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Abstract. When releasing graph data (e.g., social network) to public or
third parties, data privacy becomes a major concern. It has been shown
that state-of-the-art graph anonymization techniques suffer from a lack
of strong defense against De-Anonymization (DA) attacks mostly be-
cause of the bias towards utility preservation. In this paper, we propose
GAGA, an Efficient Genetic Algorithm for Graph Anonymization, that
simultaneously delivers high anonymization and utility preservation. To
address the vulnerability against DA attacks especially when the ad-
versary can re-identify the victim not only based on some information
about the neighbors of a victim but also some knowledge on the structure
of the neighbors of the victim’s neighbors, GAGA puts the concept of
k(d)-neighborhood-anonymity into action by developing the first general
algorithm for any d distance neighborhood. GAGA also addresses the
challenge of applying minimum number of changes to the original graph
to preserve data utilities via an effective and efficient genetic algorithm.
Results of our evaluation show that GAGA anonymizes the graphs in a
way that it is more resistant to modern DA attacks than existing tech-
niques – GAGA (with d=3 ) improves the defense against DA techniques
by reducing the DA rate by at least a factor of 2.7× in comparison to
the baseline. At the same time it preserves the data utilities to a very
high degree – it is the best technique for preserving 11 out of 16 utilities.
Finally, GAGA provides application-oriented level of control to users via
different tunable parameters.

Keywords: graph anonymization · data privacy · network security.

1 Introduction

Social network data are routinely released for different purposes such as adver-
tising, academic research, medical diagnosis, criminology, etc. Since these data
contain sensitive information about the users, when releasing such data to the
public or third parties, data privacy is a major concern. To achieve privacy
preservation, various graph anonymization techniques have been proposed to
anonymize the social graph data before its release [4, 13,17,23,28,29].

The main drawback of existing anonymization techniques is that they trade-
off anonymization with utility preservation. Previous works including [4,17,23,28,
29] evaluated their approaches only in terms of data utility performance and lack
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a complete evaluation of their ability to withstand modern De-Anonymization
(DA) attacks [10, 14, 22, 24, 27]. As shown in [11], existing graph anonymiza-
tion techniques not only produce anonymized graphs that are susceptible to DA
attacks, they also make more than the minimum required changes to the origi-
nal graph even though applying minimum number of changes is their primary
objective.

In this paper, we propose GAGA, an Efficient Genetic Algorithm for Graph
Anonymization, that simultaneously achieves high anonymization via utility
preservation. GAGA defends against modern DA attacks as follows:
– K(d)-neighborhood-anonymity for any d is supported by GAGA to pro-
vide defense against modern DA attacks. Existing anonymization techniques
have been found to be ineffective against modern DA attacks especially when
the attacker has complex knowledge about the structure of some-order neighbors
(e.g. , neighbors of neighbors) of a victim, which can be obtained by the attack-
ers by either modifying the social network graph before releasing by creating
fake users and linking to victim and its neighbors (active attack) or by trying
to find themselves in the released graph and from this and many other auxiliary
graphs (e.g., other social networks) discover the structure of neighbors of the
victim (passive attack).

At the same time, the combination of various features enables GAGA to
preserve utilities and to give more application-oriented level of control to its
users (researchers, advertisers, developers, etc.) as follows:
– Edge switching is supported by GAGA to preserve degree and its related
utilities (e.g., role extraction) since edge switch is the only known technique
that can effectively preserve these utilities [11]. Therefore, in contrast to most
anonymization techniques that add some fake edges to the original graph, GAGA
gives higher priority to edge switching over edge adding or removing. Meanwhile
it has been observed that k-neighborhood-anonymity based algorithm is generally
the best approach to partially or conditionally preserve other utilities. Thus,
to cover as much as possible utilities, GAGA applies edge switch to the k(d)-
neighborhood-anonymity model. The genetic algorithm further minimizes the
number of edge switches for better utility preservation.
– Controls via k and d are provided by GAGA allowing application-oriented
level of control by its users. If defending against modern DA attacks is desired,
larger values of k and d are used. If merely utility preservation is demanded,
small values of k and d are used.
– Controls via genetic algorithm (GA) are also provided by GAGA. GA is
effective and efficient for solving optimization problems (here, applying minimum
number of changes). Besides, its tunable parameters allow not only control over
solutions quality in terms of preserving utility but also runtime performance of
the tool (albeit, graph anoymization is usually an offline process). These param-
eters include: initial population size; number of switches (s), adds, and removes
(mutation rate) in each GA iteration; probabilities that control the search space;
finding local maxima (a set of good enough solutions) as opposed to the global
maximum (best solutions).
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Our evaluation leads to the following key conclusions.

– First our comparison of GAGA with existing anonymization techniques with
respect to multiple DA attacks, for a subgraph of Facebook friendship net-
work, shows that GAGA is the best for defending against all DA attacks
when it employs d=3-neighborhood structures. We set Union Cluster [25] as
our evaluation baseline and show that GAGA improves the defense against
DA techniques by reducing the rate of successfully de-anonymized users by
at least a factor of 2.7× when d=3 in comparison to the baseline and leads
to zero de-identified users in some cases.

– Second our comparison of GAGA with existing anonymization approaches,
for a real world input graph, shows that under 16 graph and application
utility metrics, GAGA is overall the best at preserving utilities – it is the
best for 11 out of 16 utilities and close to the best for the remaining 5.

– Finally, our comparison of GAGA with Zhou and Pei’s [29] work that uses
d=1-neighborhood anonymity model shows that GAGA incurs only 69% of
the cost of Zhou and Pei’s approach when it also employs d=1-neighborhood
structures, indicating that previous works cannot preserve most utilities
though this is their primary objective.

The remainder of the paper is organized as follows. We discuss background
and motivate our work in section 2. Section 3 presents the details of GAGA.
Section 4 evaluates GAGA and compares it with state-of-the-art techniques. We
discuss related work in section 5. The paper ends with conclusions in section 6.

2 Background and Motivation

Preserving data privacy has been widely studied. One of the main approaches
used to preserve data privacy is based upon the concept of anonymity. Graphs
and databases have played an important role in this domain [1–3,18,20]. In this
paper we address the data privacy preservation in graphs, specifically for graphs
representing social networks. A number of graph anonymization techniques have
been proposed to preserve users’ privacy. We discuss the limitations of these
techniques first from the perspective of defense against DA attacks and then
from the perspective of utility preservation to motivate our approach.

As a concrete motivating example, consider the sample graph shown in Fig-
ure 1. The social graph on the left side is going to be publicly published. As-
sume that an adversary knows that Alice has 2 friends and each of them has 4
friends, then the vertex representing Alice can be re-identified uniquely in the
network (black vertex in Figure 1). The reason is that no other vertices have
the same 2-neighborhood graph to the 2-neighborhood graph for Alice. Existing
graph anonymization techniques fail to anonymize this example graph so that an
adversary cannot re-identify any user certainly. The k-degree-anonymity based
algorithm in [17] removes/adds edges from/to the original graph to create a
graph in which for every vertex there are at least k-1 other vertices with the
same degree. Based on k-degree-anonymity, the graph is 2-degree-anonymized.
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In the other approach, k-neighborhood-anonymity based algorithm in [29] adds
edges to the original graph to create a graph in which for every vertex there
are at least k-1 other vertices with the same 1-neighborhood graphs. Based on
k-neighborhood-anonymity, the graph is 2-neighborhood-anonymized. Hence, the
existing k-anonymity approaches are inadequate when the attacker has more
complex knowledge about the neighborhood structures.

n1

n2 n3
n4 n7

n5 n6
n8 n9

n1

n2 n3

n4
n5 n6

n7

n8 n9

Fig. 1. Graph to be publicly published on
the left and 2-neighborhood structures for
each vertex on the right. Black vertex rep-
resents Alice.

Based upon the above dis-
cussion, we conclude that we
must support k(d)-neighborhood-
anonymity for any d, instead
of k-degree-anonymity or k-
neighborhood-anonymity for d=1-
neighborhood considered in prior
works. That is, our approach will
provide an algorithm that ef-
ficiently enables d-neighborhood
privacy preservation for any d to
protect against attacks that use
complex neighborhood acknowl-
edgements of the target vertex.

Next we consider the issue of util-
ity preservation. SecGraph introduced
by Ji et al. [11], evaluates different
anonymization algorithms using vari-
ous utilities. According to their study, k-neighborhood-anonymity preserves most
of the graph and application utilities. The one application utility which k-
neighborhood-anonymity algorithm cannot preserve is the role extraction utility
where it considers the uniqueness of each vertex based on their structure in the
graph. Among all anonymization algorithms, the Rand Switch approach intro-
duced in [28] where existing pair of edges are switched randomly n times, is the
only one that can preserve role extraction.

Because of the above reason, in this paper we give higher priority
to edge switching over edge adding and removing since edge switching
can effectively preserve degree and its related utilities (e.g., role ex-
traction) leading to preserving more utilities. We further apply edge
switching to the k(d)-neighborhood-anonymity model and use Genetic
Algorithm as the main approach for utility preservation.

Summary:With more knowledge about the local neighborhood structures in
a social network, an adversary has more chances to re-identify some victims. We
show that existing anonymization techniques not only do not present a complete
model to defend against DA attacks, specially structure-based attacks, but also
they make more than the minimum required changes. In contrast, an additional
goal of our approach is applying fewer changes and thus providing a better trade-
off between anonymization and utility preservation. As a motivating example,
Figure 2(a) depicts the original graph, and the anonymized graphs generated by
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Fig. 2. Sample social network graph (a) Original graph to be publicly published, bigger
colored node shows the victim vertex (b) Anonymized graph using our approach with
k=2 and d=2, bigger colored nodes show the victim vertex and the vertex with similar
2-neighborhood (c) Anonymized graph using k-degree Anonymization in [17] with k=2
(d) Anonymized graph using Random Walk Anonymization in [21] with r=2.

our approach, k-degree Anonymization, and Random Walk Anonymization tech-
niques using the minimum values for the parameters of each approach (k=2 and
d=2 for our approach, k=2 for k-degree Anonymization, and r=2 for Random
Walk Anonymization). Assume an adversary knows that a user has 3 friends
and only one of them has another friend, then the user can be re-identified eas-
ily (colored bigger vertex in Figure 2(a)), since this is the only user with that
friendship neighborhood structure.

(Our Approach) In Figure 2(b), our approach applies minimum number of
changes of 3 edges switches and 1 edge removal to the original graph (i.e., we
preserve degrees for all vertices except for only two vertices). We anonymize the
graph in a way that for each vertex there is at least one other vertex with similar
2-neighborhood structure (i.e., there is another user with similar 2-neighborhood
friendship to the target user 2-neighborhood depicted with two colored vertices
which reduces the re-identification chance by 50%). Note that for simplicity of
presentation, we consider k=2 and d=2. Larger values of k and d reduce the
attacker’s chance of success.

(K-degree Anonymization) In Figure 2(c), by applying slightly more
changes compared to our approach, the k-degree-anonymity concept introduced
in [17] is achieved which is weaker in comparison to k(d)-neighborhood-anonymity.
This means that for each vertex there is at least one other vertex with similar
degree which is already satisfied with our approach. Hence, the adversary can
still re-identify the target user easily.

(Random Walk Anonymization) In Figure 2(d), while introducing much
more noise compared to our approach, this technique only ensures some level
of link privacy. The reason of comparing our approach with Random Walk
Anonymization technique is that it is the only graph anonymization technique
which takes the concept of neighborhoods structures into consideration. That
is, in social network graph G, replace an edge (u,v) by the edge (u,z) where z
denotes the terminus point of a random walk algorithm. As a result, noise is
introduced into the graph leading to huge data loss.
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Fig. 3. GAGA overview.

3 GAGA

In this section, we present an Efficient Genetic Algorithm for Graph Anonymization
(GAGA). GAGA creates an optimal anonymized graph by applying minimum
number of changes to the original graph in comparison to existing approaches
which make the graph less responsive to various queries.GAGA can preserve data
privacy against many complicated DA attacks. To achieve these goals we use Ge-
netic algorithm (GA) as the main approach. Our reasoning is that first, Genetic
Algorithms are very effective in achieving optimal or near-optimal solutions in
a variety of single- and multi-objective problems (e.g., classification, game the-
ory, bioinformatics, etc.). Hence, achieving an optimal anonymized graph as a
two-fold optimization problem (i.e., achieving a k(d)-neighborhood-anonymized
graph and applying minimum number of changes simultaneously) fits a genetic
algorithm-based model very well. Second, different tunable parameters in genetic
algorithm helps to avoid leaving some areas of the search space undiscovered,
resulting in widening the search space more that the other approaches. In this
section, we describe how we apply GA to the graph anonymization problem.
Figure 3 shows an overview of GAGA. Now we discuss each step of GA that we
used in GAGA:

3.1 Precomputation Step

Before applying the GA to the original graph, we perform precomputations that
evaluate the original graph so that we can choose the best parameters to create
the optimal k(d)-neighborhood-anonymized graph. As a result, the original graph
is categorized as one of: good, bad, or ugly scenarios. In the good scenario, the
original graph is close to a k(d)-neighborhood-anonymized solution and hence it
needs a small number of changes. In the bad scenario, many vertices do not satisfy
the k(d)-neighborhood-anonymity and hence the original graph needs changes to
large number of vertices. In the ugly scenario, few vertices violate the k(d)-
neighborhood-anonymity but they have a very different neighborhood compared
to other vertices; hence it requires huge changes to a small number of vertices.
Our precomputations involve the following steps:

Step 1. Percentage of violating vertices: We identify the vertices that
violate the k(d)-neighborhood-anonymity (i.e., there are less than k-1 other ver-
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tices with similar d-neighborhood to the d-neighborhood of these violating ver-
tices) and compute the percentage of violating vertices. A low percentage of
violating vertices means that by applying some changes to a small group of ver-
tices, we can create a k(d)-neighborhood-anonymized graph. We further observe
that the changes can be small or big themselves. Hence, we consider a threshold
value (Tpv) and if the percentage is below the threshold value, we consider the
graph as one of the good ones (i.e., small changes to small number of vertices
are required) or an ugly one (i.e., big changes to small number of vertices are
required). If the percentage is above the threshold value, we consider the graph
as bad (i.e., some changes to large number of vertices are required).

Step 2. Violating vertices’ neighborhoods analysis: After the previous
step, the original graph is categorized as good/ ugly or bad. To distinguish be-
tween good and ugly scenarios, we analyze the neighborhoods around violating
vertices and compare them with the neighborhoods of vertices that satisfy the
k(d)-neighborhood-anonymity. If some of the violating vertices have a very dif-
ferent neighborhood than others (we simply compare degrees for this purpose),
we categorize the graph as ugly. Otherwise, we categorize the graph as good. To
analyze the rate of difference, we again define a threshold value (Tu) so that if
the value is above the threshold we consider the graph as ugly scenario. Other-
wise, if the value is below the threshold, we consider the graph as good scenario.
We illustrate the scenarios using three sample graphs in Figure 4. The treatment
for each of three scenarios is described next:

(a)Good (b)Bad (c)Ugly

Fig. 4. Black vertices represent the violating ver-
tices. Assume that k=2, d=1, and Tpv=10%; i.e., the
graph is 2(1)-neighborhood-anonymized if for each
vertex of the graph, there is at least one other vertex
with similar (1)-neighborhood graph. (a) Good sce-
nario: 5% of vertices violate the 2(1)-neighborhood-
anonymity. (b) Bad scenario: 66% of vertices vio-
late the 2(1)-neighborhood-anonymity. (c) Ugly sce-
nario: 9% of vertices violate the 2(1)-neighborhood-
anonymity but the violating vertex has a very dif-
ferent neighborhood than other vertices.

Good Scenario. In the
good scenario, in the begin-
ning of the GA process, we
focus only on violating ver-
tices according to a proba-
bility and apply the GA to
them. For this purpose, we
select the vertices –selection
in GA– from violating ver-
tices to apply the changes
(switches, adds, removes) –
mutation in GA– so the num-
ber of violating vertices will
decrease. As we proceed for-
ward towards the end of the
process, we select some ver-
tices from other non violat-
ing vertices and apply the
changes to them based on a
probability. This increases the
probability of searching more
areas of the search space caus-
ing the graph to become k(d)-neighborhood-anonymized faster.
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Bad Scenario. In the bad scenario, there is no advantage to focus only
on violating vertices neighborhoods. So we apply the GA to the whole graph.
For this purpose, we select the vertices –selection in GA– from all the vertices
in graph to apply the changes. In comparison to the good scenario, the bad
scenario, in general requires more changes and thus more time to create the
k(d)-neighborhood-anonymized graph. As we will see in Section 4, even in bad
scenarios, our results are much more efficient in terms of minimum number of
changes and hence utility preservation compared to the existing techniques.

Ugly Scenario. In the ugly scenario, we again focus on violating vertices
in the beginning of the GA process like in good scenario but we apply more
changes in each step of GA compared to good scenario so that the graph becomes
k(d)-neighborhood-anonymized faster. Again, as we move forward, we select some
vertices from other non-violating vertices to increase the probability of searching
more areas of the search space.

3.2 Initial population

In this step we randomly apply edge switches on the original graph to create a
fixed number of chromosomes as the initial population. We present chromosome
representation details in section 3.6. As we discussed earlier, we create a larger
initial population in bad scenarios compared to the good and ugly scenarios.

3.3 Fitness function and Selection

For each chromosome, the fitness value – which defines how good a solution
the chromosome represents – is computed and the chromosomes are selected for
reproduction based on their fitness values. Therefore, first, we need to define
a function which computes the distance between the modified graph and the
original graph (fitness function) and second, we need a function to compute the
distance between the modified graph and the solution of a k(d)-neighborhood-
anonymized graph (selection function). We define the fitness function as below:

fitness(G, G̃) =
1

size((E \ Ẽ) ∪ (Ẽ \ E))
(1)

Given the original graph G(V,E), V is the set of vertices and E is the set of
edges in G , and the modified graph G̃(Ṽ,Ẽ), we evaluate the distance between
the modified graph and the original graph by computing the number of edges
in the union of relative complement of E in Ẽ and relative complement of Ẽ in
E. Finally, we consider the inverse of the computed number of different edges so
that a graph with higher fitness value has fewer changes. After we compute the
fitness values, we use roulette wheel selection so that the chromosomes with a
higher fitness value will be more likely to be selected. With this method, in each
step of GA we select those chromosomes which need fewer modifications to the
original graph. As we discussed earlier, we need to define a selection function as
well. We define the selection function as the inverse of the number of vertices
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in the graph that do not satisfy the k(d)-neighborhood-anonimity concept for a
given k and d. Using this selection function, in each step of GA, we select those
chromosomes which are closer to the solution.

3.4 Crossover and mutation

Crossover and mutation are the two basic processes in GA. Crossover process
copies individual strings (also called parent chromosomes) into a tentative new
population for genetic operations and mutation is used to preserve the diversity
from one generation to the next. Mutation prevents the GA from becoming
trapped in a local optima. For crossover, the main function we employ is edge
switch as follows. Given graph G(V,E) and a pair of edges (u,v) ∈ E and (w,z) ∈
E such that (u,w) /∈ E and (v,z) /∈ E, we remove edges (u,v) and (w,z) and we
add edges (u,w) and (v,z) to the graph. Note that edge switch can be considered
as the process of combining the parent chromosomes where the parents are the
chromosome and a copy of itself.

For mutation, we remove/add one or some number of random edges to some
chromosomes. Specifically in our GA, first we try to perform edge switch for
a certain number of times (s in Figure 3). If we fail to reach to a solution by
applying s edge switches, then we start to remove/add one or some number of
random edges to some chromosomes to create the new generation and then we
repeat the GA for the new generation. If it is a good scenario, we remove/add
very small number of edges in each step and if it is a bad scenario, we remove/add
greater number of edges in each step. To decide whether to add or remove edges,
if the selected vertex has a degree higher than average graph degree, we remove
an edge while if the vertex degree is lower than average degree, we add an edge.

3.5 Checking stopping criteria

GAGA always returns at least one k(d)-neighborhood-anonymized graph as the
solution by trying to apply minimum number of changes (switches, adds, re-
moves) to the original graph. Therefore, in general we only have one stopping
criteria except for invalid cases\inputs i.e. suppose a graph G(V,E) with |V |=n
is given and a k(d)-neighborhood-anonymized graph is requested for some k>n.
The problem has no solution unless we add fake vertices. GAGA does not in-
troduce any fake vertices as in some previous works [6, 16]. As noted in [29],
adding fake vertices is not desirable because this can change the global structure
of the original graph. By maintaining the original utilities of the published social
network, GAGA ensures that the changes are likely to have little or no impact
on solutions to many applications/queries.

3.6 Implementation highlights

We implemented GAGA in Java. The implementation challenges are as follows.
Chromosomal representation. As discussed earlier, we need to represent

the graph in an effective way such that k(d)-neighborhood-anonymity concept can
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be put into action and the d distance neighborhood for each vertex can be easily
considered. For this purpose, we represent the graph as a HashMap structure
where each key represents a vertex of the graph and the value represents the
d-neighborhood structure around the vertex.

Thresholds and parameters. As we discussed, k and d are the main pa-
rameters ofGAGA which provide the data owners some application-oriented level
of control over achieving the desired level of data preservation and anonymiza-
tion. Besides the k and d parameters, GAGA contains other thresholds and
parameters used in GA: initial population size, s as the number of maximum
edge switches before remove/add one or some number of random edges, ,thresh-
olds Tpv and Tu to categorize the scenario of the graph, a parameter to indicate
finding local maxima as opposed to the global maximum for scenarios where the
user/data owner can tolerate some number of violating vertices. GAGA receives
the above parameters as the input.

Graph isomorphism test. The graph isomorphism tests are frequently
conducted in the selection phase of GA. For this purpose, we used the VF2
algorithm introduced in [7] as a (sub)graph isomorphism algorithm with efficient
performance specially for large graphs. Since the nature of any isomorphism test
is that it takes time, we perform multiple level of prechecks to avoid applying
the algorithm as much as possible. As a simple example, when two subgraphs
have different number of vertices (or edges), or different degree sequences, we do
not apply the VF2 algorithm.

4 Experimental Evaluation

In this section, first, we evaluate the effectiveness of GAGA against the existing
De-Anonymization (DA) attacks using real world graph. Second, we evaluate
GAGA under various utility metrics and compare the results with the state-of-
the-art graph anonymization approaches. Finally, we compare the performance
of GAGA with work by Zhou and Pei [29]. All the experiments were conducted
on a PC running Ubuntu 16.04 with an Intel Core i7-4770 CPU running at 3.4
GHz and 23 GB RAM.

4.1 Evaluating GAGA against DA attacks

As discussed in Section 2, Ji et al. [11] implemented the SecGraph tool to conduct
analysis and evaluation of existing anonymization techniques. In this subsection,
we compare GAGA with the state-of-the-art anonymization techniques using
SecGraph against different DA attacks.

Dataset and DA attacks. We use Facebook friendship network collected
from survey participants using the Facebook app [15] consisting of 61 nodes and
270 undirected edges representing the friendship between users. We evaluate the
anonymization approaches against the following five practical DA attacks: 1)
Narayanan and Shmatikov [22]: They proposed a re-identification algorithm
to de-anonymize the graph based on the graph topology. Here the attacker, in
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addition to having detailed information about a very small number of members
of the target network, also has access to the data of another graph (a subgraph
from the target graph or another social network). Thus, the power of the attack
depends on the level of the attacker’s access to auxiliary networks; 2) Srivatsa
and Hicks [24]: They presented an approach to re-identify the mobility traces.
They used the social network data of the participating users as the auxiliary
information. They used heuristic based approach on Distance Vector, Random-
ized Spanning Trees, and Recursive Subgraph Matching to propagate the DA; 3)
Yartseva and Grossglauser [27]: They proposed a simple percolation-based
graph matching algorithm that incrementally maps every pair of node with at
least r (predefined threshold) neighboring mapped pairs. They also showed that
the approach used in [22] has a sharp phase transition in performance as a func-
tion of the seed set size. That is, when the seed set size is below a certain thresh-
old, the algorithm fails almost completely. When the number of seeds exceeds
the threshold, they achieve a high success rate. This is again consistent with the
evaluation of [22] which shows that the power of the attack depends on how large
the auxiliary networks are; 4) Korula and Lattanzi [14]: They presented a
similar approach to [27] where they use an initial set of links of users across
different networks as the seed set and map a pair of users with the most number
of neighboring mapped pairs; 5) Ji et al. [12]: They proposed two DA attack
frameworks, namely De-Anonymization and Adaptive De-Anonymization. The
later attack is used to de-anonymize data without the knowledge of the overlap
size between the anonymized data and the auxiliary data. In their attack, besides
the vertices’ local properties, they incorporate global properties as well.

Our evaluation methodology is basically the same as in [11]. We compare
GAGA with the following anonymization techniques: Add/Del approach intro-
duced in [17] which adds k randomly chosen edges followed by deletion of other
k randomly chosen edges. Deferentially Private Graph Model (DP) pro-
posed in [23], in which a partitioned privacy technique is employed to achieve
differential privacy. K-Degree Anonymization (KDA) technique presented
in [17], in which some edges are added to or removed from the original graph so
that each vertex has at least k-1 other vertices with the same degree. Random
Walk Anonymization (RW ) approach proposed in [21], where the graph is
perturbed with replacing the edges by random walk paths in order to provide
link privacy. t-Means Clustering Algorithm (t-Means Cluster) introduced
in [25], uses conventional t-Means algorithm to create clusters with size of at least
k. Union-Split Clustering (Union Cluster) technique presented in [25], is
similar to t-Means Clustering Algorithm while cluster centers are not chosen
arbitrarily to bypass the variability in clustering results.

We present the results in Table 1. The criteria for parameters settings for
each anonymization technique are the same to settings as in [11] which follows
the same settings in original works. That is for Union Cluster, k is the size of
each cluster; for Add/Del, f is the fraction of edges to be modified; for KDA,
k is the anonymization parameter indicating the number of similar nodes with
respect to degree; for DP, ε is the parameter that determines the amount of
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noises that must be injected into the graph where a larger value of ε means that
it is easier to identify the source of the graph structure and hence a lower level of
graph privacy is preserved; for t-Means Cluster, t is the parameter which shows
the minimum size of each cluster; for RW, r is the number of steps; and finally,
for GAGA, k indicatess the number of similar nodes with respect to neighbor-
hood structures and d shows the level of d-neighborhood. For DA attacks, we
randomly sample a graph with probability s=80% and s=90% from the origi-
nal graph as the auxiliary graph and then we apply the graph anonymization
approaches to obtain the anonymized graphs. A larger value for s results in suc-
cessfully de-anonymizing more users since with a large s, the anonymized graph
and the auxiliary graph are likely to have similar structures. We also feed each
DA technique 20 pre-identified seed mappings. Then we use the auxiliary graph
to de-anonymize the anonymized graph. We use Union Cluster as the baseline
for our evaluation. For each anonymization technique, SecGraph provides the
number of successfully de-anonymized users – this number for Union Cluster is
given in parenthesis. For rest of the techniques, Table 1 provides the factor by
which number of successfully de-anonymized users is reduced in comparison to
the baseline. Note that GAGA is the optimal solution against all DA
attacks (bold values in Table 1) as for all DA attacks GAGA offers the
most defense – in fact the number of de-anonymized users is either 0
(perfect defense) or 1 (near perfect) of 50–57. GAGA (wih d=3) re-
duces the de-anonymization rate by at least a factor of 2.7× over the
baseline. A factor of ∞ means no user has been de-anonymized suc-
cessfully. Larger values of d make GAGA more powerful against DA attacks.
This is because each DA attack uses a combination of structural properties/se-
mantics while each anonymization technique usually focuses on one structural
property/semantic (e.g., vertex degree in KDA [17] or 1-neighborhood-anonymity
in [29]). However in GAGA we use k(d)-neighborhood-anonymity for any d-
neighborhood which makes all complex neighborhoods structures similar to at
least k-1 other neighborhoods structures followed by other structural proper-
ties/semantics changes. Note that no values for DP and RW when s=90% are
given because the anonymized graphs obtained in these two cases do not have
enough edges; however, we are able to report the results for them when s=80%.

4.2 Evaluating GAGA for Utilities

Now we compare GAGA with the state-of-the-art anonymization techniques us-
ing SecGraph from the graph and application utility preservation perspective.

Dataset and utility metrics. We use DBLP co-authorship network [15]
consisting of 8734 nodes and 10100 undirected edges representing the co-authorship
where two authors are connected if they publish at least one paper together. We
apply the same graph anonymization approaches that we used in previous sub-
section along with GAGA to anonymize the original graph and then measure
how each data utility is preserved in the anonymized graph compared to the
original graph. We use the following 16 popular graph and application utility
metrics to measure the utility preservation:
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Table 1. Comparing GAGA’s preservation of privacy with existing approaches intro-
duced in [11] against five DA attacks. Using Union Cluster as the baseline, the factor by
which number of de-anonymized users is reduced by each other technique is presented.

DA s Union Add/Del KDA DP t-Means RW GAGA
Cluster Cluster
(k=5) (f=0.23) (k=5) (ε=10) (t=5) (r=2) (k=5 , d=1) (k=5 , d=2) (k=5 , d=3)

Ji et al. [12] 0.8 1 (2 of 42) 1.1× 1.1× 1.2× 1.3× 1.8× 1.5× 2.3× 2.7× (1 of 57)2.7× (1 of 57)
0.9 1 (2 of 37) 1.1× 1.1× - 1.4× - 1.4× 2.2× 3.1× (1 of 57)3.1× (1 of 57)

Korula and 0.8 1 (2 of 48) 1.2× 1.2× 1.2× 1.2× 1.3× 1.5× ∞∞ ∞ (0 of 51)∞ (0 of 51)
Lattanzi [14] 0.9 1 (2 of 45) 0.9× 1.2× - 1.1× - 1.2× 2.5× ∞ (0 of 50)∞ (0 of 50)
Narayanan and 0.8 1 (3 of 51) 0.8× 1× 1× 1.6× 1.4× 1.5× 3.1×3.1× 3.1× (1 of 53)3.1× (1 of 53)
Shmatikov [22] 0.9 1 (3 of 44) 0.8× 1× - 1.5× - 1.5× 3.3× 3.6× (1 of 53)3.6× (1 of 53)
Srivatsa and 0.8 1 (2 of 42) 1.1 × 1.1× 1.2× 1.3× 1.6× 1.5× 1.9× 2.7× (1 of 57)2.7× (1 of 57)
Hicks [24] 0.9 1 (2 of 38) 1× 1.1× - 1.3× - 1.4× 1.9× 3× (1 of 57)3× (1 of 57)
Yartseva and 0.8 1 (4 of 52) 1.4× 1.7× 1.8× 2× 2.2× 2.1× 3.6× 4× (1 of 52)4× (1 of 52)
Grossglauser [27] 0.9 1 (4 of 44) 1.3× 1.5× - 1.7× - 2× 3.9× 4.7× (1 of 52)4.7× (1 of 52)

Authorities Score: which is the sum of the scores of the hubs of all of the
vertex predecessors. Betweenness Centrality: which indicates the centrality
of a vertex. It is equal to the number of shortest paths from all vertices to all oth-
ers that go through the specific vertex. Closeness Centrality: which is defined
as the inverse of the average distance to all accessible vertices. Community De-
tection: a communication in a graph is a set of vertices where there are more
connections between the members of the set than the members to the rest of
the graph. SecGraph uses the hierarchical agglomeration algorithm introduced
in [26] to measure the Community Detection.Degree: which indicates the degree
distribution of the graph. Effective Diameter: which is the minimum number
of hops in which some fraction (say, 90%) of all connected pairs of vertices can
reach each other. EigenVector: let A be the adjacency matrix of a graph G,
the EigenVector is a non-zero vector v such that Av = λv, where λ is a scalar
multiplier. Hubs Score: which is the sum of the authorities scores of all of the
vertex successors. Infectiousness: which measures the number of users infected
by a disease in a infectious diseases spreading model where each user transmits
the disease to its neighbors with some infection rate. Joint Degree: which indi-
cates the joint degree distribution of the graph. Local Clustering Coefficient:
which quantifies how close the vertex neighbors are to being a complete graph.
Network Constraint: which measures the extent to which a network is directly
or indirectly concentrated in a single contact. Network Resilience: which is
the number of vertices in the largest connected cluster when vertices are removed
from the graph in the degree decreasing order. Page Rank: which computes
the ranking of the vertices in the graph. Role Extraction: which automatically
determines the underlying roles in the graph and assigns a mixed-membership
of the roles to each vertex to summarize the behavior of the vertices. SecGraph
uses the approach in [9] to measure the Role Extraction. Secure Routing: to
address the security vulnerabilities of P2P systems, Marti et al. [19] proposed
an algorithm to leverage trust relationships given by social links. SecGraph uses
their approach to measure the Secure Routing utility metric.
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Table 2. Comparing the utility preservation of GAGA with the utility preservation of
existing approaches introduced in [11] with respect to various utilities.

Utility Add/Del DP GAGA KDA RW t-Means Cluster Union Cluster
(f=0.06) (ε=10) (k=5, d=1) (k=5) (r=2) (t=5) (k=5)

Authorities Score 0.4995 0.324 0.7079 0.4013 0.3792 0.6773 0.6976
Betweenness Centrality 0.8256 0.762 0.9606 0.8459 0.8247 0.9378 0.8755
Closeness Centrality 0.9123 0.785 0.9604 0.9788 0.8612 0.9632 0.9832
Community Detection 0.3926 0.1766 0.8783 0.8747 0.2933 0.5324 0.9103

Degree 0.9877 0.9265 0.9998 0.9979 0.9648 0.9972 0.9989
Effective Diameter 0.9559 0.6268 0.9632 0.9205 1.7626 0.9394 0.9629

EigenVector 0.8562 0.4443 0.9927 0.6573 0.5573 0.9598 0.9909
Hubs Score 0.6844 0.2971 0.7259 0.5274 0.3967 0.6997 0.686

Infectiousness 0.8033 0.8675 0.8393 0.8364 0.7093 0.8513 0.8622
Joint Degree 0.7645 0.6102 0.9875 0.7713 0.2679 0.6832 0.7943

Local Clustering Coefficient 0.9846 0.9074 0.9977 0.997 0.9561 0.9909 0.9939
Network Constraint 0.9885 0.9777 0.9992 0.9999 0.987 0.9994 0.9999
Network Resilience 0.9989 0.9954 0.9997 0.9999 0.9913 0.9999 0.9999

Page Rank 0.3722 0.3323 0.3766 0.3681 0.3625 0.3758 0.3742
Role Extraction 0.5519 0.2271 0.6685 0.3134 0.2418 0.5282 0.6248
Secure Routing 1.0346 1.1149 1.0024 1.007 0.9571 0.9505 1.1717

Table 2 presents the results and provides the parameters that were used for
each approach. Each value in the table represents one of the the following: Co-
sine Similarity in case of Authorities Score, Betweenness Centrality, Closeness
Centrality, Degree, Hubs Score, Infectiousness, Joint Degree, Local Clustering
Coefficient, Network Constraint, Network Resilience, Page Rank, Role Extrac-
tion, and Secure Routing; Ratios in case of Effective Diameter and EigenVector;
and Jaccard Similarity in case of Community Detection between the anonymized
and original graphs.

For GAGA, we set k=5 and d=1 and hence as a result, 297 edge adds and
307 edge removes (including 145 edge switches in total) have been applied to
the graph. Accordingly, we set the similar parameters for other approaches so
that the number of changes to the original graph can be compared with GAGA
fairly. For example, we used the same k=5 and t=5 for KDA, Union Cluster, and
t-Means Cluster accordingly. For Add/Del, we set f to 0.06, that is because 297
edge adds, and 307 edge removes in GAGA map to 307+297 edge adds/deletes
for Add/Del. We also used a reasonable value for ε in DP that is the same value
in original work, as we mentioned earlier larger value of ε means smaller changes
to the graph so we set ε to the reasonable value of 10. For RW, we set r to
the minimum value of 2. In general, our evaluation results are consistent with
the results presented in [11]: most of the graph and application utilities can be
partially or conditionally preserved with most anonymization algorithms.

Despite the fact that no anonymization scheme is optimal to pre-
serve all utilities, note that for most of the utilities (11 out of 16
highlighted as bold values in Table 2) GAGA is the best approach
to preserve these utilities. For some other utilities, Union Cluster and KDA
have good performance. However, as we discussed in the previous subsection,
Union Cluster and KDA are very vulnerable to DA attacks. This makes GAGA
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Fig. 5. Comparing the cost of GAGA with the cost of Zhou and Pei [29] on various
data sets.

the most efficient practical approach which can preserve most of the utilities and
at the same time also defend well against modern DA attacks.

4.3 GAGA vs. Zhou & Pei [29]

As we discussed in Section 2, Zhou and Pei [29] presented the k-neighborhood-
anonymity model to preserve users’ privacy against some neighborhood attacks.
They evaluated the anonymization cost of their approach using various data
sets generated by the R-MAT graph model [5]. To compare our work with Zhou
and Pei’s work, we used the same model with the same default parameters to
generate the same data sets. Figure 5 compares the anonymization cost of GAGA
with their work. Recall that as discussed earlier, Zhou and Pei [29] only support
1-neighborhood and only apply edge addition to the original graph. However,
GAGA supports any d and applies three different changes to the graph: switch,
add, and remove. Therefore, to compare the cost of GAGA to their approach
we use d=1 and we compute the sum of all edge additions and deletions that
GAGA applies to the original graph. The results show that in all cases GAGA
is far more efficient in terms of the anonymization cost (i.e., number of changes
to the original graph) than Zhou and Pei’s approach when obtaining the same
level of privacy preservation. Notice how our approach is efficient even for denser
graphs where the average vertex degree is 7 – while the number of dummy edges
for Zhou and Pei varies from around 1100 to 3300, the total number of edge adds
and removes applied by GAGA varies only from 830 to 2230.

We present the results in further detail in Table 3. The first column shows
the number of vertices used to generate the graphs using R-MAT graph model.
For brevity, we report only the cases of 5,000 and 25,000 vertices. The third and
eighth column give the number of violating vertices along with the corresponding
scenario with respect to different k values (g is the good scenario, b is the bad
scenario, and u is the ugly scenario). We give the average degree of violating
vertices in fourth and ninth column. A high average degree means that some
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Table 3. GAGA anonymization cost on various data sets.

Num.
of k Average vertex degree=3 Average vertex degree=7

vertices Num. of Avg. Deg.
of

Num.
of Num. of Avg.

(GAGA Num. of Avg. Deg.
of

Num.
of Num. of Avg.

(GAGA
violating violating adds removes cost÷Zhou violating violating adds removes cost÷Zhou

vertices vertices and
Pei [29] vertices vertices and

Pei [29]
(scenario) cost) (%) (scenario) cost) (%)

5000 5 36(g) 16 39 63 64 321(b) 24 217 614 6725000 5 116(u) 25 97 129 700(b) 38 388 825
5000 10 115(b) 14 103 120 72 429(b) 22 315 744 7125000 10 178(u) 23 177 194 1009(b) 34 457 1093
5000 15 184(b) 12 175 209 81 505(b) 21 339 827 6825000 15 284(u) 21 241 309 1187(b) 32 528 1207
5000 20 217(b) 11 192 261 72 553(b) 20 397 829 6125000 20 354(u) 19 317 422 1299(b) 32 659 1421

violating vertices have much higher degree than the graph’s average degree (3 or
7) and as a result greater number of removes than adds are needed to anonymize
the graph.

Note that since Zhou and Pei [29] only consider d=1 scenario, the degree of
the vertices can be considered as a good parameter to represent the structure of
neighborhoods. Thus, we also present the average degree for violating vertices in
the tested data sets. Since in GAGA we consider k(d)-neighborhood Anonymiza-
tion for any d-neighborhood, degree is not a good parameter to represent the
complex structure of d -neighborhoods. Thus, we report the number of adds, and
removes (including edges switches). Finally, we compare the anonymization cost
of GAGA with Zhou and Pei’s [29] cost in the "Avg. (GAGA cost÷Zhou and
Pei [29] cost)" column. In all cases, our approach is more efficient. On
average, our approach incurs only 69% of the cost of Zhou and Pei’s
approach in terms of number of changes to the original graph.

5 Related Work

As we discussed in section 2, several graph anonymization techniques have been
proposed. Casas-Roma et al. [4] compare random-based algorithm [8] and k-
degree-anonymity algorithm [17] in terms of graph and risk assessment metrics
and it was shown that k-degree-anonymity is more effective. The evaluation was
limited to 3 small data sets, moreover, only 6 metrics to measure the graph util-
ity preservation are used and no DA attacks were considered in the evaluation.
The sole use of degrees in representing graphs and characterizing anonymization
introduces limitations. First, it makes anonymization vulnerable to attacks that
use more complex graph characteristics such as neighborhood structure of a tar-
get vertex. Second, a graph is represented by degree sequence which is not desir-
able since two different graphs can have same degree sequence. To overcome the
limitations of k-degree-anonymity, Zhou and Pei [29] introduced the concept of
k-neighborhood-anonymity [29] that considers graph structure. As we discussed,
they only consider d=1-neighborhood which is not efficient for complex DA at-



When The Attacker Knows A Lot: The GAGA Graph Anonymizer 17

tacks. Finally, Ji et al. [11] implemented the SecGraph tool to analyze existing
anonymization techniques in terms of data utility and vulnerability against mod-
ern DA attacks. They conclude that it is a big challenge to effectively anonymize
graphs with desired data utility preservation and without enabling adversaries
to utilize these data utilities to perform modern DA attacks. Therefore in this
paper, aiming to address the limitations in k-anonymity graph anonymization
techniques, we implemented and evaluated GAGA that not only provides defense
against modern DA attacks, but also preserves most of the utilities.

6 Conclusions

In this paper we addressed the limitations in graph anonymization techniques.
We proposed, implemented, and evaluated GAGA, an efficient genetic algorithm
for graph anonymization. Our results show that GAGA is highly effective and
has a better trade-off between anonymization and utility preservation compared
to existing techniques.

First, by applying the concept of k(d)-neighborhood Anonymization for any
d, GAGA preserves data privacy against the modern DA attacks. Second, with
the help of genetic algorithm and giving higher priority to edge switching over
edge adding and removing, GAGA preserves the graph and application utilities.
Moreover, GAGA gives application-oriented level of control on anonymization
and utility preservation to the users/data owners via selection of k and d pa-
rameters. There are other parameters and thresholds (GA initial population, s,
Tpv, Tu, etc) used in GAGA. These could be further tuned to obtain the optimal
solutions for any graph.
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