
Fast Best-Match Shape Searching in Rotation Invariant
Metric Spaces

Paper 1568988763

ABSTRACT
The matching of two-dimensional shapes is an important
problem with applications in domains as diverse as biomet-
rics, industry, medicine and zoology. The distance measure
used must be invariant to many distortions, including scale,
offset, noise, partial occlusion, etc. Most of these distortions
are relatively easy to handle, either in the representation of
the data or in the similarity measure used. However rota-
tion invariance seems to be uniquely difficult. Current ap-
proaches typically try to achieve rotation invariance in the
representation of the data, at the expense of discrimination
ability, or in the distance measure, at the expense of effi-
ciency. In this work we explore the metric properties of the
rotation invariant distance measures and propose an algo-
rithm for fast similarity searching in the shape space. The
algorithm is demonstrated to introduce a dramatic speed-up
over the current approaches, and is guaranteed to introduce
no false dismissals. The technique avoids a large percent-
age of the comparisons between a query and the elements at
hand, which makes it especially attractive when large shape
collections are available and indexing is required.

Keywords
Shape, Rotation Invariance, Triangle Inequality, Burkhard-
Keller Search

1. INTRODUCTION
The matching of two-dimensional shapes is an important

problem with applications in domains as diverse as biomet-
rics, industry, medicine and zoology. The actual matching

Figure 1: Shapes can be converted to time series. The distance
from every point on the profile to the center is measured and
treated as the Y-axis of a time series of length n

process involves two distinct, yet mutually dependant steps.
Firstly, a suitable representation is selected by mapping the
shapes to elements of a certain space (see Figure 1). And
secondly, a suitable distance measure is defined over the ele-
ments of that space. Here, what is meant by suitable, is usu-
ally a combination that is invariant to scale, shift or rotation
transformations and is also robust in the presence of noise.
Among these, rotation invariance seems to be uniquely diffi-
cult to handle. The fact is recognized by many works in the
area such as [14], which notes “Rotation is always something
hard to handle, compared with translation and scaling.”

Many current approaches try to achieve rotation invari-
ance in the representation of the data, at the expense of
discrimination ability [17], or in the distance measure, at
the expense of efficiency [1, 2, 3, 9]. As an example of the
former, the very efficient rotation invariant technique of [17]
cannot differentiate between the shapes of the lowercase let-
ters “d” and “b”. As an example of the latter, the work of
Adamek et al.[1], which is state of the art in terms of accu-
racy or precision/recall, takes an untenable O(n3) for each
shape comparison.

In this work we show that one can use some of the more ac-
curate representations, e.g. construct a feature vector (time
series) from all shape boundary points as in Figure 1, and
still construct a highly efficient matching algorithm. A key
point of the proposed approach is that provided certain (rea-
sonable) conditions are met, a rotation invariant distance
between the feature vectors defines a metric over the fea-
ture space. This observation suggests that a simple, yet
highly efficient pruning criterion is applicable. Namely, the
triangle inequality. In particular, the proposed technique
has the following advantages:

1. The described scheme is applicable for many of the
more popular shape representations, e.g. the time se-
ries representations described in [1, 3, 7, 21, 22, 24],
including the domain specific approaches of [4] and
[18].

2. The rotation invariant distance metric can utilize many
of the more popular measures for shapes in the lit-
erature as the Lp-norms with the Euclidean distance
in particular. It is also applicable for non-metric dis-
tances as the Dynamic Time Warping (DTW) [2, 4],
provided that there exists a metric that lower bounds
those measures. For example, the LB Kim lower-
bound [13] has been demonstrated to be such a lower
bounding metric for the DTW.

3. As many of the distance computations between a query

and the elements of a dataset are avoided by the pro-
posed algorithm, it is especially attractive when large
data collections are considered or disk accesses and in-
dexing are required.

4. In some domains it may be useful to express rotation-
limited queries. For example, in order to robustly re-
trieve examples of the number “8”, without retrieving
the infinity symbol “∞”, we can issue a query such as:
“Find the best match to this shape allowing a maxi-
mum rotation of 15 degrees”. Our algorithm supports
such rotation-limited queries.

The rest of this paper is organized as follows. In Section 2 we
discuss background material and related work. In Section 3
we formally introduce the problem and in Section 4 we offer
our solution. Section 5 presents a comprehensive empirical
evaluation of the proposed algorithm. Finally, Section 6
offers some conclusions and directions for future work.

2. BACKGROUND AND RELATED WORK
The literature on shape matching is vast; we refer the in-

terested reader to [7, 20, 24] for excellent surveys. While
not all work on shape matching uses a 1D representation of
the 2D shapes, an increasingly large majority of the litera-
ture does. We therefore only consider such approaches here.
Note that we lose little by this omission. The two most pop-
ular measures that operate directly in the image space, the
Chamfer [5] and Hausdorff [16] distance measures, require
O(n2 log n)1 time and recent experiments (including some
in this work) suggest that 1D representations can achieve
comparable or superior accuracy. In essence there are three
major techniques for dealing with rotation invariance, land-
marking, rotation invariant features and brute force rotation
alignment. We consider each below.

2.1 Landmarking
The idea of landmarking is to find the one “true” rotation

and only use that particular alignment as the input to the
distance measure. The idea comes in two flavors, domain
dependent and domain independent. In domain dependent
landmarking, we attempt to find a single (or very few) fixed
feature to use as a starting point for conversion of the shape
to a time series. For example, in face profile recognition,
the most commonly used landmarks (fiducial points) are the
chin or nose [4]. In limited domains this may be useful, but
it requires building special purpose feature extractors. For
example, even in a domain as intuitively well understood as
human profiles, accurately locating the nose is a non-trivial
problem, even if we discount the possibility of mustaches
or glasses. Probably the only reason any progress has been
made in this area is that most work reasonably assumes that
faces presented in an image are likely to be upright.

In domain independent landmarking, we align all the shapes
to some cardinal orientation, typically the major axis. This
approach may be useful for the limited domains in which
there is a well-defined major axis, perhaps the indexing of
hand tools. However there is increasing recognition that the

1More precisely the time complexity is O(Rp log p), where p is
the number of pixels in the perimeter and R is the number of
rotations that need to be executed. If accurate representation
and no false dismissals are required, both R and p should be set
to n.

“. . . major axis is sensitive to noise and unreliable” [24].
For example, a recent paper shows that under some circum-
stances, a single extra pixel can change the rotation by 90
degrees [25].

To show how brittle landmarking can be, we performed
a simple clustering experiment, where three skulls are clus-
tered using the Euclidean distance with both the major axis
technique and the minimum distance of all possible rota-
tions (as found by brute force search). Figure 2 shows the
result.

Figure 2: Top: Two skulls of lizards from the same genus,
and a primate skull are hierarchically clustered using both the
landmark rotation beginning at the major axis, and the best ro-
tation. Bottom: The landmark-based alignment of A and B
demonstrates why the landmark-based clustering is unsuitable: a
small amount of rotation error results in a large difference in the
distance measure.

The most important lesson we learned from this exper-
iment (and dozens of other similar experiments on diverse
domains) is that rotation (mis)alignment is the most impor-
tant invariance for shape matching. Unless we have the best
rotation, the results will often be inaccurate.

2.2 Rotation Invariant Features
A large number of papers achieve fast rotation invariant

matching by extracting only rotation invariant features and
indexing them with a feature vector [7]. This feature vec-
tor is often called the shapes signature. There are liter-
ally dozens of rotation invariant features including ratio of
perimeter to area, fractal measures, elongatedness, circular-
ity, min/max/mean curvature, entropy, perimeter of con-
vex hull etc. In addition many researchers have attempted
to frame the shape-matching problem as a more familiar
histogram-matching problem. For example in [17] the au-
thors build a histogram containing the distances between
two randomly chosen points on the perimeter of the shapes
in question. The approach seems to be attractive, as it can
trivially also handle 3D shapes, however it suffers from ex-
tremely poor precision. For example, it cannot differentiate
between the shapes of the lowercase letters “d” and “b”,
or “p” and “q”, since these pairs of shapes have identical
histograms. In general, all these methods suffer from very
poor discrimination ability [7]. In retrospect this is hardly

surprising. In order to achieve rotation invariance, all rota-
tion information must be discarded; inevitably, some useful
information will also be discarded in this process too. Our
experience with these methods suggests that they can be
useful for making quick coarse discriminations, for exam-
ple differentiating between skulls and vertebrae. However,
we could not get these methods to distinguish between the
skulls of some reptiles (e.g. crocodiles and turtles, see Fig-
ure 3), a trivial problem for a human or the brute force
algorithm discussed in the next section.

2.3 Brute Force Rotation Alignment
Many authors recognize that the above attempts at ap-

proximating rotation invariance are unsatisfactory for most
domains, and they achieve true rotation invariance by ex-
haustive brute force search over all possible rotations, but
only at the expense of computational efficiency and index-
ability [1, 2, 3, 9, 22]. For example, paper [1] uses DTW
to handle nonrigid shapes in the time series domain. While
they note that most invariances are trivial to handle in this
representation, they state “Rotation invariance can (only)
be obtained by checking all possible circular shifts for the op-
timal diagonal path.” This step makes the comparison of two
shapes O(n3) and forces them to abandon hope of indexing.
Similarly [22] notes “In order to find the best matching result,
we have to shift one curve n times, where n is the number
of possible start points.” All the techniques introduced thus
far to mitigate this untenable computational complexity do
so at the expense of introducing false dismissals. Typically
they offer some implicit or explicit trick to find a one (or a
small number of) of starting point(s) [2, 3, 9]. For example
[2] suggests “In order to avoid evaluation of the dissimilar-
ity measure for every possible pair of starting contour points
we propose to extract a small set of the most likely starting
points for each shape.” Furthermore, both the heuristic used
and the number of starting points must “be adjusted to a
given application”, and it is not obvious how to best achieve
this. In forceful experiments on publicly available datasets it
has been demonstrated that brute force rotation alignment
produces the best precision/recall and accuracy in diverse
domains [1, 2]. In retrospect this is not too surprising. The
rival techniques with rotation invariant features are all using
some lossy transformation of the data. In contrast the brute
force rotation alignment techniques are using a (potentially)
lossless transformation of the data. With more high quality
information to use, any distance measures will have an easer
time reflecting the true similarity of the original images. The
contribution of this work is to speed up these accurate but
slow methods by many orders of magnitude while producing
identical results.

3. ROTATION INVARIANT MATCHING
We begin by formally defining the rotation invariant match-

ing problem. For clarity of presentation we will generally
refer to “time series”, which the reader will note can be
mapped back to the original shapes.

Let Ω = {Ci} be the space of all time series of length
n (i.e. Ci = (c1, c2, . . . , cn)), extracted from shapes with a
particular method. The shape matching problem searches
for the most similar element to a given query Q ∈ Ω within a

subset Ω̂ ⊂ Ω of m time series (i.e. Ω̂ = {C1, C2, . . . , Cm}).
As we are interested in large data collections, usually we
have m � n.

The similarity between Q and an arbitrary time series
Ci ∈ Ω is measured in terms of a preselected distance func-
tion D(Q, Ci) (e.g. the Euclidean distance), defined over the
entire space Ω. If the series are aligned correctly, then the
distance function, if suitable in general, will usually provide
a good measure of similarity. However, if the shapes are
not rotation aligned, then the corresponding time series will
be misaligned too and the distance measure might produce
extremely poor results. To overcome this problem we need
to hold one shape fixed, rotate the other, and record the
minimum distance to all possible rotations.

In terms of the time series representation, the above ro-
tations of the series Ci yield a rotation matrix Ci of size n
by n:

Ci =


c1 c2 . . . cn−1 cn

c2 . . . cn−1 cn c1

...
cn c1 c2 . . . cn−1


It will be useful below to address the time series in each

row individually, so we will further denote the j-th row of
Ci as Cj

i .
The Rotation invariant Distance (RD) can now be defined

as:

RD(Q, Ci) = min
1≤j≤n

D(Q, Cj
i) (1)

The time complexity for computing the most similar shape
to the query using the above rotational distance is O(mnk),
where O(k) is the complexity of computing the distance
function D. For example, if D is any of the Lp-norms, the
complexity of the nearest neighbor search using RD as dis-
tance measure becomes O(mn2). When online processing of
large number of queries is required or when the dataset is
very large, this running time is simply untenable.

In the next section we propose a procedure that can reduce
the running time significantly by simply using the pruning
capability of the triangle inequality. Before we continue, we
review the notation introduced thus far (see Table 1)

Table 1: Notation Table
Ci A shape time series Ci = (c1, c2, . . . , cn)
Ω The space of all Ci

Ci Matrix containing every rotation of Ci

Cj
i The j-th row of the above rotation matrix

Ω̂ Dataset of time series Ω̂ ⊂ Ω
Q A query time series Q = (q1, q2, . . . , qn) ∈ Ω
D(Q, Ci) Inner distance function between Q and Ci

RD(Q, Ci) Rotation distance between Q and Ci

There are two simple and useful generalizations of these
definitions:

Mirror Image Invariance: Depending on the application,
we may wish to retrieve shapes that are enantiomorphic
(mirror images) to the query. For example, in matching
skull profiles, the best match may simply be facing the op-
posite direction. In contrast, when matching letters we do
not want to match a “d” to a “b”. If enantiomorphic invari-
ance is required we can trivially achieve this by augmenting
matrix Ci to contain the rotations of both Ci and its reverse.

Rotation-Limited Invariance: In some domains it may be
useful to express rotation-limited queries. For example, in

order to robustly retrieve examples of the number “6”, with-
out retrieving examples of the number “9”, we can issue a
query such as: “Find the best match to this shape allow-
ing a maximum rotation of ± 15 degrees”. Our framework
trivially supports such rotation-limited queries, by ignoring
from consideration those time series from the matrix Ci that
correspond to the unwanted rotations.

4. BEST-MATCH SHAPE SEARCHING
As pointed out, searching for the most similar shape to a

given query in the dataset Ω̂ can easily become intractable
as its size increases. We demonstrate a simple property of
the rotation invariant distance that allows one to perform
highly efficient best-match searches, regardless of the size of
the dataset. Namely, that the rotation invariant distance
RD(Q, Ci) defines a pseudo-metric over the space Ω.

4.1 Rotation Invariant Metric Spaces
The distance function D(Ci, Cj) is said to be a metric

over the space Ω if for arbitrary elements Ci, Cj , Ck ∈ Ω it
satisfies the following three properties:

1. Positivity : D(Ci, Cj) ≥ 0, with equality iff Ci = Cj

2. Symmetry : D(Ci, Cj) = D(Cj , Ci)

3. Triangle inequality : D(Ci, Cj)+D(Ck, Cj) ≥ D(Ci, Ck)

When only the second and the third of the above properties
are satisfied, D(Ci, Cj) is said to define a pseudo-metric.
Showing that a distance function satisfies the triangle in-
equality is of particular importance when working with large
datasets, as it can significantly decrease the searching time
by excluding from consideration many of the dataset ele-
ments. A number of techniques that utilize the triangle
inequality have been proposed over the years, e.g. [6, 8],
as well as some popular indexing structures as the Vantage
Point trees [23]. Here we show that, provided the inner dis-
tance satisfies the triangle inequality, the rotation distance
satisfies it too.

Proposition 1. If the inner distance D(Ci, Cj) is a pseu-
dometric over the space of the shape time series Ω, then
the rotation invariant distance RD(Ci, Cj) also defines a
pseudo-metric over Ω.

Proof. Without loss of generality, assume that Cj
i is the

rotation of Ci that has a minimal inner distance to Cj , i.e.
RD(Ci, Cj) = D(Cj

i , Cj). Similarly we have RD(Ck, Cj) =

D(Cj
k, Cj) and RD(Ci, Ck) = D(Ck

i , Ck).
Symmetry : The following equalities hold:

RD(Ci, Cj) = D(Cj
i , Cj) = D(Cj , C

j
i) = RD(Cj , Ci)

In the above we used the fact that D is symmetric and that
the best alignment of the two series is the same regardless
of which one of the two we rotate.
Triangle inequality : The following holds:

RD(Ci, Cj) + RD(Ck, Cj) = D(Cj
i , Cj) + D(Cj

k, Cj)

≥ D(Cj
i , Cj

k) ≥ D(Ck
i , Ck)

= RD(Ci, Ck)

The first inequality above is true as D satisfies the triangle
inequality, and the second one follows from the fact that
D(Ck

i , Ck) is the distance between the optimal alignment of
Ci and Ck, while (Cj

i , Cj
k) also corresponds to some possible

alignment.

The symmetry property is important as it allows us to per-
form only unidirectional computation of the distances be-
tween the series. If D is a metric rather than pseudo-metric
and we assume that out of all rotated versions Cj

i of a time
series Ci only one is present in the dataset, then RD satis-
fies the positivity property too, so it is also a metric. The
lack of the property however, does not influence the pruning
ability of the distance measure introduced by its symmetry
and the triangle inequality.

Requiring D to satisfy the triangle inequality may seem
restrictive for the rotation distance. However, some of the
distance functions that have been demonstrated to perform
best for time series analysis are metrics, e.g. the Lp-norms
with the Euclidean distance (L2) in particular (see Sec-
tion 5.1). Even if the distance function D does not sat-
isfy the triangle inequality, it can still be used as a pruning
criterion provided that there exists a lower bounding func-
tion LB D (i.e. LB D(Ci, Cj) ≤ D(Ci, Cj),∀Ci, Cj ∈ Ω)
which is a metric. For example, for one of the popular dis-
tance functions, the Dynamic Time Warping (DTW), such
a metric bounding function has been demonstrated to be
the LB Kim [13] lower bound. In general, the tighter the
lower bounding metric that we find, the better the pruning
capability of any algorithm utilizing the triangle inequality.

Next we demonstrate how the obtained result can be used
for building an efficient best-match searching algorithm for
rotation invariant shapes.

4.2 Efficient Best-Match Searching
This section introduces a scheme for fast rotation invari-

ant best-match searching in the subspace Ω̂. The speed-up
in the scheme results from several levels of pruning different
distance computations:

1. Pruning of rotation distance computations. The pre-
viously derived property allows us to avoid computing
a large percentage of the RD distances between the

query Q and the elements of the dataset Ω̂.

2. Pruning of inner distance computations. As the inner
distance D also satisfies the triangle inequality, for ev-
ery time series Ci that was not pruned on the previous
level, only part of the inner distances between Q and
the rotated versions of Ci need to be computed.

3. Pruning of primitive distance operations. Using a sim-
ple technique, called early abandon (to be described
later), one can further speed up the inner distance
computations that were not pruned in the previous
step, by skipping some of the primitive pairwise com-
putations between the scalar elements of the compared
time series.

All three levels contribute to the speed-up of the nearest
neighbor searches in the rotation invariant space, but it is
the pruning of rotation distance computations that becomes
of particular importance especially as the dataset size grows
very large. While the pruning of inner distance compu-
tations and primitive operations still requires that all m
dataset time series are retrieved, the pruning of rotation
distances makes it feasible for comparing only part of them.
This makes the simple result from the previous section ex-
tremely important for cases when disk retrievals and index-
ing are required.

4.2.1 Best-Match Search Algorithm
The proposed scheme is an adaptation of Burkhard-Keller’s

fast file searching algorithm described in [6]. Here we assume

that all rotation distances from the elements of Ω̂ to a pre-
selected center point Cr (see Section 4.2.3) are computed
and stored in a sorted list RL. We also precompute the self-
distances between Ci and its rotations and store them in a
sorted n-dimensional vector DLi, i.e. DLi = {D(C1

i , Cj
i)},

∀j ∈ [1..n] (Note that we do not store the n by n Ci ma-
trices, but just the distance vectors). Maintaining all m
self-distance vectors is necessary for the second level inner
distances pruning and increases twice the memory require-
ment for the proposed scheme compared to the simple brute
force search. This linear increase in space complexity is a
reasonable and acceptable overhead, as it refers to the com-
pact 1D time series representation rather than the 2D origi-
nal images. The pseudo code with a detailed explanation of
the rotation invariant searching is presented as Algorithm 1.

Algorithm 1 Rotation invariant best-match search

Preprocessing:

1: Cr ∈ Ω̂ - preselected center
2: RL = {RD(Cr, Ci)} - sorted list, i ∈ [1..m]
3: DLi = {D(C1

i , Cj
i)} - sorted lists, i ∈ [1..m], j ∈ [1..n]

Search:
4: ∀Q: [bm Q, Min Dist] = RI Search(Ω̂, Cr, RL, RD)

procedure [bm, ξ]=RI Search(Cnd, C, L, d)
in: Cnd: candidates; C: center; L: list distances; d: dist func

out: bm: best-match; ξ: minimal distance

5: ξ = d(C, Q)
6: bm = C
7: Cnd = Cnd \ C
8: while Cnd 6= ∅ do
9: select Ci ∈ Cnd:

|d(Ci, C)− d(Q, C)| ≤ |d(Cj , C)− d(Q, C)|,
∀Cj ∈ Cnd, i 6= j

10: if d = RD then
11: [bmfake, ξtmp] = RI Search(Ci, C

1
i , DLi, D)

12: else
13: ξtmp = EarlyAbandon(Ci, Q, ξ)
14: end if
15: if ξtmp < ξ then
16: ξ = ξtmp

bm = Ci

17: end if
18: ∀Cl ∈ Cnd ∧ |d(Cl, C)− d(Q, C)| > ξ:

Cnd = Cnd \ Cl

19: end while

For clarity of presentation the described algorithm returns
only the best-match to a given query. The extension finding
the k most similar time series to the query is straightforward.

For every incoming query the search routine RI Search is
invoked with: a best-match candidates list Cnd initialized
as the whole dataset Ω̂; the list RL of the precomputed dis-
tances from all dataset elements to the center point; and the
type of distance function set to RD. The distance function
is also used to differentiate between the first and second
levels of pruning. RI Search sets the initial best-match
element bm to the center point and the current minimal
distance ξ to the distance between the query and the cen-

ter. The iterative search of the candidates list then proceeds
in three steps. While the list is not empty, a new candi-
date is selected (line 9), using the heuristic suggested by
Burkhard and Keller (described below). If the distance to
the new candidate is smaller than the current minimal dis-
tance, then the best-match so far is updated to the new can-
didate (line 16). Finally, the triangle inequality is applied
(line 18) to prune all candidates that are guaranteed to be
further from the query than ξ. More precisely, as d = RD
or D which both satisfy the triangle inequality, the follow-
ing two inequalities hold: d(Q, Cl)+d(Q, C) ≥ d(Cl, C) and
d(Q, Cl) + d(Cl, C) ≥ d(Q, C), or in a more compact form
d(Q, Cl) ≥ |d(Cl, C)− d(Q, C)|. Therefore, if the difference
of the already computed d(Cl, C) and d(Q, C) is larger than
the currently minimal distance ξ, then the distance from the
query to the candidate Cl is guaranteed to be also larger
than ξ, and there is no need to explicitly compute it.

For the first step, the candidate selection, Burkhard and
Keller suggest choosing an element Ci still in the candi-
dates list, for which the difference |d(Ci, C) − d(Q, C)| is
minimal (line 9). Note that this difference is a lower bound
for the distance d(Q, Ci), thus it is likely that by choosing
the element with the minimal difference we also choose an
element that is closer to the final solution. In the exper-
imental evaluation we found out that the heuristic is es-
sential for the pruning capability of the algorithm and its
faster convergence to the solution. As the distance list L
is sorted, the first candidate can be selected in logarithmic
time. Suppose the binary search for a candidate shows that
d(Ci, C) < d(Q, C) < d(Ci+1, C), where i corresponds to
the position of d(Ci, C) in the sorted list L. This means
that the heuristic will return as candidate either Ci or Ci+1.
On subsequent iterations, one does not need to perform the
binary search again but rather select the candidate that is
still in the candidates list and whose distance to the center
is closest to d(Q, C) in either direction left or right.

When the algorithm is invoked with the rotational dis-
tance RD as distance function, i.e. we are on the first
level of pruning rotation distances, the selected candidate
Ci needs to be rotated n times and the inner distances
D(Cj

i , Q), j ∈ [1..n] need to be computed. We can do this
again by applying the RI Search procedure (line 11, sec-
ond pruning level), this time with a center C1

i , sorted list of
distances to the center DLi, and the inner distance D as a
distance function. The list of candidates is now composed
of every rotation of Ci, which is simply the rotation matrix
Ci. When a candidate Cj

i for an inner distance computa-

tion is identified, the actual inner distance d(Q, Cj
i) can be

optimized further by computing it with an early abandon
technique (line 13, third pruning level).

4.2.2 Early Abandon
The early abandoning is a simple, yet extremely efficient

technique for speeding up the computations of a distance
function. In Section 5.2 we show that the running time of
the brute force search can be improved with more than a
factor of two, by simply modifying it with an early abandon
criterion. The method uses a threshold ξt and computes
the inner distance D by accumulating the primitive pairwise
distances as long as the sum is smaller than the threshold.
If the threshold is reached, the computation of the inner
distance is abandoned. For completeness of the presented
searching scheme we list the early abandon method below,

for the case when the inner distance is an Lp-norm.

Algorithm 2 Early abandon for Lp-norms

procedure ξ=EarlyAbandon(C, Q, ξt)
in: C = (c1, . . . , cn); Q = (q1, . . . , qn); ξt: threshold

out: ξ: Lp(C, Q) terminated by threshold ξt

1: ξ = 0; ξt = (ξt)
p; i = 1

2: while (ξ < ξt) ∧ (i ≤ size(C)) do
3: ξ += |ci − qi|p
4: i += 1
5: end while
6: ξ = p

√
ξ

The algorithm is specific for the distance function used, as
different functions might pair different scalar elements. For
example in the case of Dynamic Time Warping, ci might be
paired with qj (i 6= j). Still, an equivalent early abandoning
cut-off criterion can be applied to prune some of the paths
in the dynamic programming matrix used by the DTW al-
gorithm.

4.2.3 Center Selection
The percentage of distance computations that are excluded

from consideration, and thus the performance of the algo-
rithm, is higly dependent on the pruning capability of the
selected center point Cr. In the original Burkhard-Keller al-
gorithm, the selection is made at random. There are two fac-
tors that determine how good Cr is, namely, its position in

the subspace Ω̂ with respect to the other dataset points, and
its position with respect to the queries. A suitable center
point will have a small difference |RD(Cj , Cr)−RD(Q, Cr)|
for just a few dataset points Cj . Shapiro [19] argues that
good centers can be points, which are further from the cen-
ter of any cluster that might be present in the dataset. This
is so, because points close to the cluster centers will be in
close proximity to many other points, and for most of those
neighbors the above difference will be small. Shapiro sug-
gests an extension of Burkhard-Keller’s searching algorithm
in which k random centers, rather than one, are used. While
this has the potential to mitigate the effect of choosing one
inappropriate center, it also comes at the cost of increasing
the memory requirements k times, if we would like to apply
it for the second level of inner distance pruning too.

In our implementation we still use a single center point,
but rather than randomly selecting it, we use subsampling.
For the purpose, the preprocessing step (line 1, Algorithm 1)
is modified as follows. A small training and validation sub-

sets, are randomly selected from Ω̂. The center Cr is set to
the point from the training subset that has the best pruning
capability for the queries from the validation set. Using sub-
sampling in the center selection process implicitly takes into
consideration the specific data distribution, which leads to
better pruning ability and smaller variance as compared to
random center selection. If, however, the actual distribution
of the queries is unknown, i.e. it differs from the distribution
of the dataset at hand, then a random or multiple centers
should be considered.

The above preprocessing is performed only for the first
pruning level. For the second pruning level we always use
as centers the original series, i.e. C1

i . Still, as seen from the
evaluation in Section 5.2, the variance in the performance is
very small, which suggests that any rotation Cj

i is an equally

suitable center. An intuition of the phenomenon is provided
by the observation that for Lp-norms the following equal-

ity is true: D(Cj1
i , C

(j1+k)mod(n)
i) = D(Cj2

i , C
(j2+k)mod(n)
i),

j1, j2, k ∈ [1..n]. The fact implies that every rotation Cj
i is

distributed in the same way among the rest of the rotations
of Ci. The small variation in the performance results from
the difference in the mutual positions of the query and the
different rotations, but on average every rotation will have
similar pruning power.

5. EXPERIMENTAL EVALUATION
The performance of the RI Search algorithm is evaluated,

utilizing the ubiquitous Euclidean distance as inner metric.
First, the effectiveness of the simple 1D representation is
demonstrated by comparing its accuracy to previously pub-
lished results. The speed-up introduced by the presented
approach is then discussed for three shape datasets2, each
exhibiting different properties. To illustrate the contribution
of the individual pruning levels, a break-up of the improve-
ment into components has also been provided.

5.1 Representation Effectiveness
In general this paper is not making any claims about the

effectiveness of shape matching using time series representa-
tion. Because we are simply speeding up arbitrary distance
calculations on arbitrary 1-dimensional representations of
shapes, we automatically inherit the well-documented effec-
tiveness of other researchers published work [1, 2, 3, 9, 12,
21]. Nevertheless, for completeness we demonstrate the ef-
fectiveness of the adopted shape representation on several
datasets. Table 2 shows the error rate of one-nearest neigh-
bor classification as measured using leaving-one-out evalua-
tion.

Table 2: The Classification Error of Euclidean distance with
time series extracted from all boundary points

Name Classes Instances Euclidean Error
Face 16 2240 3.839%
SwedishLeaf 15 1125 13.33%
Chicken 5 446 19.96%
MixedBag 9 160 4.375%
OSU Leaves 6 442 33.71%
Diatoms 37 781 27.53%

Recall that Euclidean distance has no parameters, once
the time series are extracted. For the Face and leaf datasets
the (approximate) correct rotation was known. We removed
this information by randomly rotating the images. The
MixedBag dataset is small enough to run the more compu-
tationally expensive Chamfer [5] and Hausdorff [16] distance
measures. They achieved an error rate of 6.0% and 7.0% re-
spectively (see also [21]), slightly worse than Euclidean dis-
tance. Likewise the Chicken dataset allows us to compare
directly to [15], which used identical experiments to test six
different algorithms based on discrete sequences extracted
from the shapes. The best of these algorithms had an er-
ror rate of 20.5%. For the Diatom dataset, the results are
competitive with human experts, whose error rates ranged
from 57% to 13.5% [12], and only slightly worse than the

2All datasets used in the evaluation are publicly available and
can be downloaded from the following URL: xxx.

Figure 3: Hierarchical clustering of fourteen reptile skulls using the adopted representation.

Morphological Curvature Scale Spaces (MCSS) approach of
[12], which got 26.0%. Note, however, that the MCSS has
several parameters to set.

We also performed extensive “sanity check” experiments
using a large database of reptile skulls. We performed a
hierarchal clustering and compared the results with the cur-
rent consensus on reptilian evolution as suggested by DNA
evidence [10, 11]. Figure 3 shows a typical example. Two
things should be noted: the clustering is subjectively sen-
sible and clearly is rotation invariant. Furthermore, while
the global clustering does not perfectly agree with the evo-
lutionary consensus, all the major groups are clustered to-
gether as we have annotated in Figure 3. In other words,
the shape measurements do produce high quality morpho-
logical phenograms, although convergent evolution prevents
us from obtaining the true global phylogenetic tree from just
an examination of skulls.

5.2 Performance Improvement
Three publicly available datasets are used in the efficiency

evaluation of the RI Search algorithm - Arrowheads, SQUID,
and Heterogeneous shapes. The goal was to test the ex-
pected average improvement with respect to several factors:
when the space density (i.e. the dataset size m) is varied;
when the dimensionality of the space n is varied; and when
the space is composed of elements from several largely sep-
arable and comparatively dense clusters.

All experiments represent averages over 50 randomly drawn
queries, that are subsequently removed from the dataset.
For correctness we show both the percentage improvement
in terms of primitive operations and in terms of running
times. There is not a one-to-one mapping between the two
results, due to implementation and language specific biases,
which allow for certain constructs to be executed in a more
optimized manner than others.

ARROWHEADS Dataset. The dataset represents a large
collection of arrowheads with various shapes and sizes. Fig-
ure 4 depicts some representative classes from the data.

We have further augmented the dataset with new im-
ages by scaling, deforming and rotating some of the original
shapes. The overall size of the resulting dataset is 15000

Figure 4: Representative examples from the Arrowheads
dataset.

samples. After extracting the time series from the shapes,
we resample them to n = 250 time points, which for this
dataset seems to preserve the accurate representation. Prior
to storing, all resampled time series have further been nor-
malized to have a mean zero and standard deviation one.

The percentage improvement of our approach over the
BruteForce search in terms of performed primitive distance
computations is illustrated on Figure 5. The performance
of simply applying the EarlyAbandon technique is also in-
cluded for comparison.

There are several important aspects to observe in the re-
sult. Increasing the space density, i.e. introducing more
samples in the dataset, increases the pruning power of the
algorithm. The effect is expected as with more elements the
chance of finding a sample that is very close to the query
is higher. Such samples minimize significantly the cut-off
threshold ξ, and a lot of the remaining elements start failing
the triangle inequality test. The same is true for the EarlyA-
bandon cut-off criterion. Still, the RI Search algorithm per-
forms far less operations than EarlyAbandon - more than two
times less operations for the smallest dataset size (5.48%
- RI Search vs 12.04% - EarlyAbandon), and more than
twenty times less operations for the largest dataset size (0.19%
- RI Search vs 3.88% - EarlyAbandon). For all dataset
sizes of 500 elements and above the RI Search algorithm
performs less than 1% of the operations performed by the
exhaustive BruteForce search algorithm.

Figure 5: Arrowheads. Expected percentage of distances to be
computed as compared to BruteForce search.

Figure 6: Arrowheads. Expected running time as compared to
BruteForce search.

As previously noted, the time improvement does not cor-
relate exactly to the operations improvement because of lan-
guage and implementation specifics (see Figure 6). Even
though EarlyAbandon executes less than 10% of all primi-
tive operations, in our implementation it hardly speeds up
the search algorithm more than twice for any value of m. We
believe this results from the fact that the time for accessing
all training samples and their rotations dominates the time
for loop computations over array structures as executed by
the language. The time improvement for the RI Search
algorithm is also smaller than the operations improvement,
which is due mainly to overheads from supporting the sorted
candidates and distances lists. Additional, very small slow-
down is also caused by the binary search of the first candi-
date and the traversal of the lists for excluding candidates
that fail the triangle inequality. Overall, the proposed algo-
rithm is from four (m = 32) to more than fifty (m = 15000)
times faster than the BruteForce search. On a Pentium4
3GHz processor, for m = 15000 elements, the average time
of RI Search to find the best rotation invariant match to a
query is 0.2 sec.

It is important to understand how much each pruning
component contributes for the final operations improvement
introduced by the algorithm. Fewer computations of the ro-
tation distance imply accessing fewer shapes, which is es-

sential especially when indexing is applied. And fewer inner
distances to be considered suggest less memory accesses to
different elements, which as we saw from the time perfor-
mance of EarlyAbandon, is also of primary importance. Ta-
ble 3 gives a break-up for RI Search into levels of pruning.

Table 3: Percentage of performed operations. Row1 : Percent-
age of computed rotation distances. Row2 : Percentage of com-
puted distances out of all possible inner distances after level one
was performed. Row3 : Percentage of primitive operations out of
all possible remaining operations after level two was performed

Pruning Mean(Deviation) of Performed Operations(%)
Level m = 250 m = 500 m = 1000 m = 15000

1-st 52.1(12.3) 45.5(12.7) 34.1(10.0) 22.7(5.81)
2-nd 19.9(0.85) 17.7(0.60) 15.5(0.79) 9.81(0.31)
3-rd 16.0(0.91) 12.7(0.84) 11.4(0.38) 8.61(0.30)

The table illustrates how powerful the triangle inequal-
ity could be, especially for larger datasets. For example,
when m = 15000 the algorithm avoids examining almost
80% of the shapes. The second and the third pruning levels
are presented with respect to the possible operations after
the previous pruning level has been performed. For exam-
ple, after eliminating some rotation and inner distances, the
early abandoning subroutine executes 8.61% of the remain-
ing primitive operations. This number is twice higher than
applying directly EarlyAbandon on the initial data (3.88%,
see Figure 5, m = 15000). The effect is expected as the time
series that remain after the first two pruning levels are all
closer to the query, and on average the EarlyAbandon cut-off
criterion is not that efficient for them.

Finally, the standard deviation in the performed oper-
ations for each pruning level is also presented in the table.
The small variance in the second pruning level suggests that
all rotated versions of a time series Ci are equivalent in a
certain sense, as the rest of the rotated series are similarly
distributed around them. Therefore, as discussed in Sec-
tion 4.2.3, any rotation Cj

i can be considered an equally
suitable choice for an inner distance center.

SQUID Dataset. The dataset contains 1100 images of ma-
rine creatures. Figure 7 demonstrates several samples from
the database.

Figure 7: Representative examples from the SQUID dataset.

The shapes are preprocessed as described for the Arrow-
heads dataset. Most of the creatures have horizontal orienta-
tion, still as the figure shows there are samples that have ar-
bitrary orientation too. For this dataset we use the original
shapes without any further transformations. All extracted
time series are resampled to n = 1000 time points. The
higher dimensionality suggests a more sparsely populated

space, which is the reason for the worse expected improve-
ment compared to the Arrowheads dataset (see Figure 8)

Figure 8: SQUID. Improvement over BruteForce search. Left :
Expected percentage of primitive operations to be performed.
Right : Expected running time.

For example, the total percentage of operations to be per-
formed are: 1.60% - SQUID vs 0.60% - Arrowheads for
m = 1000; 2.34% - SQUID vs 1.03% - Arrowheads for
m = 500 etc. The difference is due almost entirely to the
larger percentage of rotation distances that need to be com-
pared now as seen in Table 4. The table shows that for the
same dataset sizes the percentage of computed rotation dis-
tances for SQUID shapes is twice higher than the one for
Arrowheads shapes. The percentage of computed inner dis-
tances, on the other hand, remains approximately the same.

Table 4: SQUID. Percentage of performed operations.

Pruning Mean(Deviation) of Performed Operations(%)
Level m = 125 m = 250 m = 500 m = 1000

1-st 72.2(9.73) 71.2(11.1) 66.1(11.3) 59.2(11.6)
2-nd 20.1(1.32) 19.2(1.70) 17.3(1.41) 15.4(1.46)
3-rd 25.9(0.90) 23.8(1.50) 20.5(0.36) 17.6(0.35)

Similarly to the Arrowheads dataset, increasing the num-
ber of time series leads to a linear increase in the pruning
capability of the RI Search algorithm. The average query
time now is much longer, e.g. for m = 1000 we obtained 0.9
sec for the SQUID vs 0.04 sec for the Arrowheads dataset.
Nevertheless, the overall speed-up introduced by RI Search
is preserved. In terms of running time, for m = 1000 the
algorithm is more than sixteen times faster than BruteForce
and more than six times faster than EarlyAbandon(see Fig-
ure 8, Right).

HETEROGENOUS dataset. To test the pruning ability of
the RI Search algorithm when the data come from different
distributions and represent several distinct clusters, we have
combined images from five datasets into a single collection
of size m = 5850.

The number of elements in each of the five clusters is ap-
proximately the same and each of them can be divided fur-
ther into several subclusters. The datasets included are Ar-
rowheads (described earlier in this section), Diatoms, Chicken,
MixedBag and SwedishLeaf (see Figure 9). The shapes are
preprocessed as described earlier for the Arrowheads dataset.
All extracted time series have been resampled to n = 1024
time points, i.e. the space is of similar dimensionality as for
the SQUID dataset. Figure 10 shows the expected improve-
ment introduced by the RI Search algorithm.

Figure 9: Representative examples from the Heterogenous
dataset.The collection includes samples from five datasets: Ar-
rowheads, Diatoms - A, MixedBag - B, SwedishLeaf - C and
Chicken - D

Figure 10: Heterogenous. Improvement over Brute Force
search. Left : Expected percentage of primitive operations to be
performed. Right : Expected running time.

Though the overall performance is comparable to the one
observed for the SQUID dataset, having five largely sepa-
rable clusters introduces certain specifics too. For exam-
ple, for a random query drawn from any of the subsets,
the RI Search algorithm eliminates relatively quickly the
training samples that come from the other four datasets.
Therefore, the number of computed rotation distances for
the corresponding dataset sizes now is much smaller (see
Table 5).

Table 5: Heterogenous. Percentage of performed operations.

Pruning Mean(Deviation) of Performed Operations(%)
Level m = 250 m = 500 m = 1000 m = 5800

1-st 31.4(5.98) 35.3(8.27) 24.3(6.39) 25.3(9.25)
2-nd 32.9(1.76) 28.9(1.82) 25.6(1.73) 17.1(1.91)
3-rd 24.2(1.08) 21.6(1.39) 19.5(1.07) 12.6(1.08)

The inner distance computations, on the other hand, are
more as opposed to the inner distances computed for the
SQUID shapes. The reason for the worse pruning of inner
distance computations is that many of the shapes are ap-
proximately symmetric with respect to both of their major
axes. This is true for shapes from different dataset, e.g. Di-
atom, Arrowheads or SwedishLeaf. The worst case for the

inner distance pruning is when the shape is approximately
spherical (some of the Diatom elements), but even with sym-
metry only on the axes there are still many rotations that
are identical, which makes the inner distance cut-off crite-
rion not so efficient.

6. CONCLUSIONS AND FUTURE WORK
The work demonstrates that, under certain conditions,

rotation invariant distance measures define a metric over
the shape space, which implies that searching in this space
could be highly optimized. We presented an algorithm that
exploits this observation and speeds up some existing best-
match searching approaches, by avoiding large number of
the distance computations.

The obtained results raise some interesting questions and
point out important, from machine learning and data mining
perspective, directions for possible extensions. For exam-
ple, though a generalization of the algorithm for 3D shapes
seems straight forward, it is not obvious how badly the in-
crease in dimensionality will impact the expected perfor-
mance improvement. Another significant direction to follow
is the adaptation of the algorithm for other computationally
intensive tasks, as clustering or classification, when rotation
invariance is required. We are actively exploring both of the
above directions.

7. ADDITIONAL AUTHORS

8. REFERENCES
[1] C. Adamek and N. O’Connor. A multiscale

representation method for nonrigid shapes with a
single closed contour. IEEE Circuits and Systems for
Video Technology, 14(5):742–753, 2004.

[2] T. Adamek and N. O’Connor. Efficient contour-based
shape representation and matching. Multimedia
information retrieval, pages 138–143, 2003.

[3] E. Attalla and P. Siy. Robust shape similarity retrieval
based on contour segmentation polygonal
multiresolution and elastic matching. Pattern
Recognition, 38(12):2229–2241, 2005.

[4] B. Bhanu and X. Zhou. Face recognition from face
profile using dynamic time warping. pages IV:
499–502, 2004.

[5] G. Borgefors. Hierarchical chamfer matching: A
parametric edge matching algorithm. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 10(6):849–865, 1988.

[6] W. Burkhard and R. Keller. Some approaches to
best-match file searching. Commun. ACM,
16(4):230–236, 1973.

[7] A. Cardone, S. Gupta, and M. Karnik. A survey of
shape similarity assessment algorithms for product
design and manufacturing applications. J. Comput.
Inf. Sci. Eng., 3(2):109–118, 2003.

[8] K. Fukunaga and P. Narendra. A branch-and-bound
algorithm for computing k-nearest neighbors. IEEE
Trans. Comp., 24(7):750–753, 1975.

[9] Y. Gdalyahu and D. Weinshall. Flexible syntactic
matching of curves and its application to automatic
hierarchical classification of silhouettes. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 21(12):1312–1328, 1999.

[10] W. Hodges and K. Zamudio. Horned lizard
(phrynosoma) phylogeny inferred from mitochondrial
genes and morphological characters: understanding
conflicts using multiple approaches. Molecular
Phylogenetics and Evolution, 31:961–971, 2004.

[11] N. Iwabe. Sister group relationship of turtles to the
bird-crocodilian clade revealed by nuclear DNA-coded
proteins. Molecular Biology and Evolution,
22:810–813, 2004.

[12] A. Jalba, M. Wilkinson, J. Roerdink, M. Bayer, and
S. Juggins. Automatic diatom identification using
contour analysis by morphological curvature scale
spaces. Machine Vision and Applications,
16(4):217–228, 2005.

[13] S. Kim, S. Park, and W. Chu. An index-based
approach for similarity search supporting time
warping in large sequence databases. In ICDE, pages
607–614, 2001.

[14] D. Li and S. Simske. Shape retrieval based on distance
ratio distribution. HP Tech Report. HPL-2002-251,
2002.

[15] R. Mollineda, E. Vidal, and F. Casacuberta. Cyclic
sequence alignments: Approximate versus optimal
techniques. Approximate versus optimal techniques.
International Journal of Pattern Recognition and
Artificial Intelligence, 16(3):291–299, 2002.

[16] C. Olson and D. Huttenlocher. Automatic target
recognition by matching oriented edge pixels. IEEE
Transactions on Image Processing, 6(1):103–113, 1997.

[17] R. Osada, T. Funkhouser, B. Chazelle, and
D. Dobkin. Shape distributions. ACM Transactions on
Graphics, 21(4):807–832, 2002.

[18] T. Rath and R. Manmatha. Lower-bounding of
dynamic time warping distances for multivariate time
series. Tech Report MM-40, University of
Massachusetts Amherst, 2002.

[19] M. Shapiro. The choice of reference points in
best-match file searching. Commun. ACM,
20(5):339–343, 1977.

[20] R. Veltkamp and L. Latecki. Properties and
performance of shape similarity measures. IFCS
Conference: Data Science and Classification, 2006.

[21] M. Vlachos, Z. Vagena, P. Yu, and V. Athitsos.
Rotation invariant indexing of shapes and line
drawings. In Proceedings of the 14th ACM
international conference on Information and
knowledge management(CIKM), pages 131–138, 2005.

[22] Z. Wang, Z. Chi, D. Feng, and Q. Wang. Leaf image
retrieval with shape features. In 4th International
Conference on Advances in Visual Information
Systems, pages 477–487, 2000.

[23] P. Yianilos. Data structures and algorithms for
nearest neighbor search in general metric spaces. In
4th annual ACM-SIAM Symposium on Discrete
algorithms (SODA), pages 311–321, 1993.

[24] D. Zhang and G. Lu. Review of shape representation
and description techniques. Pattern Recognition,
37(1):1–19, 2004.

[25] J. Zunic, P. Rosin, and L. Kopanja. Shape
orientability. In ACCV(2), pages 11–20, 2006.

