6.08%) .tmp 50 (1.04%) .conf 20 (0.42%) .csv 11 (0.23%)
.png 264 (5.50%) .log 48 (1.00%) .jpeg 19 (0.40%) .bdi 11 (0.23%)
.cfg 249 (5.19%) .cuid 47 (0.98%) .data 16 (0.33%) .pdf 11 (0.23%)

audio file1 214 (4.46%) .config 45 (0.94%) .aerserv 16 (0.33%) .amr 10 (0.21%)
.json 213 (4.44%) .html 45 (0.94%) .temp 16 (0.33%) .devel 9 (0.19%)
.adId 166 (3.46%) database file1 41 (0.85%) .ser 16 (0.33%) .download 9 (0.19%)

1 These files can have no suffixes but we can infer their type through their consumers.

TABLE 5
Types of files contained in the obb files

File
Type

App
Num (%)

File
Type

App
Num (%)

File
Type

App
Num (%)

File
Type

App
Num (%)

.png 37(35.58%) .dat 5(4.81%) .ANDROID 2(1.92%) .fnt 2(1.92%)
.jpg 29(27.88%) .dz 4(3.85%) .IPAD 2(1.92%) .fsh 2(1.92%)
.xml 26(25.00%) .eifo 4(3.85%) .IPHONE 2(1.92%) .glsl 2(1.92%)
.split 24(23.08%) .idx 4(3.85%) .MF 2(1.92%) .iml 2(1.92%)
.mp4 19(18.27%) .ifo 4(3.85%) .RSA 2(1.92%) .m 2(1.92%)

.assets 18(17.31%) .jpeg 4(3.85%) .SF 2(1.92%) .m4v 2(1.92%)
.txt 17(16.35%) .otf 4(3.85%) .a 2(1.92%) .neo 2(1.92%)

.mp3 13(12.50%) .resS 4(3.85%) .aac 2(1.92%) .pdf 2(1.92%)
.ttf 12(11.54%) .sqlite 4(3.85%) .arsc 2(1.92%) .pvr 2(1.92%)

.DS Store 10(9.62%) .syn 4(3.85%) .bat 2(1.92%) .py 2(1.92%)
.html 10(9.62%) .xoft 4(3.85%) .bin 2(1.92%) .s 2(1.92%)

.resource 9(8.65%) .PNG 3(2.88%) .css 2(1.92%) .skin 2(1.92%)
.wav 8(7.69%) .conf 3(2.88%) .csv 2(1.92%) .so 2(1.92%)
.json 7(6.73%) .ogv 3(2.88%) .db 2(1.92%) .strings 2(1.92%)
.gif 6(5.77%) .plist 3(2.88%) .dex 2(1.92%) .sub 2(1.92%)
.ogg 6(5.77%) .zip 3(2.88%) .dtd 2(1.92%) .svg 2(1.92%)

tected consumers (i.e., classes that process the read data)
as well as the corresponding number (and percentage)
of apps in Table 6. The consumers are ranked by pop-
ularity. Consistent with the results of file type analysis,
we find the most popular consumers are those classes
that deal with multimedia data (top three consumers
are all such cases). Interestingly, the fourth-placed con-
sumer is android.content.pm.PackageInstaller, which is the
system service responsible for reading and installing apk
files. The fact that 395 apps call this service demon-
strates from a different angle that the apk replacement
attack is widely applicable. The results also show that 90
apps invoke android.webkit.WebView, which is to load and
render webpages. In addition, some consumers such as
java.net.HttpURLConnection will fetch or upload data accord-
ing to the untrusted data stored on external storage. A
malicious app could modify these files to make the victim
app to retrieve the incorrect data and thus lead to dangerous
behaviors (e.g., replacing the login authentication URL to a

URL pointing to a fishing server).
Based on the analysis above, we can get the first con-

clusion that a large fraction of developers do not actually
follow Google’s first suggestion about not storing sensitive
data on external storage.

Input validations. We next apply ExInspector to answer the
second question: do apps perform input validation? Table 7
presents the results for each file type. In particular, each cell
counts the number of apps that contain at least one read
operation of the specific file type that is protected by the
corresponding input validation method. Accordingly, the
“none” column counts the numbers of apps that contain one
read operation without any input validation. The denomi-
nator to calculate each percentage value is the total number
of apps that read the corresponding file type. Note that the
sum of the percentages in each row may exceed 100%.

The results are really not very encouraging. For all the
file types, there are always more than 90% of the apps not
performing any input validations prior to consuming the

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

TABLE 6
Consumers of files read from external storage

Consumer Class App Num (%) Consumer Class App Num (%)
android.graphics.BitmapFactory 1677 (34.94%) android.util.Log 33 (0.69%)

android.media.MediaPlayer 498 (10.38%) java.util.zip.CRC32 33 (0.69%)
android.widget.VideoView 494 (10.29%) android.content.SharedPreferences$Editor 30 (0.63%)

android.content.pm.PackageInstaller 395 (8.23%) java.net.HttpURLConnection1 27 (0.56%)
java.io.ByteArrayOutputStream1 361 (7.52%) org.json.JSONArray 26 (0.54%)

java.io.StringWriter1 301 (6.27%) com.google.gson.Gson 25 (0.52%)
android.media.SoundPool 227 (4.73%) android.widget.TextView 21 (0.44%)

java.security.MessageDigest 214 (4.46%) java.lang.String1 19 (0.40%)
java.util.Properties 206 (4.29%) java.nio.ByteBuffer 15 (0.31%)
*.SQLiteDatabase 150 (3.13%) android.content.ContentResolver1 14 (0.29%)

android.text.TextUtils 122 (2.54%) android.content.ContextWrapper1 14 (0.29%)
org.json.JSONObject 107 (2.23%) android.util.Xml 10 (0.21%)

android.webkit.WebView 90 (1.88%) java.util.StringTokenizer 10 (0.21%)
java.io.IOException 83 (1.73%) java.util.regex.Pattern 10 (0.21%)

android.os.Environment1 71 (1.48%) javax.crypto.CipherOutputStream 8 (0.17%)
java.lang.Character 55 (1.15%) javax.crypto.Cipher 8 (0.17%)

android.content.Context1 35 (0.73%) com.google.a.k 8 (0.17%)
java.net.URLConnection1 34 (0.71%) java.io.ByteArrayInputStream 8 (0.17%)

1 These classes may propagate the untrusted file content further.

untrusted data. This percentage even exceeds 99% for media
files and property files, respectively. This indicates the vali-
dations of these two kinds of files are mostly ignored, likely
due to perception that they are not really sensitive (which
unfortunately is a big mistake as our attack demonstrates in
§ 6.2). We also collect statistics for each validation method
in Table 8. We can see that there are only a small fraction
of apps that perform verifications. Prior verification is more
widely used compared with the post verification although
its absolute percentage is small as well. The message digest
is the most adopted post verification method, and is mainly
used by ZIP files (7.76%) and TXT files (6.28%). Interestingly,
we are unable to find any apps that adopt the last three
post verification methods. Unfortunately, even for extremely
sensitive files such as apk and html files, the verification is
consistently lacking (not to mention that many verifications
can be bypassed as will be discussed in § 6). If we consider
apps that adopt no input validations or adopt only prior
validations as vulnerable apps, their percentage reaches
34.19% as we show in Table 3.

Note that our analysis only considers standard Java
libraries used for certain types of input validation. Based on
the above analysis, we can come to the second conclusion
that many developers do not use these standard Java
libraries to validate the file content before using them.
Although an app may check some metadata values it reads
from a file by its own logical input validations, it does not
take every metadata value in the file seriously. As a result,
some metadata values are still used without being checked,
which still does not follow Google’s second suggestion.

Accuracy of input validation. All above results are obtained
through ExInspector. To further evaluate its accuracy, we
perform some limited manual validations of its outputs.
Specifically, we randomly sample 320 apps from our app
dataset to check whether the verification methods are cor-
rect. We focus on four metrics: true positive rate (TPR),
true negative rate (TNR), false positive rate (FPR) and false

negative rate (FNR). The results are show in Table 9. We can
see that both TPR and TNR are above 88% while the FPR is
lower than 3% and the FNR is about 10%, which indicates
that our tool achieves a fairly reasonable accuracy.

Vulnerable apps. Combining the results from the file type
analysis, consumption, and input validation, we want to
understand a more complete picture of how many apps are
vulnerable to consuming unvalidated files. We specifically
look at a few file types:

Audio files. To generalize the results, we conduct a fo-
cused study on instant messaging apps which may be vul-
nerable to hijacking. In total, we analyze 40 communication
apps that have been downloaded for 50,000,000+ times. We
find that 19 apps support voice messages and 15 of them
directly save the audio files on the external storage. The
audio files are stored in various formats such as SILK [19],
AMR [20], AAC [21] and OPUS [22]. Interestingly, compared
to text messages which are stored exclusively in internal
storage, most of voice messages are stored in external storage.

Apk files. Further, to automatically identify the app in-
stallation behavior (and the possibility of apk replacement
attack), we ask ExInspector to also look for additional intent
passing behavior (to installation service) of the data type
“application/vnd.android.package-archive”. We investigate the
downloaded apps that satisfy this requirement and the
results are shown in Fig. 4. We can see that for almost all
categories, there exist some apps that save the downloaded
apk files on the external storage as well as subsequently
install them. This suggests a serious attack surface if an
attacker can replace them with phishing or malware apps
successfully.

Upon a closer inspection, we find the vast majority of
apps are flagged due to their app promotion functionality
(part of advertisement). We analyze 64 apps across several
categories that conduct app promotions and find that 42 of
them will download the apk files directly from the Internet
(as opposed to from Google Play which is safer but not

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

TABLE 7
Statistics of validation methods applied on different types of files

File

App Num
(%)

Type
None Size Time Message

Digest
Check-

sum MAC1
Digital
Signa-

ture

Hash
Code

Unknown
Files

2,271
(93.23%)

51
(2.09%)

9
(0.37%)

88
(3.61%)

26
(1.07%)

0
(0%)

0
(0%)

0
(0%)

Image
Files

.jpg, .bmp,
.png, · · ·

1,696
(97.14%)

80
(4.58%)

15
(0.86%)

11
(0.63%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

Media
Files

.wav, .mp3,
.mp4, · · ·

790
(99.50%)

4
(0.50%)

0
(0%)

4
(0.50%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

Properties
Files

56
(100%)

6
(10.71%)

1
(1.79%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

Database
Files

.DB, .db,
.sqlite3,

122
(98.39%)

1
(0.81%)

0
(0%)

3
(2.42%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

TXT
Files

.html, .js,
.xml, · · ·

834
(91.85%)

12
(1.32%)

5
(0.55%)

57
(6.28%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

ZIP
Files

.zip, .obb,
.apk, · · ·

843
(92.13%)

11
(1.20%)

0
(0%)

71
(7.76%)

27
(2.95%)

0
(0%)

0
(0%)

0
(0%)

DOC
Files

.doc, .xls,
.ppt, · · ·

10
(90.91%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

Other
Files

1,576
(93.20%)

150
(8.87%)

0
(0%)

19
(1.12%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

1 It is short for Message Authentication Code.

TABLE 8
Input validation methods

Type Check Content App
Num (%)

Prior
Verification

File Size 283
(5.90%)

File Time 28
(0.58%)

Post
Verification

Message Digest 214
(4.46%)

Data Checksum 27
(0.56%)

Message
Authentication

Code

0
(0%)

Digital
Signature

0
(0%)

Hash Code 0
(0%)

TABLE 9
Manual analysis of input validation results

App
Num TPR TNR FPR FNR

320 83/93
(89.25%)

282/289
(97.57%)

7/289
(2.43%)

10/93
(10.75%)

available in some countries).
In addition, we conduct a focused study on third-party

Android market apps. Due to the open nature of Android,
in addition to Google Play, there is a wide range of third-
party market apps that can help users find and install apps
(e.g., Amazon Appstore and Samsung Galaxy Apps). In fact,
in some countries such as China, Google Play is completely
inaccessible and therefore users heavily rely on various local
market apps built by Internet companies (e.g., Tencent and
Baidu) and/or smartphone manufacturers (e.g., HUAWEI
and Xiaomi). Through ExInspector, we find the following

 A

rt
& D

es
ig
n

 A
ut

o
& V

eh
ic
le
s

 B

ea
ut

y

Boo
ks

 &
 R

ef
er

en
ce

Bus

in
es

s

 C

om
ic
s

 C

om
m

un
ic
at

io
n

 D

at
in
g

 E
du

ca
tio

n

 E

nt
er

ta
in
m

en
t

Eve
nt

 F

in
an

ce

 F

oo
d

& D
rin

k

 G
am

e

 H
ea

lth
 &

 F
itn

es
s

 H

ou
se

 &
 H

om
e

 L
ib
ra

rie
s
& D

em
o

 L
ife

st
yl
e

M
ap

s
& N

av
ig
at

io
n

 M

ed
ic
al

 M

us
ic
 &

 A
ud

io

 N
ew

s
& M

ag
az

in
es

 P
ar

en
tin

g

 P
er

so
na

liz
at

io
n

Pho
to

gr
ap

hy

 P

ro
du

ct
iv
ity

Sho

pp
in
g

 S

oc
ia
l

 S

po
rts

Too
ls

Tra

ve
l &

 L
oc

al

Vid
eo

 P
la
ye

rs
 &

 E
di
to

rs

 W

ea
th

er

All

C
at

eg
or

ie
s
 0

2

4

6

8

10

12

14

16

18

20
P

e
rc

e
n
ta

g
e
 (

%
)

Category

Fig. 4. Percentage of the apps that save apk files on external storage and
call the system service to install them compared with the total number
of apps in each category

2016 2017 2018

Year

0

10

20

30

40

50

60

P
e

rc
e

n
ta

g
e

 (
%

)

Apps reading from external storage

Apps writing to external storage

Vulnerable apps

Fig. 5. Variation of vulnerable apps over recent years

market apps that are vulnerable (as listed in Table 10) —
installing apk files directly from shared storage. In fact, we
are able to successfully exploit the following apps: GetJar,
Mobogenie, 9Apps, Uptodown Android, Tencent Myapp,
Baidu Mobile Guard and Baidu Mobile Assistant, as listed in
Table 10, replacing the apk files downloaded by these apps
right before installation.

Variations over the last three years. To learn how the
situation has changed over recent years, we trace 1,818 apps

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

TABLE 10
Manual validation of the vulnerable third-party market apps discovered

by ExInspector

App Name
Save on
external
storage

Install
the fake
apk files

In
te

rn
at

io
na

l GetJar Apps T T
Mobogenie T T

9Apps T T
Uptodown Android T T

Percentage (%) 100% 100%

C
hi

ne
se

Tencent MyApp T T
Baidu Mobile Assistant T T

Sougou Mobile Assistant T T
Oppo App Store T F

PP Assistant T F
Mumayi Market T T

Nduo T T
d.cn T T

ZTE App Market T F
Wo Store T T

Baidu Android Market T T
Baidu Mobile Guard T T

Percentage (%) 100% 75%

2016 2017 2018

Year

0
1
2
3
4
5
6
7
8
9

10

P
e

rc
e

n
ta

g
e

 (
%

) File Size

File Time

Message Digest

Data Checksum

MAC

Digital Signature

Hash Code

Fig. 6. Variation of validation methods over recent years

with invariant package names from 2016 to 2018. According
to Fig. 5, we can see that the percentage of vulnerable apps
declined somewhat over the past three years. Unfortunately,
such decline is not caused by the increasing awareness of
external storage security. Instead, it is due to the fact that
the number of apps using external storage is decreasing,
which has also been shown in Fig. 5. This claim can be
further confirmed by Fig. 6, which shows little changes
in the statistics of validation methods. In other words,
there are still very few apps (below 7%) that adopt post
validation methods to guarantee external files’ integrity,
which indicates that threats related to shared (external)
storage is still being seriously overlooked although it has
existed for a long time. Through the contact with a number
of vulnerable apps’ developers (e.g., Tencent, Qihoo 360
and Baidu), we find that they all think that installing a
malware on the user’s smartphone is difficult, which raises
challenges to exploit the vulnerabilities related to external
storage. However, the reality is the opposite, the unaware
users are often tricked into installing malicious applications
through different ways. Even users install the apps from the
official market Google Play, Google Play Protect still fails
to detect the new threats discovered within 90 days [23].
We think there can be some other potential reasons. Firstly,
developers may misunderstand the “private” directory on
external storage, provided by Android. An app’s “private”
directory on external storage is much different from the one

on internal storage that can be accessed only by the app
itself. Instead, on external storage, besides its real owner, the
“private” directory still can be visited by each app granted
with the permission to visit external storage. Meanwhile, in
the early Android smartphones, volumes of external storage
and internal storage are fixed, and the external storage is
bigger than the internal one. Nowadays, with the storage
volume of smartphone increasing rapidly, developers may
still follow this old point so that they save a huge amount
of files on external storage. However, in current Android
smartphones, volumes of external storage and internal stor-
age are not fixed, which are dynamically allocated based on
current storage requirement of the smartphone. Besides the
above analysis, we also compare the top 10 most popular
file types and file consumers respectively, both of which
are associated with files on external storage. The results are
presented in Table 11 and Table 12, which show that their
variations are both limited.

6 ATTACK CONSTRUCTION AND ANALYSIS

In this section, we attempt to construct realistic attacks
based on the file tampering vulnerability. Firstly, we will dis-
cuss a building block of swift file replacement technique that
comes in handy under stringent timing constraints. Then we
will pick representative groups of apps as case studies with
end-to-end attacks. These attacks are based on several kinds
of files, i.e., multimedia files, apk files and html files. The at-
tacks’ applicability varies due to the different usages of files.
Meanwhile, different from the latter two kinds, multimedia
files may contain some biological features of humans, which
requires attackers to pay more efforts to deal with. The
details of these attacks will be presented soon. The demo
for attacks described in this section can be found at https:
//sites.google.com/site/externalstorageattacks/. We have
informed the apps’ developers through different ways, such
as their online security response centers (SRC), the built-in-
app feedback mechanisms as well as the email addresses
they leave on their websites. We are glad to see that some
apps’ developers (e.g., Tencent, Qihoo 360 and Baidu) have
confirmed and remedied the vulnerabilities.

6.1 Swift File Replacement

As we begin analyzing the exploitability of the vulnerabil-
ities, we realize that oftentimes files on external storage
are consumed right after they are produced, leaving a
small time window for file replacement. In this section, we
describe a technique that can deterministically replace the
file with a malicious one and have the subsequent read to
operate on the malicious file.

The idea is straightforward. It hinges on the file system
in Linux where a file can be renamed (moved) when it is
being written. This is because once the file path resolution is
finished, the corresponding inode remains unchanged and
is what the file operations (read/write) rely on. This means
that a malicious app can monitor the file write event and
move the file away as soon as the write event is detected
(without interrupting the write operation). Next, the at-
tacker can simply create a new file taking up the original
file path which is what the subsequent read operation will

https://www.getjar.com/categories/search-apps/GetJar-Apps-16914
https://mobogenie.en.softonic.com/android
https://www.9apps.com/android-apps/9Apps-Game-Video-Downloader/
http://uptodown-android.en.uptodown.com/android
http://sj.qq.com/
http://shouji.baidu.com/appsearch/
http://zhushou.sogou.com/
http://store.oppomobile.com/product/0020/003/758_1.html?from=1152_1
https://pro.25pp.com/
http://www.mumayi.com/android-1.html
http://www.nduo.cn/
http://android.d.cn/
http://apps.ztems.com/
http://store.wo.com.cn/
http://apk.hiapk.com/
https://shoujiweishi.baidu.com/
https://sites.google.com/site/externalstorageattacks/
https://sites.google.com/site/externalstorageattacks/

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

TABLE 11
Variation of file types read from external storage over years

2016 2017 2018

File Type App
Num (%) File Type App

Num (%) File Type App
Num (%)

unknown file1 602 (12.54%) unknown file1 556 (11.59%) unknown file1 444 (9.25%)
image file1 277 (5.77%) image file1 264 (5.50%) image file1 172 (3.58%)

.txt 129 (2.69%) .zip 127 (2.65%) .zip 102 (2.13%)
.zip 127 (2.65%) .txt 114 (2.38%) .txt 87 (1.81%)
.jpg 127 (2.65%) .jpg 105 (2.19%) .apk 82 (1.71%)
.apk 91 (1.90%) .apk 101 (2.10%) .jpg 79 (1.65%)
.xml 65 (1.35%) .xml 61 (1.27%) .obb 50 (1.04%)
.png 62 (1.29%) video file1 59 (1.23%) .png 45 (0.94%)
.obb 57 (1.19%) .json 57 (1.19%) .xml 42 (0.88%)
.json 55 (1.15%) .png 55 (1.15%) .dat 37 (0.77%)

1 These files can have no suffixes but we can infer their type through their consumers.

TABLE 12
Variation of files consumers that read from external storage over years

2016 2017 2018

Consumer Class App Num
(%) Consumer Class App Num

(%) Consumer Class App Num
(%)

android.graphics.
BitmapFactory

383
(39.98%)

android.graphics.
BitmapFactory

356
(39.78%)

android.graphics.
BitmapFactory

245
(34.75%)

java.io.ByteArray-
OutputStream1

93
(9.71%)

android.content.pm.
PackageInstaller

100
(11.17%)

java.io.ByteArray-
OutputStream1

94
(13.33%)

android.content.pm.
PackageInstaller

88
(9.19%)

java.io.ByteArray-
OutputStream1

97
(10.84%)

android.content.pm.
PackageInstaller

80
(11.35%)

android.widget.
VideoView

75
(7.83%)

android.widget.
VideoView

79
(8.83%)

android.text.
TextUtils

56
(7.94%)

java.security.
MessageDigest

69
(7.20%)

java.security.
MessageDigest

64
(7.15%)

java.security.
MessageDigest

46
(6.52%)

java.io.StringWriter1 67
(6.99%) java.io.StringWriter1 61

(6.82%) java.util.Properties 44
(6.24%)

java.util.Properties 66
(6.89%) java.util.Properties 57

(6.37%)
android.media.

MediaPlayer
43

(6.10%)
android.media.

MediaPlayer
57

(5.95%)
android.media.

MediaPlayer
55

(6.15%) java.io.StringWriter1 39
(5.53%)

android.text.
TextUtils

48
(5.01%)

android.text.
TextUtils

54
(6.03%)

android.widget.
VideoView

36
(5.11%)

*.SQLiteDatabase 42
(4.38%) *.SQLiteDatabase 38

(4.25%) *.SQLiteDatabase 31
(4.40%)

1 These classes may propagate the untrusted file content further.

rely on. In addition, an attacker still has access to the original
file (that was earlier renamed) and be able to read the full
content. According to experiments, even when reading only
a small amount of data, the file move operation is still fast
enough to succeed.

6.2 Realtime Voice Message Replacement Attack
As we mentioned earlier, most voice messages are stored on
external storage and they can be manipulated by any apps
granted the permission to write files on external storage.
In this paper though, we are interested in understanding
attacks that can be achieved through tampering the stored
voice messages. To this end, based on the file replacement
capability, we construct a powerful realtime “man-in-the-
middle” attack to both listen and write the voice messages
as they are being sent and received. For the remaining
discussion, we take the WeChat app — a free text/voice
messaging & calling app with over half a billion users — as
a concrete case study.

Vulnerable Workflow. WeChat’s workflow (similar to the
one in WhatsApp and likely others) to send and receive
voice messages is illustrated in Fig. 7 and Fig. 8. When
sending a voice message, instead of sending the message di-
rectly over the network, there’s an encoder thread to encode
and persist the voice message to a file on external storage.
A sender thread then immediately reads the file after it is
completed (signaled by the encoder thread along with a
specific file path), and send it over the network. The design
is a fairly reasonable one from the perspective of software
engineering, as it guarantees that the voice message can
be retransmitted even if the network fails or crashes occur
before the message is delivered. However, there is a time
window between the encoder thread persisting the file and
the sender thread picking up the file, in which a malicious
app can replace the file to be sent.

In the case of receiving a message, a receiver thread
persists it to a file on the external storage and signals the
main thread to display a notification. Here again there is

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

User
Wechat

UI

Encoder

Thread

Sender

Thread

Local Audio

File

Press

"Hold to Talk"

 button

Start to record

audio
 Encode and save the audio data

into local file

Release

"Hold to Talk"

button

Stop recording

audio Close the local file

Start to send the audio file
Read the audio file

Fig. 7. WeChat’s workflow to send voice messages

User
Wechat

UI

Decoder

Thread

Receiver

Thread

Local Audio

File

Save the received

audio data

 into local file

Close the file

Start to play

 the audio file Read and decode the audio file

Click the new

voice message item

Fig. 8. WeChat’s workflow to receive voice messages

a time window between the two operations in which a
malicious app can replace the received file. In addition
to being able to replace the outgoing and incoming voice
messages, the file replacement technique also keeps a copy
of the original message for read, and can also optionally
drop the messages (by simply removing the file). This gives
the malicious app an almost complete “man-in-the-middle”
(read/write/drop) capability.

Attack Overview. Now we demonstrate an end-to-end at-
tack illustrating how to leverage the swift file replacement to
impersonate users on both ends during a voice chat session.
We assume a malicious app running in the background on

Fig. 9. The voice message replacement attack sequence against
WeChat

Last Modified

Time: 20 15 / 11 / 22 20 : 43 : 2611 2215 20 43 26

msg_262043112215808e487a1bf104.amrFile Name:

Fig. 10. Wechat naming rule of audio file

the victim’s device (i.e., Alice’s device). When Alice chats
with Bob through voice messages, the malware aims to
impersonate Alice to chat with Bob and impersonate Bob
to chat with Alice at the same time. The attack process
is shown in Fig. 9. The malware continuously monitors
the target directory where the audio files are stored. Once
discovering a new audio file is created, it utilizes some
side channels (e.g., network statistics) to identify whether
the audio file is an incoming or outgoing message. Next,
it launches the swift file replacement technique against the
original file. When the original file is completed written,
the malware sends it to the server. The server extracts
the biometric features from the audio file to identify the
speaker, so that later fake voices can be created to mimic
the speaker. Further, the attacker controlling the server can
decide what fake voice messages to be put in place of the
original one. If the audio file comes from Alice, the fake
response is converted into the voice of Bob, and vice versa.
The converted fake response will be immediately sent back
to the user’s device. The malware stores this fake response
and use it to substitute the real response when it comes.
Note we can replace the voice message only if Bob sends
a real response back (which triggers a file to be written on
external storage).

Attack Details. To implement a realistic end-to-end attack,
there are three requirements which we address in order:
• User identification. Once we obtain a voice message, it is
a key step to identify which user and the corresponding
chat session a message belongs to, as the subsequent attack
steps such as preparing the following responses is heavily
dependent on it. For WeChat, fortunately we realize that the
naming scheme for the audio files already leaks information
about which user (or chat session) the message belongs to.
After some reverse engineering, it is clear that file names
are constructed based on the sender/speaker user ID (i.e., a
hash of the wechat user ID) as well as timestamps. Fig. 10
illustrates the detailed naming scheme. Excluding the con-
stant string “msg ”, the first 10 characters indicate the file’s
last modified time (date, and hour:minute:second) and the
last 7 characters are derived from the file’s last modified
time in milliseconds. The middle characters from 13 to 19 are
generated by the hash of wechat user ID of the speaker. Note
that if it is a message of the victim user (i.e., Alice), the user
id will simply be the id of the victim. This means that we
can also distinguish incoming vs. outgoing messages based
on the speaker’s user ID.
• Voice morphing. To trick the victim user into believing a
fake voice is from a real friend, we need to apply voice
morphing technique [24] to convert the attacker’s voice into
a specific speaker’s voice. To do so, we need the training

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

data for voices from the target speaker. Fortunately, WeChat
(and other apps with voice messaging capabilities) stores
all historic voice messages in external storage which can
naturally serve as training data (as they are readable by
any app). Through the user identification earlier, we can
conveniently group these audio files by speakers. Without
going into the details, we essentially build a fully function-
ing voice morphing system based on prior work [25], [26]
and toolset [27].
• Timeliness. The above two steps can be time-consuming.
In addition, the attacker committing a fraud needs time to
prepare the corresponding responses (e.g., talking the victim
into lending money). This asks for a very time-sensitive
attack strategy. We have described the process of WeChat’s
handling of incoming and outgoing messages in Fig. 7 and
Fig. 8. We know that the attack window to replace incoming
or outgoing voice messages is small. Our attack strategy
is to leverage the long delays due to human interactions
to prepare the fake voice messages in time. We illustrate
the process in a timeline in Fig. 9. As we can see, there
are two long delays in a typical message receive and send
cycle. The first one is from Alice receiving an incoming
message from Bob, to when the message is actually read (by
Alice clicking on the screen to play the voice). During this
delay, the attacker sees the incoming message and prepares
a proper answer message (fake outgoing message from Alice
to Bob). The second long delay is from Alice generating an
outgoing message to Bob, to when she receives an incoming
message from Bob. During this delay, the attacker sees the
outgoing message and prepares a proper answer message
(fake incoming message from Bob to Alice). As we can see,
the attacker always prepares the response messages one step
ahead. As the send/receive cycle continues, the attacker will
be able to replace any outgoing and incoming message.

If the long delay sometimes is not enough to cover the
cost of generating a fake voice message and morphing it
into the voice of the target speaker, we consider a few
backup strategies to buy time. One simply strategy is to use
some universally common or meaningless terms to replace
the original messages (e.g., “hello” or “hold on a second”).
In this way, the attacker can send the real response later
to replace the following voice message. As a further opti-
mization, the attacker can utilize android.os.FileObserver to
monitor the events (e.g., OPEN, ACCESS, CLOSE WRITE,
CLOSE NOWRITE) on the specific voice file. If the real
response has been generated successfully later and the
meaningless message has not read by the user, the attacker
still has the chance to replace the meaningless one with the
meaningful one. Our attack video demo illustrates the case
where we pretend to be Alice and try to trick Bob somehow
without letting Alice notice.

6.3 Apk Replacement Attack

To launch the apk replacement attacks successfully, it is
important to know how the involved processes work. As
Fig. 11 shows, besides the attack process, there are two
processes involved, one is responsible for downloading and
saving the apk files and the other is the system service
responsible for installing the app. There is therefore a time
window from when the apk file being written to when the

Time

Download the apk

file on external

storage

Check the integrity of

the saved apk file

(it may not exist)

Read and install the

downloaded apk file

Time window to operate the apk file

if the integrity check does not exist

Time window to operate the apk file

if the integrity check exists

Package InstallerLegal App

Fig. 11. Time window to replace the apk file

file being read by system service for installation. Even if
there exists validation during this time window, it is inher-
ently difficult to guarantee security because of the nature
of Time-Of-Check, Time-Of-Use (TOCTOU) problem. Let us
say the first process validates its integrity before passing the
file to system service; right before system service picks up
the file, the attack process can replace the file, bypassing any
prior validation and the system is completely in the dark [6].

Here we take the Tencent Myapp (a third-party market
app) as an example. Tencent Myapp is the top 1 app store
in China, the coverage of which is 25.40% by June 2017
according to Newzoo’s report [28]. Myapp downloads the
apk file on the external storage /sdcard/Tencent/tassistant/apk/.
Once we discover a new downloaded apk file is being
checked by Myapp, we can use the fake apk file to replace
the original one. We name the fake apk file with a different
package name but it can be much similar to the original
one’s. In this way, Android will be happy to install the fake
apk file just as a new app is installed.

6.4 Web Resource Replacement

Nowadays, many developers piggyback on the web in-
frastructure to save resources for app development. It is
therefore natural to support web object caching (e.g., HTML,
video, images, Javascript). To provide a fluent user experi-
ence, many of these apps even prefetch objects according to
some policies. If these web resources are stored on external
storage, they are subject to tampering. Unfortunately, as we
show in § 5, there do exist many apps that use sensitive files
such as .html or .js files on external storage (and most of
them do not have any integrity checks). Most of the time,
apps simply directly pass such files to the corresponding
APIs such as WebView for consumption. As a result, it is
straightforward for the adversary to replace these files with
fraudulent ones. In fact, if these resources are prefetched
and stored, the time window for launching attacks can be
huge (after prefetching before consumption). The attack will
be able to read what data is contained in the original file
and craft a phishing version of it easily (e.g., by searching
for login boxes and replace the login request URL with a
malicious one).

No Verification. We pick some apps that are reported
to have no integrity checks. For instance, MakeInIndia
is an information sharing app, whose most activities in-
volve displaying html files. To our surprise, it caches
almost all important html files on the external storage
/sdcard/.MakeInIndia/www/, including its home page. After

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 14

manual analysis, we are able to confirm that it indeed has
no verification steps whatsoever after reading the offline
html files. We tested a trivial attack by replacing the orig-
inal homepage with a fraudulent one, and the app would
happily display the updated page. This clearly allows us
to conduct a phishing attack that can steal user’s login
credentials (or even other sensitive information such as
credit card information depending on whether it is part
of the expected functionalities). Interestingly, given that
every html page is cached, we can theoretically completely
rewrite the functionality by controlling the starting page and
creating a number of sub-pages.

Complex Verification. Although some apps will per-
form some complex verification before loading html
files, it is still bypassable. For instance, we stud-
ied an app called Tencent Video, which is a popu-
lar video distribution platform (1.9 billion downloads in
China [29]), that also stores html files on external stor-
age Android/data/com.tencent.qqlive/files/.webapp/dirs/. Unlike
MakeInIndia, it does check the integrity of the file before
reading. However, the validation and the file read are two
separate operations, making it a Time-Of-Check, Time-Of-
Use (TOCTOU) vulnerability, which allows us to construct
an exploit and replace any files downloaded by the app.
Since Tencent Video is a part of the big network of Tencent,
it has many features such as account management and even
financial information management (to pay for premium
content). Worse, as opposed to browsers, smartphone apps
generally do not show security indicators for TLS and SSL
through Webview (as confirmed in the Tencent Video app).
An attacker can therefore trick the users into trusting a lo-
cally constructed payment page (linked from the tampered
page).

7 DEFENSE

As we have seen in this paper, file tampering on external
storage can lead to a series of attacks against vulnerable
apps, posing serious threats to all Android users. Though,
prior work (e.g., [30]) has proposed to apply Linux file
permissions on external storage, the backward compatibility
issue is really a big problem, i.e., the external storage cannot
be formatted to a Linux permission-enabled file system as
the need to be compatible with FAT-formatted SD cards
is real, which keeps any Linux-permission-related enforce-
ment out of the question. Therefore, defense at the app level
becomes the sole solution.

As Google suggests, developers should always perform
input validation when they read files from external storage.
Unfortunately, not all validation methods are equal and
there are not much guidance on how this should be done
in practice. Below we list a number of caveats of input val-
idation and best practices. As we show, there are a number
of validation strategies are easily bypassable (e.g., file size,
modification time). Worse, some are just plain wrong. For
instance, if the verification information is purely extracted
from the very file stored on external storage (subject to
tampering), it can be easily replaced. Therefore, the best
practice should use verification information out-of-band
(e.g., stored on internal storage) instead of being embedded
in the file on external storage itself. For example, if the

files are downloaded from the network, a cryptographic
signature can be attached by the server to aid the verification
of the integrity of the downloaded file (the signature can be
kept in memory or internal storage). In addition, it is critical
that the verification should not be done prior to reading the
file. Otherwise, there is a potential Time-Of-Check, Time-Of-
Use (TOCTOU) vulnerability where an attacker replace the
file after the verification process is passed.

8 RELATED WORK

In this paper, we focus our attentions on the files on external
storage. In fact, many researches [2], [3], [31], [32] have pre-
sented the risks caused by the files on external storage. The
malicious advertisement [33] and the residue of the deleted
apps [34] all can endanger the users’ privacy. Meanwhile,
tampering the files on external storage also can cause serious
problems, such as code injection attacks on HTML5-based
mobile apps [35], the Android installer hijacking [5], the
vulnerabilities caused by the world writable code [4] and
the vulnerabilities caused by code dynamically loading [6].
Different from these work, instead of just focusing on some
special kinds of files on external storage, we conduct a
more comprehensive survey about the untrusted files on
external storage, find and validate some widespread attacks
on external storage.

Beside the attacks, some security strategies [30], [32]
are also proposed to protect the shared files on external
storage. However, shared files on external storage are not
only allowed to read, but also to write. We have proofed the
risks caused by tampering the files on external storage in
this paper.

Actually, besides the files on external storage, apps can
utilize some other methods to share data, such as Unix
domain sockets (though they are not secure [7]). The privacy
leakages also can be caused by the data sharing with the
web code [36] and the external libraries [37], [38], [39].
Meanwhile, some apps are vulnerable to the component
hijacking attacks [40].

In this paper, we utilize ExInspector to find out the
vulnerable apps, which is based on the static code analy-
sis. In fact, static code analysis has already been used to
analyze Android apps in prior work [41], [42]. Some work
such as ScanDroid [43], Leakminer [44], AndroidLeaks [45]
and DroidSafe [46] utilize static code analysis to discover
the sensitive information leakages in the apps. Meanwhile,
through the static code analysis, researchers also find out
some interesting information, such as the component hijack-
ing vulnerabilities [47], [48], and inter-component privacy
leaks [49].

9 CONCLUSION

In this paper, we systematically study a simple but over-
looked threat related to Android external storage — the
lack of input validation (e.g., integrity verifications) when
consuming files on external storage. By undertaking an
empirical study through a static analysis tool we develop,
we find over 30% of the 13,746 analyzed popular apps
on the market suffer from such problems. By investigating
the types of files consumed, we find shockingly a large

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 15

fraction of apps store and consume sensitive files such
as .apk, .html, .js, and voice message files. These findings
allow us to construct a variety of attacks. The ubiquity of
this class of vulnerabilities calls for revamps of the basic
feature of external storage. We thereby define better access
control policies for external storage to eliminate this class
of vulnerabilities for most apps. In the future work, we
will continue to find more vulnerabilities about Android
external storage.

REFERENCES

[1] “Android storage options,” https://developer.android.com/guid
e/topics/data/data-storage.html, Accessed in May 2017.

[2] S. Gisdakis, T. Giannetsos, and P. Papadimitratos, “Android pri-
vacy c (r) ache: Reading your external storageand sensors for fun
and profit,” 2015.

[3] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang, “An empirical study
on android for saving non-shared data on public storage,” in IFIP
International Information Security Conference. Springer, 2015, pp.
542–556.

[4] “World Writable Code Is Bad, MMMMKAY,” https:
//www.nowsecure.com/blog/2015/08/10/world-writable-c
ode-is-bad-mmmmkay-4/, Accessed in August 2017.

[5] “Android Installer Hijacking Vulnerability Could Expose Android
Users to Malware,” https://researchcenter.paloaltonetworks.co
m/2015/03/android-installer-hijacking-vulnerability-could-expo
se-android-users-to-malware/, Accessed in August 2017.

[6] S. Poeplau, Y. Fratantonio, A. Bianchi, C. Kruegel, and G. Vigna,
“Execute this! analyzing unsafe and malicious dynamic code
loading in android applications.” in NDSS, vol. 14, 2014, pp. 23–26.

[7] Y. Shao, J. Ott, Y. J. Jia, Z. Qian, and Z. M. Mao, “The misuse
of android unix domain sockets and security implications,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 80–91.

[8] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach, “Quire:
Lightweight provenance for smart phone operating systems,” in
Proceedings of the 20th USENIX Conference on Security, ser. SEC’11,
2011.

[9] “Best Practices for Security & Privacy – Security Tips,” https://
developer.android.com/training/articles/security-tips.html, Ac-
cessed in May 2017.

[10] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben,
and M. Smith, “Why eve and mallory love android: An analysis
of android ssl (in)security,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 50–61. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382205

[11] H. Vijayakumar, J. Schiffman, and T. Jaeger, “Sting: Finding name
resolution vulnerabilities in programs,” in 21st USENIX Security
Symposium (USENIX Security 12), 2012, pp. 585–599.

[12] “Apkpure.com,” https://apkpure.com/, Accessed in May 2017.
[13] Y. J. Jia, Q. A. Chen, Y. Lin, C. Kong, and Z. M. Mao, “Open

doors for bob and mallory: Open port usage in android apps and
security implications,” in IEEE European Symposium on Security and
Privacy, 2017.

[14] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing
inter-application communication in android,” in Proceedings of the
9th International Conference on Mobile Systems, Applications, and
Services, ser. MobiSys ’11, 2011.

[15] R. Hay, O. Tripp, and M. Pistoia, “Dynamic detection of inter-
application communication vulnerabilities in android,” in Proceed-
ings of the 2015 International Symposium on Software Testing and
Analysis, ser. ISSTA 2015, 2015.

[16] “Android Source Code Comments,” https://android.googlesour
ce.com/platform/system/core/+/android-7.1.2 r6/sdcard/sdc
ard.c#61, Accessed in May 2017.

[17] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sun-
daresan, “Soot-a java bytecode optimization framework,” in Pro-
ceedings of the 1999 conference of the Centre for Advanced Studies on
Collaborative research. IBM Press, 1999, p. 13.

[18] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner, “Android
permissions demystified,” in Proceedings of the 18th ACM Confer-
ence on Computer and Communications Security, ser. CCS ’11, 2011.

[19] “Silk,” https://en.wikipedia.org/wiki/SILK, Accessed in May
2017.

[20] “Adaptive multi-rate audio codec,” https://en.wikipedia.org/w
iki/Adaptive Multi-Rate audio codec, Accessed in May 2017.

[21] “Advanced audio coding,” https://en.wikipedia.org/wiki/Adva
nced Audio Coding, Accessed in May 2017.

[22] “Opus interactive audio codec,” http://opus-codec.org/, Ac-
cessed in May 2017.

[23] “McAfee Mobile Threat Report Q1, 2018,” https://www.mcafee.c
om/enterprise/en-us/assets/reports/rp-mobile-threat-report-2
018.pdf, Accessed in November 2018.

[24] Z. Wu and H. Li, “Voice conversion versus speaker verification: an
overview,” APSIPA Transactions on Signal and Information Process-
ing, vol. 3, p. e17, 2014.

[25] D. Erro, I. Sainz, E. Navas, and I. Hernaez, “Harmonics plus noise
model based vocoder for statistical parametric speech synthesis,”
IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 2, pp.
184–194, 2014.

[26] D. Erro, E. Navas, and I. Hernaez, “Parametric voice conversion
based on bilinear frequency warping plus amplitude scaling,”
IEEE Transactions on Audio, Speech, and Language Processing, vol. 21,
no. 3, pp. 556–566, 2013.

[27] “Ahocoder,” https://aholab.ehu.es/users/derro/software.html,
Accessed in May 2017.

[28] “Top 10 Android App Stores In China,” https://newzoo.com/i
nsights/rankings/top-10-android-app-stores-china/, Accessed in
August 2017.

[29] “Tencent Video,” http://sj.qq.com/myapp/detail.htm?apkName
=com.tencent.qqlive, Accessed in May 2017.

[30] Q. Do, B. Martini, and K.-K. R. Choo, “Enforcing file system
permissions on android external storage: Android file system
permissions (afp) prototype and owncloud,” in 2014 IEEE 13th
International Conference on Trust, Security and Privacy in Computing
and Communications. IEEE, 2014, pp. 949–954.

[31] X. Liu, W. Diao, Z. Zhou, Z. Li, and K. Zhang, “Gateless treasure:
How to get sensitive information from unprotected external stor-
age on android phones,” CoRR, vol. abs/1407.5410, 2014.

[32] Y. Xu and E. Witchel, “Maxoid: Transparently confining mobile
applications with custom views of state,” in Proceedings of the Tenth
European Conference on Computer Systems. ACM, 2015, p. 26.

[33] S. Son, D. Kim, and V. Shmatikov, “What mobile ads know about
mobile users,” in Proc. 23rd Annual Network and Distributed System
Security Symposium (NDSS16), 2016.

[34] X. Zhang, K. Ying, Y. Aafer, Z. Qiu, and W. Du, “Life after
app uninstallation: Are the data still alive? data residue attacks
on android,” in Proceedings of the Network and Distributed System
Security Symposium (NDSS), San Diego, California, USA, 2016.

[35] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code
injection attacks on html5-based mobile apps: Characterization,
detection and mitigation,” in Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2014,
pp. 66–77.

[36] G. S. Tuncay, S. Demetriou, and C. A. Gunter, “Draco: A system for
uniform and fine-grained access control for web code on android,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 104–115.

[37] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. A. Gunter,
“Free for all! assessing user data exposure to advertising libraries
on android,” NDSS 2016, 2016.

[38] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma,
A. Wang, Y. Zhang, and W. Zou, “Following devils footprints:
Cross-platform analysis of potentially harmful libraries on an-
droid and ios,” 2016.

[39] D. Titze and J. Schütte, “Preventing library spoofing on android,”
in Trustcom/BigDataSE/ISPA, 2015 IEEE, vol. 1. IEEE, 2015, pp.
1136–1141.

[40] M. Zhang and H. Yin, “Appsealer: Automatic generation of
vulnerability-specific patches for preventing component hijacking
attacks in android applications.” in NDSS, 2014.

[41] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise con-
text, flow, field, object-sensitive and lifecycle-aware taint analysis
for android apps,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 259–
269, 2014.

[42] S. Yang, D. Yan, H. Wu, Y. Wang, and A. Rountev, “Static
control-flow analysis of user-driven callbacks in android applica-

https://developer.android.com/guide/topics/data/data-storage.html
https://developer.android.com/guide/topics/data/data-storage.html
https://www.nowsecure.com/blog/2015/08/10/world-writable-code-is-bad-mmmmkay-4/
https://www.nowsecure.com/blog/2015/08/10/world-writable-code-is-bad-mmmmkay-4/
https://www.nowsecure.com/blog/2015/08/10/world-writable-code-is-bad-mmmmkay-4/
https://researchcenter.paloaltonetworks.com/2015/03/android-installer-hijacking-vulnerability-could-expose-android-users-to-malware/
https://researchcenter.paloaltonetworks.com/2015/03/android-installer-hijacking-vulnerability-could-expose-android-users-to-malware/
https://researchcenter.paloaltonetworks.com/2015/03/android-installer-hijacking-vulnerability-could-expose-android-users-to-malware/
https://developer.android.com/training/articles/security-tips.html
https://developer.android.com/training/articles/security-tips.html
http://doi.acm.org/10.1145/2382196.2382205
https://apkpure.com/
https://android.googlesource.com/platform/system/core/+/android-7.1.2_r6/sdcard/sdcard.c#61
https://android.googlesource.com/platform/system/core/+/android-7.1.2_r6/sdcard/sdcard.c#61
https://android.googlesource.com/platform/system/core/+/android-7.1.2_r6/sdcard/sdcard.c#61
https://en.wikipedia.org/wiki/SILK
https://en.wikipedia.org/wiki/Adaptive_Multi-Rate_audio_codec
https://en.wikipedia.org/wiki/Adaptive_Multi-Rate_audio_codec
https://en.wikipedia.org/wiki/Advanced_Audio_Coding
https://en.wikipedia.org/wiki/Advanced_Audio_Coding
http://opus-codec.org/
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-mobile-threat-report-2018.pdf
https://aholab.ehu.es/users/derro/software.html
https://newzoo.com/insights/rankings/top-10-android-app-stores-china/
https://newzoo.com/insights/rankings/top-10-android-app-stores-china/
http://sj.qq.com/myapp/detail.htm?apkName=com.tencent.qqlive
http://sj.qq.com/myapp/detail.htm?apkName=com.tencent.qqlive

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 16

tions,” in Proceedings of the 37th International Conference on Software
Engineering-Volume 1. IEEE Press, 2015, pp. 89–99.

[43] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid: Automated
security certification of android,” 2009.

[44] Z. Yang and M. Yang, “Leakminer: Detect information leakage on
android with static taint analysis,” in Software Engineering (WCSE),
2012 Third World Congress on. IEEE, 2012, pp. 101–104.

[45] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks:
automatically detecting potential privacy leaks in android appli-
cations on a large scale,” in International Conference on Trust and
Trustworthy Computing. Springer, 2012, pp. 291–307.

[46] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and
M. C. Rinard, “Information flow analysis of android applications
in droidsafe.” in NDSS. Citeseer, 2015.

[47] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceed-
ings of the 2012 ACM conference on Computer and communications
security. ACM, 2012, pp. 229–240.

[48] M. C. Grace, Y. Zhou, Z. Wang, and X. Jiang, “Systematic detection
of capability leaks in stock android smartphones.” in NDSS,
vol. 14, 2012, p. 19.

[49] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. Le Traon, S. Arzt,
S. Rasthofer, E. Bodden, D. Octeau, and P. McDaniel, “Iccta: Detect-
ing inter-component privacy leaks in android apps,” in Proceedings
of the 37th International Conference on Software Engineering-Volume 1.
IEEE Press, 2015, pp. 280–291.

Shaoyong Du received the B.E. degree in soft-
ware engineering from Zhengzhou University,
China, in 2012. He is currently working toward
the Ph.D. degree in the Department of Computer
Science and Technology at Nanjing University,
China. His current research focuses on security
and privacy in mobile computing.

Pengxiong Zhu received the B.S. degree
in computer science from Nanjing University,
China, in 2017. He is currently working toward
the Ph.D. degree in the Department of Computer
Science at University of California, Riverside. His
current research focuses on network security.

Jingyu Hua received the B.E. and M.E. degrees
both in software engineering from Dalian Univer-
sity of Technology, China, in 2007 and 2009, re-
spectively. He received the Ph.D. degree in Infor-
matics from Kyushu University, Japan, in 2012.
His current research interests include security
and privacy in mobile computing, and system
security.

Zhiyun Qian received the Ph.D. degree in Com-
puter Science and Engineering from University
of Michigan in 2012. His research interest is on
system and network security, including Android
security, Internet security (e.g., TCP/IP), side-
channel attacks and defenses, and infrastructure
security (e.g., cellular networks).

Zhao Zhang received the B.E. degree in soft-
ware engineering from Northeastern University,
China, in 2012. He is currently working toward
the Master degree in the Department of Com-
puter Science and Technology at Nanjing Uni-
versity, China. His current research focuses on
security and privacy in mobile computing.

Xiaoyu Chen received the B.E. degree in de-
partment of mathematics from NanJing Univer-
sity, China, in 2016. He is currently working to-
ward the master degree in the Department of
Computer Science and Technology at Nanjing
University, China. His current research focuses
on security and privacy in mobile computing.

Sheng Zhong received the B.S. and M.S. de-
grees from Nanjing University, in 1996 and 1999,
respectively, and the Ph.D. degree from Yale
University, in 2004, all in computer science. He
is interested in security, privacy, and economic
incentives.

	Introduction
	Background
	Android Security Model – Untrusted Input
	Storage Management of Android
	Threat Model and Capability Analysis

	ExInspector Design and Implementation
	Identifying File Accesses on External Storage
	Identifying File Types and Consumers
	Identifying Input Validation Checks

	Limitations
	Evaluation
	Attack Construction and Analysis
	Swift File Replacement
	Realtime Voice Message Replacement Attack
	Apk Replacement Attack
	Web Resource Replacement

	Defense
	Related Work
	Conclusion
	References
	Biographies
	Shaoyong Du
	Pengxiong Zhu
	Jingyu Hua
	Zhiyun Qian
	Zhao Zhang
	Xiaoyu Chen
	Sheng Zhong

