
UNIVERSITY OF CALIFORNIA
RIVERSIDE

Verification and Analysis of System Designs With Functional and Performance Constraints

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Xi Chen

August 2005

Dissertation Committee:
Dr. Harry Hsieh, Chairperson
Dr. Felice Balarin
Dr. Laxmi N. Bhuyan
Dr. Frank Vahid

Copyright by
Xi Chen

2005

The Dissertation of Xi Chen is approved:

Committee Chairperson

University of California, Riverside

ACKNOWLEDGMENTS

First and foremost, I would like to express my gratitude to Prof. Harry Hsieh, who has

led me to the research field and guided me throughout the entire graduate career with his

constant enthusiasm and patience. Harry has taught me almost everything about being a

qualified researcher. Without his invaluable encouragement and support, I would not have

been able to finish this work.

I am also grateful to Dr. Felice Balarin and Dr. Yosinori Watanabe from Cadence Berke-

ley Laboratories for their important advice and contributions to this work. I have benefited

significantly from the collaboration and discussions with them. Their suggestions and com-

ments have always substantially influenced and improved the final results.

I must also thank team members of the Metropolis project led by Prof. Sangiovanni-

Vincentelli from University of California at Berkeley. The work presented here has mostly

been done within the framework of the Metropolis project, and it has benefited greatly from

many discussions with team members.

Thanks also go to the computer architecture group led by Prof. Laxmi Bhuyan for pro-

viding me with their network processor simulator NePSim, a comprehensive and realistic

experimental platform for several case studies presented in this thesis.

iv

To my wife and parents.

v

ABSTRACT OF THE DISSERTATION

Verification and Analysis of System Designs With Functional and Performance Constraints

by

Xi Chen

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2005

Dr. Harry Hsieh, Chairperson

With the increasing complexity and heterogeneity of today’s embedded systems, design

methodologies at higher levels of abstraction become a necessity. It is expected that the

next major productivity gain will come in the form of system level design since designing

at the register transfer level or sequential C-code level is no longer efficient. It follows that

new verification and analysis technologies have to be developed in each and every step of

the design flow in order to catch design errors as early as possible and to reduce the overall

design cost.

Simulation remains a major means of verification for complex system level designs, espe-

cially when designs are refined with more design details realized. In this work, a simulation

verification methodology is proposed based on trace analysis and automatic trace checker

generation. From formal specification of design constraints with mathematical logics such

as Linear Temporal Logic (LTL) and Logic of Constraints (LOC), i.e. formal assertions,

vi

monitors or checkers are automatically generated and used to verify simulation traces dur-

ing or after simulation. As a major contribution, LOC formalism is extensively studied, and

an efficient checking algorithm is proposed. LOC is also used in automatic generation of

distribution analysis tools, which have been exercised on low power techniques in network

processor architectures. By utilizing formal assertions, a designer can easily verify both func-

tional and performance constraints of a design in simulation. In addition, a deadlock analysis

mechanism is proposed with built-in simulation monitors. This approach is demonstrated in

the Metropolis design framework.

For small but important designs or library modules that will be instantiated many times,

exhaustive verification is possible and useful. A formal verification methodology for system

level design is therefore proposed, where an existing software formal verification tool (e.g.

Spin) is utilized as the back-end verification engine, and an automatic translation mecha-

nism from system specifications to verification models is developed. Furthermore, automatic

abstraction propagation algorithms can be used to simplify the verification models. In this

study, Metropolis is used as a major experiment platform, where a designer is allowed to

formally verify design constraints specified with LTL and LOC within the integrated design

framework.

vii

Contents

List of Figures xiii

List of Tables xvi

1 Introduction 1

1.1 System Level Design . 2

1.2 Verification Methods . 3

1.3 Functional and Performance Constraints . 5

1.4 Metropolis Design Framework . 10

1.4.1 Framework and Design Methodology 10

1.4.2 Metropolis Meta-Model Language 11

1.5 Thesis Overview . 15

2 Logic of Constraints 18

2.1 Introduction to LOC . 18

2.2 LOC Syntax and Semantics . 22

viii

2.3 Expressiveness of LOC . 24

2.4 Checking LOC Formulas with Simulation 27

2.4.1 Runtime Monitoring . 30

2.4.2 Dealing with Memory Limitation 31

2.4.3 A Case Study of FIR Filter . 32

2.5 Formal Verification of LOC Formulas . 35

2.6 Complexity of Verifying LOC Formulas . 38

3 Simulation Verification and Analysis Based on Formal Assertions 50

3.1 Methodology of Simulation Verification and Analysis 50

3.2 Simulation Verification in Metropolis . 52

3.2.1 A Picture-in-Picture Design . 53

3.2.2 A Function-Architecture Mapping Model 56

3.3 Verification for Network Processor Architectures 58

3.3.1 Introduction to Network Processors 59

3.3.2 Network Processor Model . 61

3.3.3 Experimental Settings . 63

3.3.4 Verification Studies . 65

3.4 Performance and Power Analyis for Network Processor Architectures 74

3.4.1 Experimental Settings . 75

3.4.2 Dynamic Voltage Scaling . 77

ix

3.4.3 Power Analysis . 78

3.4.4 Design Exploration for DVS . 81

4 Deadlock Analysis with Built-in Simulation Monitors 91

4.1 Introduction to Deadlock Analysis . 92

4.2 Synchronization in Metropolis . 95

4.2.1 Synchronization Constructs . 95

4.2.2 Deadlock in Metropolis . 98

4.3 Synchronization Dependency and Deadlock Analysis 100

4.3.1 Deadlock Analysis Methodology . 100

4.3.2 Dynamic Synchronization Dependency Graph 101

4.3.3 Deadlock Detection Algorithm . 105

4.3.4 Implementation . 106

4.4 Case Studies of Deadlock Analysis . 108

4.4.1 A Function Model for Video Processing 108

4.4.2 A Function-Architecture Mapping Model 111

5 Formal Verification for System Level Designs 114

5.1 Introduction to Formal Verification . 115

5.2 Formal Verification Methodology . 117

5.3 Translation from MMM to Promela . 120

5.3.1 MMM Processes . 121

x

5.3.2 Interfaces and Await Statements . 123

5.3.3 Dynamic Objects . 124

5.3.4 Function-Architecture Mapping . 125

5.4 Producer-Consumer Network . 126

5.4.1 Verification of Data Integrity . 126

5.4.2 Assumptions and Schedulers . 129

5.4.3 Transformation and Refinement . 130

5.5 Automatic Abstraction and Propagation . 132

5.5.1 Control and Data Dependency Graph 135

5.5.2 Abstraction Propagation Algorithms 137

5.6 Formal Verification for TTL Channel . 140

5.6.1 A Deadlock Free Constraint . 141

5.6.2 Checking Data Consistency . 143

6 Conclusions 146

Bibliography 149

A Formal LOC Syntax and Semantics 154

A.1 Representing System Behaviors . 154

A.2 LOC Syntax . 156

A.3 LOC Semantics . 158

xi

B Proof of LOC Verification Complexity 161

B.1 Proof of Theorem 1 . 162

B.2 Proof of Lemma 1 . 165

xii

List of Figures

1.1 System level design methodology. 3

1.2 Metropolis design framework. 11

1.3 An example of MMM specification. 13

1.4 Function-architecture mapping. 15

2.1 A FIR design and its simulation trace. 32

2.2 A system generating 1 for every third value ofx1 and every fifth value ofx2 . 44

3.1 Simulation verification and analysis based on formal assertions. 51

3.2 Picture-in-Picture design. 53

3.3 PiP simulation trace . 54

3.4 A function-architecture mapping model. 56

3.5 IXP1200 architecture. 62

3.6 NePSim simulation trace. 65

3.7 Distribution of IP packets. 76

3.8 NePSim simulation trace for performance and power analysis. 78

xiii

3.9 Power distribution graph for 4 benchmarks. 80

3.10 Power under different design points with TDVS. 84

3.11 Throughput under different design point with TDVS. 84

3.12 Power under different design points with TDVS. 86

3.13 Throughput under different design points with TDVS. 86

3.14 Power and performance distribution for EDVS. 88

3.15 Energy comparisons for employing DVS. 89

4.1 An example of synch constraint. 97

4.2 Deadlock analysis methodology. 101

4.3 DSDG examples. 103

4.4 Picture-in-Picture design. 108

4.5 RESIZE unit and its synchronization dependencies. 110

4.6 A mapping model and its synchronization dependencies. 111

5.1 Metropolis formal verification methodology. 118

5.2 Example of a bytelink meta-model. 119

5.3 Translations of MMM functions. 122

5.4 Translation of an await statement. 123

5.5 Verification error trace produced by Spin. 129

5.6 Example of a design refinement. 131

5.7 Metropolis compiler architecture with abstraction propagation. 134

xiv

5.8 CDDG examples . 135

5.9 YAPI and TTL channels. 139

xv

List of Tables

2.1 Costs of checking formulas (2.1)-(2.5) on FIR. 33

2.2 Time usage of simulation and checking formula (2.2) on FIR. 33

2.3 Costs of checking constraint (2.7) on FIR. 34

3.1 Power and performance of Intel IXP NPUs. 60

3.2 List of events for verification. 64

3.3 Verification results for functional assertions. 70

3.4 Verification results for performance assertions. 74

3.5 List of events and event annotations for performance and power analysis. . . 77

3.6 Power values for the 4 benchmarks. 79

3.7 Voltage scaling values. 83

4.1 Summary of deadlock analysis case studies. 112

5.1 Summary of verification for the producer-consumer network. 128

5.2 Summary of formal verification for TTL channel. 142

5.3 Summary of formal verification for data consistency. 145

xvi

Chapter 1

Introduction

The increasing complexity of embedded systems today demands more sophisticated design

and verification methodologies. Systems are becoming more integrated as more and more

functionalities and features are required for products to succeed in the market. Embed-

ded system architectures likewise have become more heterogeneous as it is becoming more

economically feasible to have various computational resources (e.g. microprocessor, digi-

tal signal processor, reconfigurable logics) all utilized on a single chip [62]. Designing at

the register transfer level [38] or sequential C-code level is no longer efficient. More than

ever, design and verification methodologies at higher levels of abstraction are required to fill

the gap between the increasing semiconductor manufacturing capabilities and the lag-behind

design productivity.

1

1.1 System Level Design

The system level design methodology, based on orthogonalization of design concerns, as

well as pre-defined platforms, has been proposed for the next major productivity gain [47].

To combat complexity and to explore design space effectively, it is necessary to represent sys-

tems at multiple levels of abstraction. Initial specification of the function and the architecture

of a system is done at a high abstraction level without particular lower level implementa-

tion details. The function is then mapped onto the architecture after iterations of refinement

procedures (see Figure 1.1). Significant advantages in design flexibility, as compared to the

traditional fixed architecture anda priori partitioning approach, can result in significant ad-

vantages in the performance and design cost of the product.

Synthesis (i.e. steps taken toward implementation) is applied systematically to transform

high level specifications to manufactured products. Synthesis steps may include structural

transformations, a design is partitioned, composed, or otherwise altered; formal refinements,

where possible behaviors of a design are formally refined through the use of constraints or

implementation annotations; and mapping, where the functional specification at a particular

abstraction level is mapped to an architectural specification at a particular abstraction level.

There therefore exist multiple levels of abstraction in a design flow, which also indicates ne-

cessity for suitable verification techniques to be applied at each level. A formal grounding for

all system representations and operations is essential for the ability to perform analysis and

optimization with high degree of automation. Furthermore, abstraction is an effective oper-

2

 (Platform)
System Architecture

Function on Architecture

Implementation

System Function

Mapping

Figure 1.1:System level design methodology

ation to manage complexity during verification procedures. The tendency is to abstract (or

simplify) the design for verification purposes and to refine the design as more implementation

details are determined.

1.2 Verification Methods

In general, verification is a process to make sure if a design is what a designer intends to

design. Due to the increasing complexity of today’s embedded system designs, errors are

likely to happen at all stages in the design flow. It has been reported that more than 70%

of the development time is spent on design verification, and verification is becoming the

bottleneck in the semiconductor industry according to International Technology Roadmap for

Semiconductors (ITRS) [11]. This number is even expected to grow in the future and imposes

yet unsolved challenges on tomorrow’s design automation industry. Therefore, verification

of system designs (embedded hardware/software systems) is one of the most important tasks

3

in the design process. To cope with the increasing complexity, various attempts have been

made to increase design productivity.

Traditionally, most verification techniques have been based on simulation and testing

methods [15, 40, 31]. At high levels of abstraction, executable simulation models are built

from design specifications. Since it is usually prohibitive to exhaustively simulate all the

possible execution paths of a simulation model, test cases are carefully designed or selected

to achieve as much coverage as possible1. Testing is done at a lower abstraction level once

a product prototype is available, and random test cases are automatically generated and used

to check if the execution of the prototype is correct.

More recently, formal methods such as temporal property checking or symbolic model

checking have become increasingly popular [51,27]. Formal verification techniques attempt

to overcome the weakness of non-exhaustive simulation by proving the correspondence be-

tween some abstract design specification and the original design. The abstract model of a

design is represented symbolically or with efficient data structures such as hash tables, and

then the entire state space is searched for any design errors or property violation. The com-

plexity of searching the entire state space is at least exponential to the number of states, so

formal verification techniques are expensive, and their applicability is currently restricted to

small or medium sized designs or to a specific phase in the design cycle.

To make the practice of designing from high level system specification a reality, verifica-

tion methods must accompany every step in the design flow. Specification at the system level

1Verification coverage is the percentage of a design that is checked in the verification

4

makes formal verification possible. Designers can prove a property of a design by writing

down the property they want to check in some logic (e.g. CTL [36] and LTL [59]), generate

verification models from the design specification automatically or semi-automatically, and

use a formal verification tool (e.g. the model checker SMV [55] and Spin [42]) to run ex-

haustive verification. Then the entire state space of the design can be searched to verify the

specified property without any uncertainty.

As designs are refined with more implementation details realized, however, the complex-

ity can quickly overwhelm the automatic tools, and simulation becomes the primary means

for verification. The confidence of a simulation verification mainly depends on the design or

selection of test cases. In order to uncover bugs of designs during simulation, designers can

insert embedded assertions, i.e. formally specified design properties or constraints, into their

design specifications in hardware description languages or high level modeling languages.

Today’s assertion languages capture those simple logics as language or platform specific li-

brary blocks. A set of extended temporal connectives or regular expression operators are

then used to operate on those blocks for expressing more complex assertions. Examples of

assertion languages include PSL [6] and OpenVera [4].

1.3 Functional and Performance Constraints

In this work, Linear Temporal Logic (LTL) [59] and Logic of Constraints (LOC) [19] are two

main logics used for specification of design constraints. It will be shown that LTL and LOC

5

have different domains of expressiveness and indeed complement each other quite well. At

the verification stage, both static and runtime verification techniques can be used to check the

design constraints and to report design errors if there is any constraint violation.

LTL is suitable for specifying functional constraints, such as mutual exclusion, liveness,

and safety, and can effectively describe the temporal patterns of system state transitions. LTL

is defined overexecutionsof a system, i.e. linear sequences ofstate transitions. LTL formulas

are constructed using terms, i.e. Boolean expressions on variables or system states, classical

Boolean operators such as¬ (not),∨ (or), ∧ (and), and→ (imply), and the linear temporal

operatorsG(always),F (eventually),X (next), andU (strong until). For example,G(A) is true

if A is true for all states,F(A) is true if A eventually becomes true in a future state,X(A) is

true if A is true in the following state, and AU B is true if B eventually becomes true in a

future state and A is true from the current state to that future state.

It has been proved that LTL formulas can be translated to equivalent Büchi automata [63].

Based on this theory, formal techniques like model checking are developed and utilized for

verification of both digital designs (e.g. SMV [55]) and software protocols(e.g. Spin [33]).

LTL is also used as the basis for the formal constraint specification for simulation verifi-

cation [4, 29], which is important to assure the integration and correctness of reusable IP

(Intellectual Property) blocks. LTL has been a very popular and well studied logic for more

than a decade, so its details will not be covered in this thesis.

We believe that the existing logics or hardware assertion languages are not natural to ex-

press more abstract constraints such as transaction level constraints, where only the events

6

observable from a system and their annotations are considered. Nor are they convenient

to directly express performance constraints that are quantitative in nature (e.g. latency or

throughput). To this end, we propose a constraint formalism: Logic of Constraints (LOC).

LOC is designed for specification of performance constraints such as rate, throughput, and

latency, as well as quantitative functional constraints such as I/O data consistency at the trans-

action level, where system events and their annotations are considered. It is very well-suited

for analyzing traces from execution of higher, transaction level system models. LOC consists

of all the terms and operators allowed in sentential logic [30], with additions that make it pos-

sible to specify quantitative constraints without compromising the ease of analysis. The basic

components of an LOC formula include event names (e.g.pipeline andsram enq), instances

of events (e.g.pipeline[4]), indices of event instances (e.g. 0, 1, ..., etc), the index variable

i, and annotations (e.g.cycle, pc, andaddr). LOC can be used to specify many important

system level performance constraints that are inconvenient, and sometimes impossible, to

specify with other logics. For example, the rate constraints:

cycle(pipeline[i+ 1])− cycle(pipeline[i]) = 10 (1.1)

requires that the difference between the values of annotationcycle for any two consecutive

instances ofpipeline event should equal to 10. A complete study of LOC will be presented

in Chapter 2.

Constraint definition is central to many methodologies. A general approach is taken by

the Rosetta [16] language: different domains of computation are described declaratively and

7

constraints can be expressed as predicates on some defined quantities. Constraints are then

applied by combining the different domains. In this work, we restrict the scope of constraint

definition in favor of a representation that is more natural to the designer and that is more

computationally tractable.

Object Constraint Language (OCL) [1], part of the Unified Modeling Language (UML),

takes a more restricted approach. OCL supports invariants, pre- and post-conditions, and

guards, applied to classes, operations of classes, and states, respectively. Another related pro-

posal is the Design Constraints Description Language (DCDL) [2] sponsored by Accellera,

which is intended mostly for low-level (i.e. chip-level) constraints like clock slew, operating

voltages, and port capacitances. In both of these approaches, constraints are specified for a

collection of entities that represent a system (classes and their operations and states in case

of OCL, and physical objects in case of DCDL). This facilitates specifying constraints asso-

ciated with the system as a whole, e.g. area, yield, testability, and time to market. In contrast,

we focus on specifying constraints for particular executions of a system, like response time,

energy consumption, and memory usage. OCL also supports this, to some extent, through

pre-conditions, post-conditions, and guards. However, while these constructs naturally ex-

press constraints on a single transition, LOC makes it easy to express constraints that span

several transitions. In fact, in our approach, it is easy to specify constraints for which it is

impossible to bound in advance the number of transitions needed to check them.

Many constraint formalisms have been proposed that are at most as expressive asω-

regular languages (and in some case strictly less expressive). An incomplete list includes

8

S1S [22], LTL [59], PSL [6], HAAD [24], and many variants of finite-state automata on

infinite words, e.g. [17, 37]. MONA [39], on the other hand, is based on regular languages

and finite-state automata on finite words. It is believed that LOC is a good complement to all

these approaches, as there are certain natural constraints (e.g.data consistencythat are not

ω-regular, but can be expressed and verified (both formally and by simulation) using LOC.

Real-Time Logic (RTL) [45] is a formalism for expressing timing constraints in real-time

systems. With RTL, the constraints are specified by means of timing relations on occurrences

of events. RTL was primarily intended for formal reasoning, while LOC is more biased to-

ward simulation monitoring. For example, RTL allows any number of index and time vari-

ables which can be arbitrarily quantified. This makes it very unsuitable for verification by

simulation. In contrast, LOC allows only one index variable and no time variables or quan-

tification. This choice is made precisely for the purpose of efficient simulation monitoring.

Also, arithmetic in RTL is limited to Presburger arithmetic (i.e. linear inequalities), to ease

formal reasoning, while LOC allows more complex expressions, because they can be handled

quite easily in simulation. This separation of purposes is not total. When we consider a subset

of LOC suitable for formal verification, we restrict LOC to Presburger arithmetic. Similarly,

Mok and Liu have proposed a subset of RTL suitable for simulation monitoring [56,57], and

that subset indeed resembles LOC. However, they have not proposed any automatic formal

verification technique for that subset. A subset of LOC suitable for formal verification can be

seen as a generalization of the subset of RTL suitable for simulation monitoring, as it allows

specification of constraints related to annotations other than time. In fact, data consistency,

9

one of the constraints that distinguish LOC from formalisms based onω-regular languages,

also distinguishes it from RTL, as it does not involve time at all.

1.4 Metropolis Design Framework

Metropolis is developed as an integrated and unified design framework for next generation

system level design [20]. Metropolis allows designers to represent and manipulate their

designs at multiple levels of abstraction and with multiple models of computation (MoC).

Central to the design framework is a high level modeling language, Metropolis Meta-Model

(MMM), and a set of back-end tools are integrated into the framework, with which one can

simulate, synthesize, and verify a design at hand. Metropolis is used as the main experiment

platform throughout this thesis.

1.4.1 Framework and Design Methodology

The integrated design environment consists of a design specification language, Metropolis

Meta-Model (MMM), a front-end that constructs intermediate representations and analyzes

static network structures, and a set of back-end tools that are responsible for simulation, syn-

thesis, verification, and other tasks. Different high-level languages, models of computation,

design constraints, as well as specifications of system functions, architecture platforms, and

function-architecture mappings can be represented in MMM while retaining their precise

semantics. Constructs in MMM are designed to facilitate transformations and refinements

10

Function
Specification

Design
Constraints

Architecture
Specification

Metropolis Infrastructure

Design methodology

Base tools
- Design imports
- Simulation

Meta-model of Computation

Metropolis Point tools:
Synthesis/Refinement

Metropolis Point tools:
Analysis/Verification

Figure 1.2:Metropolis design framework

between different abstraction levels. Different design aspects are orthogonalized, such as

computation versus communication, function versus architecture, and specification versus

implementation. The design complexity can therefore be effectively reduced, and the de-

sign space can be efficiently explored. Figure 1.2 shows a flow diagram for the Metropolis

framework.

1.4.2 Metropolis Meta-Model Language

Metropolis Meta-Model is a system representation formalism capable of representing designs

at different levels of abstraction. A description of a system (function and/or architecture) can

be made in terms of computation, communication, and coordination.

11

Processes, Media, and Netlists

In Metropolis Meta-Model, systems are represented as networks ofprocessesthat communi-

cate throughmedia[18]. Processes and media are used to describe computation and commu-

nication respectively. The syntax of MMM is similar to Java but includes many system level

modeling extensions. A process defines an active object and always includes a method called

threadas the top-level method, where its behavior is specified. A communication medium

implements a set of methods that are declared ininterfaces. Processes connect to media

throughports. Each port has a type that must be an interface implemented by the medium

to which the port is connected. Processes communicate to each other by invoking interface

methods implemented in the shared media through these ports.

In MMM, objects such as processes, media, and their connectivities can be grouped in a

netlist, which is used to model a complete network. Figure 1.3 shows an example of a func-

tional netlistFuncNet. The netlist defines two processes,p1andp2, communicating through

a mediumm1. A netlist can also contains other netlists to form a hierarchical network. In ad-

dition, refinement constructs are available to specify that one netlist is the formal refinement

of another within a network.

Coordination

Processes run concurrently, each at its own pace. The relative speed of processes may arbi-

trarily change at any time, unless they synchronize with each other using the synchronization

primitive calledawait, or if constraintsare specified in the system. The await statement can

12

process P{

}

port pX, pZ;
thread(){
 //condition to read X
 //an algorithm for f(X)
 //condition to write Z
}

medium M{
 int[] storage; int space;
 void write(int[] Z) {...}
 int[] read() {...} }

//connections
//constraints }

netlist N {
P p1, p2; M m1;

Computation
* f: X −> Z
* firing rule

process medium

Communication
* state
* methods to
 − store data
 − retrieve data

Coordination
* constraints on
 concurrent actions
* algorithms to enforce
 the constraints

constraints or await

FuncNet

pX pZpX pZ

p1
m

p2

Figure 1.3:An example of MMM specification

be used to make a process wait until some condition holds and establish critical sections that

guarantee mutual exclusion among different processes. To limit the behavior of processes,

a designer can also specify high-level LTL (Linear Temporal Logic) [59] or LOC (Logic of

Constraints) [19] constraints and leave the implementation of these constraints to the detail

design stage.

The await statement is used to establish mutually exclusive sections and synchronize

processes. It contains one or more statements calledcritical sections,each controlled by a

triple (guard; testlist; setlist), where the guard is a Boolean expression, and the testlist and

setlist denote sets of interface methods that other processes can call. A critical section is

said to beenabledif its guard is true, and none of the interface methods in the testlist are

being executed at that moment. A critical section may start executing only if it is enabled.

In addition, while the critical section is being executed, no interface methods included in

13

the setlist can begin their executions. Whenever an await is encountered in the execution

flow, one and only one of the enabled critical sections is executed. If no critical section is

enabled, the execution blocks. If more than one critical sections are enabled, the choice is

non-deterministic.

Function, Architecture, and Mapping

The function-architecture separation and mapping are natively supported in the Metropolis

Meta-Model language. The function and architecture of a system are defined independently

at a high level of abstraction. The function is then mapped to the architecture in order to

arrive at a given implementation.

Both the function and architecture of a system are modeled as separate networks of pro-

cesses communicating through media. In an architectural network, resources are typically

modeled with media, services that the architecture can provide are modeled with so called

mapping processes, and arbitrators among multiple architectural resources are modeled with

quantities. A third network can be defined to encapsulate the functional and architectural

networks and torelatethe two by synchronizing events between them withsynchconstraints.

Figure 4.6 shows a mapping networkMapNetlistthat correlates the functional network

FuncNetlistwith the architectural networkArchNetlist. The functional network includes two

processesp1 andp2 communicating through mediam1andenv. The architectural network

contains mediaCPU, BUSandMEM, and the corresponding mapping processes. The synch

constraints are used to synchronize the events from the functional processes and the mapping

14

CPU

MEM

BUS

synch(beg(p1, p1.write), beg(MapP1, MapP1.CPUwrite));

... ...

synch(beg(p2, p2.write), beg(MapP2, MapP2.CPUwrite));
synch(beg(p2, p2.read), beg(MapP2, MapP2.CPUread));

synch(beg(p1, p1.read), beg(MapP1, MapP1.CPUread));

FuncNetlist

pX pZ pX pZ

p1
m1

p2

env

MapNetlist

MapP1 MapP2

ArchNetlist

OsSched

Bus
Arbiter

Figure 1.4:Function-architecture mapping

processes. SchedulersOsSchedandBusArbiter, which are modeled with quantities, coordi-

nate the architectural resources and provide performance models to the architectural network.

During execution, architectural media and mapping processes can request the quantitative an-

notations from the quantities.

1.5 Thesis Overview

In this thesis, we present a complete study of system level verification and analysis techniques

based on formal specification of design constraints. The focus is to automate the verification

and analysis process at different stages of the design flow. The rest of the thesis is organized

as follows. In the next chapter, a complete study of LOC formalism is presented. The syntax,

semantics, and verifiability of LOC are discussed in detail. In addition, the verification and

analysis algorithms for LOC formulas are proposed.

15

In Chapter 3, we focus on assertion-based simulation verification and analysis for system

level designs. We discuss how assertion languages based on mathematical logics such as

LOC and LTL are used in simulation verification for both functional and performance design

constraints. Furthermore, LOC formulas are shown to be useful in design exploration with

performance and power trade-off analysis by automatically generating quantitative distribu-

tion analyzers. The techniques are demonstrated with case studies of a network processor

architecture design.

A simulation-based deadlock analysis mechanism is presented in Chapter 4. We show

that, for certain common design constraints such as deadlock or starvation, a built-in detec-

tion and analysis method based on simulation is more efficient to use than general assertion

languages or formal methods. The causes of deadlock problems are analyzed, and data struc-

tures and algorithms are proposed for simulation time deadlock monitoring and analysis. The

experiments are done within the Metropolis framework and used to show the effectiveness of

the approach.

In Chapter 5, we propose a formal verification methodology for system level designs. In

this approach, an existing software formal verification tool is utilized as the back-end veri-

fication engine, and system specifications are automatically translated into lower level veri-

fication models. A designer is then allowed to verify formally specified design constraints,

and to refine the design or the constraints according to the verification results. In addition, an

automatic abstraction propagation technique is proposed to simplify verification models. By

implementing this methodology, a verification back-end tool is integrated in the Metropo-

16

lis framework, and its usefulness and effectiveness are demonstrated through several case

studies.

Chapter 6 concludes the thesis and summarizes the contributions of this work.

17

Chapter 2

Logic of Constraints

In this chapter, we introduce our quantitative constraint formalism, Logic of Constraints

(LOC). LOC is particularly suited for specification and simulation analysis of performance

constraints at the transaction level, where only the events observable from the system and

their annotations are considered, as will be shown later in this chapter.

2.1 Introduction to LOC

The LOC formalism is compatible with a wide range of functional specification formalisms

that describe a system as a network of components communicating through fixed intercon-

nections. The observed behavior of the system is usually characterized by sequences of

values observed at the interconnections. LOC is a formalism designed to reason about traces

from the execution of a system. It consists of all the terms and operators allowed in sentential

logic, with additions that make it possible to specify system level quantitative functional and

18

performance constraints without compromising the ease of analysis. LOC can be used to

specify many common and useful real-time performance constraints.

• rate, e.g. “Display ’s are produced every 10 time units”:

t(Display [i+ 1])− t(Display [i]) = 10 , (2.1)

• latency, e.g. “Display is generated no more than 25 time units afterStimuli ”:

t(Display [i])− t(Stimuli [i]) ≤ 25 , (2.2)

• jitter, e.g. “everyDisplay is no more than 4 time units away from the corresponding

tick of the real-time clock with period 10”:

| t(Display [i])− (i+ 1) ∗ 10 | ≤ 4 , (2.3)

• throughput, e.g. “at least 100Display events will be produced in any period of 1001

time units”:

t(Display [i+ 100])− t(Display [i]) ≤ 1001 , (2.4)

• burstiness, e.g. “no more than 1000Display events will arrive in any period of 9999

time units”:

t(Display [i+ 1000])− t(Display [i]) > 9999 . (2.5)

19

In addition, LOC can also be used to specify quantitative functional constraints such as

the data consistency, e.g. “the input data should be the same as the output data”:

data(input [i]) = data(output [i]) . (2.6)

It should be emphasized that time is only one of the possible annotations. Any value that

may be associated with an event (e.g. power, area, data value) can be used as an annotation.

In the case of concurrent events, the values of time annotation should be the same. The

indices of instances of the same event denote the strict order as they appear in the execution

trace. There is no implied relationship between instances of different events. LOC can be

used to express relationship between the annotations of the different instances of the same

event (e.g. rate), or instances of different events (e.g. latency).

The latency constraint above is truly a latency constraint only if theStimuli andDisplay

are kept synchronized. Generally, we will need an additional annotation that denotes which

instance ofDisplay is “caused” by which instance of theStimuli . If the cause annotation is

available, the latency constraint can be more accurately written as:

t(Display [i])− t(Stimuli [cause(Display [i])]) ≤ 25 , (2.7)

and such an LOC formula can easily be analyzed with simulation. However, it is the respon-

sibility of the designer, the program, or the simulator to generate such an annotation.

A constraint formalism is not meaningful unless there exists a clear and efficient path to

verification. An efficient simulation-based approach is proposed for analyzing LOC formulas

20

(see Section 2.4). C++ trace checkers are automatically generated from LOC formulas. The

checkers analyze the simulation traces and report any constraint violations. In most cases,

the traces are scanned only once and memory usage is very low. The automatic checker

generation is parameterized, so it can be customized for fast analysis for specific verification

environments (e.g. memory limitation). The choice of C++ for the checkers is a matter of

convenience. It allows us to tightly integrate the checkers with the SystemC [7] simulator for

runtime monitoring. No major difficulty exists to generate checkers in HDLs for integration

with hardware simulators, or in Java for concurrent execution with the software simulators.

A simulation-based approach can only disprove the LOC formula (if a violation is found),

but it can never prove it conclusively, as that would require analyzing the design space ex-

haustively. However, for small but important designs or library modules that will be instan-

tiated many times across different designs, it may be necessary to formally prove the desired

properties. Formal verification is more expensive though the designers can be more confi-

dent about the result. It should be used only for small but important design modules (e.g.

Task Transition Level (TTL) channel [32]), possibly in concert with simulation verification

of the entire system. An exact verification algorithm exists for a broad class of LOC formu-

las (see Section 2.5). However, due to the high complexity of this algorithm, an alternative

is provided in this study. We propose a formal verification approach where LOC formulas

are translated into verification models in Promela (Spin’s modeling language [42]) and LTL

formulas. This approach is complete for a restricted subset of LOC. It can also be applied to

a wider subset, but results might then be inconclusive, i.e. the verification is only partial.

21

While similar in spirit to the hardware embedded assertion languages, our LOC formal-

ism and simulation verification approach are indeed useful in at least three fundamental as-

pects. First, Logic of Constraints is designed for specifying all quantitative performance

and functional constraints, not just functional ones. This means that one can easily specify

requirements on timing or power consumption of the systems being designed, in addition

to those on the functional correctness. Second, LOC can be used to specify performance

constraints effectively, while many LOC properties cannot be expressed with LTL directly.

Third, system level functional and performance constraints written in LOC can be automati-

cally and efficiently synthesized into static checkers, runtime monitors, or formal verification

modules.

2.2 LOC Syntax and Semantics

Here we give an informal overview of LOC syntax and semantics. Full details are given in

Appendix A. The basic blocks of LOC formulas are terms, which can be either:

• constants, or

• integer variablei (the only index variable that can appear in an LOC formula), or

• expressions of the forma(e[n]), wherea is an annotation name,e is an event name,

andindex expressionn is an integer-valued term, or

• combination of simpler terms using usual arithmetic operators.

22

We interpreta(e[n]) as the value of annotationa of then-th occurrence of evente. All other

terms are interpreted naturally. Terms can be combined using relational operators to create

atomic LOC formulas. Finally, LOC formulas are standard Boolean expressions over atomic

formulas.

LOC formulas may contain only one index variable, namelyi. Having only one index

variable may seem very restrictive, but so far we have not found a natural constraint that

required more than one. In effect, the ability of defining annotations allows one to specify

formulas that otherwise require more than one index variable. On the other hand, having only

one index variable enables efficient simulation monitoring.

Models of LOC formulas contain a sequence of occurrences for each event name in the

formula. Such structures are calledannotated behaviors. Each occurrence may be annotated

with some annotation, but we do not require each annotation appearing in the formula to be

defined. This feature is important for our design methodology, where performance require-

ments are specified early in the process, even though they can be evaluated much later, when

many implementation details are set.

Given an annotated behavior, the formula is evaluated for each value of index variable

i. This is done in quite a standard fashion, except that we need to consider the fact that

some terms may not be defined (either because there are only finitely many occurrences of an

event, or because an annotation is not defined for an existing event occurrence). To deal with

this, the third logical valueundef is introduced. In general, all operators (including Boolean)

returnundef if one of their operands areundef . The only exceptions are conjunction with

23

false (which is false), and disjunction withtrue (which is true). Finally, the annotated

behavior satisfies the formula if it does not evaluate tofalse for any value ofi.

2.3 Expressiveness of LOC

In this section, we discuss the expressiveness property of LOC especially in its relationship

with the well known Linear Temporal Logic (LTL). It should be noted that LTL is defined on

the state transition level where any change at the system state is accounted for, while LOC

works on a higher abstraction level, in which only the events observable from the system and

their annotations are considered. This apparent difference, however, is just a technicality,

because it is not difficult to hide state transitions so that LTL and LOC are defined over the

same kind of objects.

Through several examples and claims, it is concluded that LOC and LTL are incompara-

ble and have different domains of expressiveness.

Claim 1 There are LOC formulas that can be expressed with LTL.

Since both LOC and LTL contain basic Boolean expressions, a subset of LOC constraints

that specify simple global Boolean conditions can be expressed in LTL also. For example,

the constraint, “the annotationdata of the eventDisplay is always greater than 100”, is

expressed in LOC as:

data(Display [i]) > 100 . (2.8)

24

If we use a variableDisplay data to store the value ofdata in the design, and use a flag

Display occur to indicate that an instance of the eventDisplay occurs, this constraint can be

easily expressed in LTL as:

G(Display occur =⇒ (Display data > 100)) . (2.9)

Claim 2 There are LOC formulas that cannot be expressed with LTL.

Many quantitative constraints that can be easily expressed by LOC are not suitable for

LTL. Specifically, when more than one events need to be compared in the same constraint

(e.g. the latency constraint), LTL is not expressive enough to be used. For example, the data

consistency constraint:

data(input [i]) = data(output [i]) (2.10)

requires comparing each instance ofoutput with the instance ofinput with the same in-

stance index. After then-th input occurs, it is unknown when then-th output will occur,

i.e. the number ofinput instances that may occur before then-th instance ofoutput is arbi-

trarily large. Therefore, this constraint cannot be modeled by a finite-state system, and it is

impossible to express it using any formalism based onω-regular languages, such as LTL or

PSL.

It is interesting to note that there are simple LOC formulas that cannot be expressed by

LTL even though they areω-regular. For example, the property “the value of eventA on

every even occurrence is 1”, can be expressed by LOC formuladata(A[2i]) = 1, as well

25

as with a simple two-state automaton, but it is well known that it cannot be expressed by

LTL [64].

To show that some LTL formulas cannot be expressed in LOC, we first recall that any

property can be expressed as a conjunction of asafetyand alivenessproperty. Safety prop-

erties are those which can always be shown violated by a finite trace. For example, any

execution that does not satisfy the property “the value ofA is never1” must have a finite pre-

fix which ends with the value ofA being 1. On the other hand, liveness properties can never

be violated by a finite trace. For example, the property “for every request there is a response”

can never be violated by a finite trace because there is always a chance that a response may

come some time in the future.1

Claim 3 LOC can express only safety properties.

Indeed, if a trace does not satisfy an LOC formula, then there must exist ani for which

the formula is false. We can evaluate all index expressions for that value ofi. Since there

can only be finitely many of these expressions, there must exist some point in the execution

such that, for that particulari, the formula does not refer to any event occurrence beyond that

point. Clearly, the execution prefix up to that point is sufficient to disprove the property.

On the other hand, LTL is capable of expressing some liveness properties, for example

GF(A), i.e. “A occurs infinitely often”.

Conclusion:From claims (2) and (3), we conclude that LOC and LTL are incomparable.

1To disprove a liveness property, we need to show that the system can enter an infinite cycle in which there
are unfulfilled requests.

26

Generally, LOC is designed for the specification of quantitative performance and func-

tional constraints at the transaction level where system events and their annotations are con-

sidered. Because of the use of index variablei, LOC is beyond the finite automata domain.

On the other hand, LTL is suitable for the specification of functional constraints, and can

effectively express the temporal patterns for system state transitions. Because of this differ-

ence, LOC can express important properties that cannot be expressed with LTL, on which the

traditional property specification languages are based.

In fact, it has been shown that LOC is incomparable with any formalism capable of ex-

pressingω-regular properties. From the theoretical point of view, it may be interesting to es-

tablish whether LOC can express all regular properties, i.e. whether LOC is more expressive

than WS1S. However, for the methodology proposed here, that question is hardly relevant,

because LOC is proposed as a complement to and not a replacement for existing property

languages capable of expressing regular properties.

2.4 Checking LOC Formulas with Simulation

In simulation verification, we automatically generate simulation trace checkers from LOC

formulas. In the LOC checker, we use a linear-time algorithm to check the simulation trace,

which could be infinite, and see if an LOC formula can be satisfied for all possible values

of index i. Although the algorithm is linear in time, memory space usage is dependent on

the formula heavily. To reduce the running time, we try to scan the whole trace only once

27

and store the annotation information that is expected to be useful in the future. Therefore,

a memory recycling procedure has to be invoked frequently to release unnecessary memory

space to obtain space efficiency.

The algorithm of LOC checking progresses based on the index variablei. Each LOC

formula instance is checked sequentially with the value ofi being 1, 2, ... etc. A formula

instance is a formula withi evaluated to some fixed positive integer value, e.g.Display [30]−

Display [29] = 10 is the 29th instance of the formula (2.1). Starting withi equal to 1, the

LOC checker scans the trace sequentially. If any relevant data is read in, the checker stores it

into a queue and checks the formula in the following manner (Algorithm 1).

Algorithm 1 Check an LOC formula.
procedureCHECK LOC FORMULA()

while can evaluate formula instance ido
evaluate formula instance i;
i++;
memory recycling

end while
end procedure

The time complexity of the algorithm is linear in the size of the trace since evaluating a

particular Boolean expression takes constant time. The memory usage, however, may become

prohibitively high if we try to keep the entire trace in the queue for analysis. As the trace file

is scanned in, the checker attempts to store only the useful annotations, and in addition, to

evaluate as many formula instances as possible, and to remove from the memory parts of the

annotations that are no longer needed (memory recycling).

For many LOC formulas (e.g. constraints (2.1), (2.3) - (2.5) in Section 2.1), the algorithm

28

uses a fixed amount of memory no matter how long the traces are (see Table 2.1).2 Memory

efficiency of the algorithm comes from being able to free stored annotations as their asso-

ciated formula instances are evaluated. This ability is directly related to the choice made in

designing LOC. From an LOC formula, we can conservatively identify what annotation data

will not be useful anymore once all the formula instances with indices less than a certain

number are all evaluated. For example, consider an LOC formula:

t(Display [i+ 10])− t(Stimuli [i+ 5]) < 300 , (2.11)

and let the current value ofi be 100. Because the value ofi increases monotonically, we know

that eventDisplay ’s annotationt with index less than 111 and eventStimuli ’s annotationt

with index less than 106 will not be useful in the future, and their memory space can be

released safely. Each time an LOC formula is evaluated with a new value ofi, the memory

recycling procedure is invoked, which ensures minimum memory usage.

As described in Section 2.2, the LOC semantics allows us to evaluate an LOC formula

even if some of its expressions are not defined. When an annotation with a particular index

value is not yet available from the trace, or when the index has an invalid value (e.g. nega-

tive value), the Boolean expression that contains this annotation is evaluated toundef . The

entire LOC formula could then be evaluated according to the standard three-value logic [54]

2The verification of the constraint (2.2) may also have constant memory usage if the given trace has a certain
regular structure.

29

evaluation. For example, given the following LOC formula:

t(A[i+ 10]) > 100 ∨ t(B [i− 5]) < 300 , (2.12)

let the current value ofi be 10. If we know, from the trace, that the value oft(A[20]) is 200,

the formula can already be evaluated totrue even if the value oft(B [5]) is still not available

at this point in the simulation (trace). Thus LOC formula instances can be evaluated as soon

as possible, which further minimizes the memory usage. Also, if we let the current value ofi

be 4, -1 is then an invalid index for annotationt of eventB . The expressiont(B [−1]) < 300

is evaluated toundef , and the whole formula can be evaluated totrue if the evaluation of

t(A[14]) > 100 is true, or undef otherwise.

2.4.1 Runtime Monitoring

The static trace checking technique, as described above, assumes that a simulation trace is

first generated and the subsequent LOC checking parses the trace and looks for constraint vi-

olation. How the trace is generated is immaterial as long as the format is correctly specified

in the definition file. The trace file for a realistic design, however, can frequently occupy sev-

eral gigabytes of disk space. It may be desirable to compile the checker as a runtime monitor

to run concurrently with the simulator through a Unix pipe. Alternatively, the checker can

be compiled into the compiled-code simulator for higher efficiency and tighter integration.

As an example of such tight integration, the checker generator has been extended to gener-

30

ate LOC checkers as SystemC modules [7]. During the simulation, other SystemC modules

(representing the design) can pass the events and annotations directly to the monitor modules

through channels. A case study of this approach is reported in Section 2.4.3. Runtime mon-

itoring is more efficient than static checking, but then obviously the simulation need to be

repeated if some new formula need to be checked later. Furthermore, the trace is no longer

kept so any debugging has to rely solely on the error report.

2.4.2 Dealing with Memory Limitation

Despite the memory efficiency for most LOC formulas, some LOC formulas may require

high memory usage that the verification environment cannot support. To deal with the case

of preset memory limitation, another extension has been added to the checker generator. Gen-

erally, the checker tries to read the trace and store the annotations only once. However, if the

preset memory limit has been reached, it stops storing the annotation and instead, scans the

rest of the trace looking for needed events and annotations for evaluating the current formula

instance (with the current value ofi). After freeing some memory space, the algorithm re-

sumes storing annotations and reading the trace again from the same location. The analysis

time can certainly be impacted (see the case study in Section 2.4.3) and may no longer be of

linear complexity. However, the verification can continue and the constraint violations can

be checked under the memory limitation of the verification environment.

31

2.4.3 A Case Study of FIR Filter

We use a register transfer level model of afinite impulse response (FIR)filter written in Sys-

temC to show how LOC can be used to efficiently check real time performance constraints.

Figure 2.1 shows a 16 tap FIR filter that reads in samples when the input is valid and writes

out the result when output is ready. The filter design is divided into a control FSM and a data

path. The test bench feeds sampled data of arbitrary length, and the output is displayed with

the simulator.

Stimuli Display
FSM

 DATA

FIR
Stimuli : 0 at time 9
Display : 0 at time 13
Stimuli : 1 at time 19
Display : −6 at time 23
Stimuli : 2 at time 29
Display : −16 at time 33

Figure 2.1:A FIR design and its simulation trace

We use our automatic trace checker generator to verify the properties specified in con-

straints (2.1) - (2.5) (in Section 2.1). The same trace files are used for all the analyses, and

each constraint is checked one at a time. The time and maximum memory usage are shown

in Table 2.1. We can see that the time required for analysis grows linearly with the size of

the trace file, and the maximum memory requirement is formula dependent but stays fairly

constant. Using LOC for common real-time constraint verification is indeed very efficient.

Given the large file size, runtime monitoring (see Section 2.4.1) may reduce the total veri-

fication time (simulation and checking) since no trace file needs to be actually generated. For

32

Table 2.1: Costs of checking formulas (2.1)-(2.5) on FIR

Lines of Trace 105 106 107 108

Time(s) 1 8 89 794C1
Memory 28B 28B 28B 28B
Time(s) 1 12 120 1229C2
Memory 28B 28B 28B 28B
Time(s) 1 7 80 799C3
Memory 24B 24B 24B 24B
Time(s) 1 7 77 803C4
Memory 0.4KB 0.4KB 0.4KB 0.4KB
Time(s) 1 7 79 810C5
Memory 4KB 4KB 4KB 4KB

the latency constraint (the formula (2.2)), we implement the checker as a SystemC module,

and the simulation trace is no longer written to a file but passed to the monitoring module

directly. Table 2.2 lists CPU times used for simulation, trace checking, and simulation with

runtime monitoring for the formula (2.2) on the traces of different lengths. For the trace size

of 100 million lines, the static checking approach requires 1404 seconds of simulation time

and 1229 seconds of checking time for a total of 2633 seconds. Runtime monitoring requires

only 1420 seconds for both simulation and monitoring. If a simulation trace is really long

(e.g. hundreds of gigabytes), runtime monitoring can significantly save CPU time compared

to off-line trace checking.

Table 2.2: Time usage of simulation and checking formula (2.2) on FIR

Lines of Trace 105 106 107 108

Simulation w/o Runtime Monitoring (s) 1 14 148 1404
Static Trace Checking Only (s) 1 12 120 1229
Simulation w/ Runtime Monitoring (s) 2 14 145 1420

33

We also verify constraint (2.7) to illustrate verification with memory limitation since this

constraint is particularly expensive to check in terms of memory usage. Table 2.3 shows

that the simulation time grows linearly with the size of the trace file. However, due to the

use of an annotation in an index expression, memory can no longer be recycled and we see

that it also grows linearly with the size of the trace file. Indeed, since we will not know what

annotation will be needed in the future, we can never remove any information from the queue.

If the memory is a limiting factor in the simulation environment, the analysis speed must be

sacrificed to allow the verification to continue, as discussed in Section 2.4.2. The result is

shown in Table 2.3 where the memory usage is limited to 50KB. We see that the analysis

takes more time when the memory limit has been reached. Information about trace pattern

can be used to dramatically reduce the running time under memory constraints. Aggressive

memory minimization techniques and data structures can also be used to further reduce time

and memory requirements. For most LOC formulas and simulation traces, however, the

memory space can be recycled and the memory requirements are small.

Table 2.3: Costs of checking constraint (2.7) on FIR

Lines of Trace (×104) 2 3 4 5
Unlimited Time(s) <1 <1 <1 1
Memory Mem(KB) 40 60 80 100

Mem Limit Time(s) <1 61 656 1869
(50KB) Mem(KB) 40 50 50 50

34

2.5 Formal Verification of LOC Formulas

Although our trace analysis enables efficient verification of LOC formulas in a simulation

environment, formal verification may still be valuable and sometimes even necessary. We

propose to apply formal verification to small designs that are re-used many times, such as

library modules. Because they are small, formal verification is practically possible. On

the other hand, they are intended to be used in many environment, some of which will be

designed long after the module itself is designed and verified. Therefore, it is hard to imagine

all simulation scenarios that need to be verified. It is better to characterize the modules with a

set of constraints that it satisfies. This will not only increase the confidence in the correctness,

but these constraints can be used as a precise specification of a design’s behavior as well. The

lack of such a specification is a major source of design errors, because informal specifications

of library modules are often ambiguous and misunderstood.

Unfortunately, it is undecidable whether a system satisfies an LOC formula, even if some

strong restrictions are placed on the system specification and the formula (see Section 2.6).

On the positive side, for a significant subset of LOC, it is possible to decide whether a finite-

state system satisfies an LOC formula. The decision procedure is based on constructing a

formula of Presburger arithmetic that is satisfied if and only if the formula is violated by

some behavior of the system. The LOC subset that can be verified in this way includes all

formulas described in Section 2.1, except the latency constraint (2.7).

Manipulating Presburger formulas is very expensive in practice, so we propose an alter-

35

native formal verification approach based on existing finite-state model checking tools. Our

approach represents a complete verification procedure for a subset of LOC that definesω-

regular properties. We will show in the next section that rate (2.1), throughput (2.4), and

burstiness (2.5) belong to this subset, but other formulas in Section 2.1 do not. The proposed

approach may still be applied to these formulas, but the procedure is incomplete in this case,

because it can terminate with an inconclusive result.

The simulation approach described in Section 2.4 suggests our formal verification ap-

proach. A trace checker can be interpreted as an automaton accepting executions. We could

thus use existing model-checking tools to verify that each execution of the system is accepted

by the trace checker. In the example shown in this chapter, the translation was manual. How-

ever, there is no technical difficulty in automatically generating such descriptions in a lan-

guage understood by a model checking tool through modifying our trace checker generator.

The only significant difference between a simulation trace checker and an automaton

description suitable for model checking is that the former can rely on dynamic memory al-

location to store trace data that may be needed, while the latter must have all memory space

statically allocated. Unfortunately, as we have shown in Section 2.3, for some LOC formulas

it is not possible to determine memory requirementsa priori. Our approach is to fix the mem-

ory size anyway and to designate special states where checking the formula would require

allocating additional memory, but none is available. Such a state may or may not be reached

during the reachability analysis. If it is, the result of the formula verification is inconclusive.

More precisely, the verification of an LOC formula can have one of three outcomes:

36

• a counter-example is found showing that the system does not satisfy the constraint,

• the constraint is satisfied, all reachable state are searched without finding a counter-

example, or reaching a state where memory is exhausted,

• inconclusive, analysis finds no counter-examples, but states where memory is exhausted

are reachable.

For example, the latency constraint:

t(Display [i])− t(Stimuli [i]) ≤ 25 (2.13)

cannot be modeled by any finite automata because there can be arbitrarily many occurrences

of Stimuli beforex-th occurrence ofDisplay (intuitively, we assume thatDisplay [x] always

occurs afterStimuli [x]). However, if we limit the number of stored time stamps ofStimuli

to, say, 50, then we can simultaneously check the following two constraints:

P1: There are never more than 50 occurrences ofStimuli betweenx-th occurrences of

Stimuli andDisplay .

P2: If P1holds, then (2.13) holds.

Obviously, if P1 and P2 both hold, then so does (2.13), and ifP2 is false, so is (2.13).

However, ifP2holds, butP1does not, the result is inconclusive.

To specifyP1andP2, assume that the trace checker keeps 51 most recent time stamps for

Stimuli andDisplay in arraysDisplay t andStimuli t such thatx-th time stamp is stored at

37

position(x mod 51) of the array. Also assume that variableDisplay i andStimuli i (which

take values from 0 to 50) keep the index of the most recent time stamps in the arrays. Finally,

assume that binary variablesDisplay occur andStimuli occur aretrue whenDisplay and

Stimuli occur, respectively, and that integer variablediff counts the difference between the

numbers of occurrences of theStimuli andDisplay events, i.e. it is initialized to 0, incre-

mented on eachStimuli occur , and decremented on eachDisplay occur . Then,P1 can be

specified with the following state predicate:

diff ≤ 51 . (2.14)

Constraint (2.13) can be expressed as follows:

Display occur =⇒ Display t [Display i]− Stimuli t [Display i] ≤ 25 , (2.15)

and finallyP2can be expressed as follows:

Assumption (2.14) =⇒ Formula (2.15) . (2.16)

2.6 Complexity of Verifying LOC Formulas

In this section, we address the following fundamental question: How hard is it to check if a

system satisfies an LOC formula? This question has many versions, depending on how the

38

system is represented, and what subset of LOC formulas is being considered. We present

answers for several versions. Some versions of the problem are undecidable, and some are

decidable, but with very complex algorithms. These “negative” results are used to justify the

development of efficient algorithms which may not always give the full answer. These al-

gorithms, based either on simulation, or partial formal verification, are described in previous

sections.

In the most general case, systems are represented by arbitrary programs, and annotations

can be of any type. This case is clearly expressive enough to encode the halting problem [44],

so checking LOC formulas is undecidable in this case.

The first restriction we consider is to limit system specification to ainfinitely-valued

finite-state system, where the number of states of a system is finite, but value domains of

annotations can be infinite. Unfortunately, this case is also undecidable. To show this we can

encode two counter machines using a finite-state system, two integer annotations to repre-

sent counters, and an LOC formula to ensure that counters are incremented or decremented

as necessary.

The next restriction we consider are so-calledfinitely-valuedfinite-state systems, where

annotations and event values are required to be finitely valued. With regards to annotation

specification, three cases will be considered:

(1) annotations completely undefined,

(2) annotation must satisfy certain axioms, expressed by an LOC formula,

(3) annotations defined by a finite state system.

39

The third case is typical of later design stages. At that point annotations can be considered

as part of event values, so we will not study it separately.

The first case is typical at the beginning of the design process, where constraints on

annotations are stated, but nothing is yet known about their actual values. At that point,

annotations are uninterpreted functions, but they still have to satisfy constraints of equalities.

For example, the formulaf(e[3i]) = f(e[i+ 2]) is not satisfied by any behavior in whiche

occurs at least 3 times.

We consider the second case because, even if the values of annotations are not known,

some constraints, captured by axioms, may be. Consider, for example, time annotations.

All possible timing annotations share certain constraints, e.g. time can never decrease. Just

from these basic constraints of time, we could deduce some system constraints, which are

then valid for any timing. Therefore, it is useful to be able to express constraints that all

annotations of certain type must have. Specifying axioms could be done in many ways. For

example, an extended version of LOC is used for this purpose in Metropolis [18]. However,

the following results state that checking an LOC formula is undecidable even if annotation

axioms are restricted to the basic LOC.

Theorem 1 It is undecidable whether a finitely-valued finite-state system with LOC axioms

satisfies an LOC formula with a single event indexed by expressioni.

As usual, the proof proceeds by reducing a known undecidable problem to LOC checking.

The details are given in Appendix B.

40

At first glance, it may appear that checking an LOC formulaφ for a finite state system

with annotation axiomsα may be reduced to checking that the system satisfies implication

of φ by α without any axioms. Unfortunately, this approach does not work, and to see why

we will for a moment make quantification overi appear explicitly in the syntax. Thus, the

axioms can be written as∀i : α, and the formula can be written as∀i : φ. Solving the problem

requires checking(∀i : α)=⇒(∀i : φ), but LOC can only express∀i : (α=⇒φ), which is not

the same. In fact, this seemingly minor restriction makes the problem decidable, as stated by

Theorem 2.

We now turn our attention to the case without axioms, where annotations are either com-

pletely unconstrained or folded into event values.

Theorem 2 It is decidable whether a finitely-valued finite-state system without annotation

axioms satisfies an LOC formula, in which all index expressions are of the formai+ b, where

a and b are integer constants, and variablei appears only in such expressions and linear

inequalities.

The proof consists of a decision algorithm. To describe the algorithm, we need some

notation. Anevent expressionis an LOC term of the form val(e[τ]), or of the formf(e[τ]),

whereτ is an integer-valued term,e is an event name, andf is an annotation. Note that

conditions in Theorem 2 restrictτ to be a linear expression, i.e. it must be of the formai+ b,

wherea andb are constants. Thevalue domainof an event expression is the set of values it

can take, i.e. it is the value domain ofe if the expression is of the form val(e[τ]), and it is the

value domain off if the expression is of the formf(e[τ]).

41

Given an LOC formulaφ, we useEφ to denote the set of event expressions appearing in

it. An interpretationof a set of event expressions is a function that assigns to each expression

in the set a value from its value domain. Since Theorem 2 requires the system to be finitely-

valued, there can be only finitely many distinct interpretations ofEφ. Given an LOC formula

φ, and an interpretationI of Eφ, we useφI to denote the formula obtained fromφ by replacing

each event expressionε in φ by the valueI(ε). We callφI an interpretation ofφ. Note that

becauseφI contains no event expressions,Vn
(β,A)[[φI]] actually depends only onn and must

be eithertrue or false.

The conditions of Theorem 2 also insure thatφI is a formula inPresburger arithmetic.

Such formulas consist of linear inequalities of integer variables combined with usual Boolean

connectives and quantification of variables [30]. Presburger formulas can be evaluated to

true or false by choosing values for all free integer variables. LOC formula interpretations

can have onlyi as a free variable, and we will useφI(n) to denote the value ofφI wheni is

set ton.

Assume, for example, a system with two binary events,x1 andx2, and a formulaφ:

(val(x1[3i]) = val(x2[i])) =⇒ (i ≥ 5) . (2.17)

It has two binary event expressions, val(x1[3i]) and val(x2[i]), hence it has four interpreta-

tions. To denote interpretations, we use 00, 01, 10, and 11, where the first number represent

the value of val(x1[3i]), an the second number represents the value of val(x2[i]). It is easy to

check thatφ01 = φ10 = true andφ00 = φ11 = (i ≥ 5).

42

It is not hard to check that LOC formula interpretations have the following property:

(
∀ε ∈ Eφ : Vn

(β,A)[[ε]] = I(ε)
)

=⇒
(
Vn

(β,A)[[φ]] = Vn
(β,A)[[φI]] = φI(n)

)
. (2.18)

In words, if behavior(β,A) and integern agree with interpretationI on the values of all event

expressions, then they agree also on the value of the whole formula. In addition, formulaφI

is both a Presburger formula (because it has no events nor indexing) and an LOC formula

(because it has no quantifiers and its only free variable isi), so it may be evaluated in both

ways, but the two values are always the same.

To check whether a system satisfies an LOC formula, we will combine formula interpre-

tations with Presburger formulas characterizing the system, and we will reduce the original

problem to checking satisfiability of the combined formula. That will complete the proof, as

there are known algorithms to check satisfiability of a Presburger formula. In the following

Lemma, we establish that it is indeed possible to construct a Presburger formula characteriz-

ing a finitely-valued finite-state system. The construction is described in Appendix B.

Lemma 1 For a given finitely-valued finite-state system with no annotation axioms, and a

given LOC formulaφ, it is possible to construct, for each interpretationI of Eφ, a Pres-

burger formulaSY SI in which i is the only free variable, such that for all integersn,

SY SI(n) is true if and only if there exists an annotated behavior(β,A) of the system such

thatVn
(β,A)[[ε]] = I(ε) for all ε ∈ Eφ.

43

x : 0

x : 1
x : 0

x : 0

x : 0

x : 0
x : 1

x : 0

1

2 3

4

5

6 7

8

1

1

1

2

2

2
2

2

Figure 2.2:A system generating 1 for every third value ofx1 and every fifth value ofx2

Consider, for example, the system shown in Figure 2.2. It has eight states, two binary

valued events,x1 andx2, and no annotations. A transition label of the formxk : v indi-

cates thatxk is generated with valuev on that transition. The system in Figure 2.2 satisfies

formula (2.17), becausex1[3i] is always1, andx2[i] is 0 for all i < 5. With respect to in-

terpretations of (2.17), one can easily verify thatSY S00 = SY S01 = false, becausex1[3i]

is never0, andSY S11 andSY S10 are3 (∃j > 0 : i = 5j) and (i > 0) ∧ (∃j : i = 5j)

respectively, because every fifth values ofx2[i] is 1.

Theorem 3 For a given finitely-valued finite-state system with no annotation axioms, and

a given LOC formulaφ, let formulasSY SI satisfy the property from Lemma 1, for each

interpretationI of Eφ. The system satisfiesφ if and only if the the following Presburger

formula isnotsatisfiable: ∨
I

SY SI ∧ φI , (2.19)

where the finite disjunction ranges over all interpretations ofEφ.

3We use∃j > 0 : φ to abbreviate∃j : (j > 0) ∧ φ.

44

To show one direction, assume that the system does not satisfy the property, i.e. assume

that there exists an annotated behavior(β,A), and an integern such that,Vn
(β,A)[[φ]] = false,

or equivalentlyVn
(β,A)[[φ]] = true. Let I be the interpretation induced by(β,A) andn, i.e. set

I(ε) to Vn
(β,A)[[ε]] for all ε ∈ Eφ. By Lemma 1,SY SI(n) is true, and by (2.18) so isI(φ)(n),

so the formula is satisfiable.

For the other direction, assume that the formula is satisfiable, and letI andn be such

that bothSY SI(n) andI(φ)(n) are true. By Lemma 1, there exists an annotated behavior

(β,A) such thatVn
(β,A)[[ε]] = I(ε) for all ε ∈ Eφ, and by (2.18)Vn

(β,A)[[φ]] = I(φ)(n) = true,

implying thatVn
(β,A)[[φ]] = false, i.e. the system does not satisfy the property.

For example, the negation formula (2.17) has the following interpretations:φ01 = φ10 =

false andφ00 = φ11 = (i < 5), so for the system is Figure 2.2, formula (2.19) becomes

(∃j > 0 : i = 5j) ∧ (i < 5) ,

which is clearly not satisfiable.

Theorem 3 provides a constructive way of reducing the original problem to satisfiability

of a Presburger formula. Theorem 2 then follows as a simple corollary. The described algo-

rithm proves decidability, but it has a very high complexity. The number of interpretations

may be exponential in the size of formula, and the best known algorithm for checking satis-

fiability of Presburger formulas is doubly exponential in the worst case. There may be cases

in practice that are much better than the worst case, but it is still unlikely that the proposed

45

algorithm will have a wide-spread use. It is therefore reasonable to search for alternative,

more efficient verification algorithms, applicable to some reasonable subset of LOC. In Sec-

tion 2.5, a couple of approaches along these lines has been proposed. But here we show that

several approaches that one may consider are in fact not feasible.

Each LOC formula defines a language consisting of annotated behaviors that it satisfies. If

we could construct an automaton with the same language, we could reduce LOC verification

to the language containment problem, which has known algorithms linear in the number of

states of the system and the property automaton. Indeed, this approach is possible for a

very limited subset of LOC (as shown in Section 2.5), but languages of many simple LOC

formulas cannot be represented by a finite-state automaton. Here are a few example:

• two events, all index expression justi, e.g.

val(x[i]) = val(y[i]) ,

• a single event, all index expressions linear, e.g.

val(x[i]) = val(x[2i]) ,

• a single event, and a single event expression, e.g.

val(x[i2]) = 1 .

46

In the examples above we assume all events to be finitely valued. Still, it is not hard to show,

using the pumping lemma for regular sets [44], that none of the formulas above define a

regular language. Note that first two examples satisfy the conditions of Theorem 2 and could

be checked with the proposed algorithm.

Another approach might be to use a class of automata that is more expressive than finite-

state ones. For example one may consider pushdown automata that can define context-free

languages. Unfortunately, this is not possible in general, either. For example, if eventx takes

values from{0, 1, 2, 3}, the formula:

(val(x[i]) = 0 =⇒ (val(x[i+ 1]) = 0 ∨ val(x[i+ 1]) = 1))∧

(val(x[i]) = 1 =⇒ (val(x[i+ 1]) = 1 ∨ val(x[i+ 1]) = 2))∧

(val(x[i]) = 2 =⇒ (val(x[i+ 1]) = 2 ∨ val(x[i+ 1]) = 3))∧

(val(x[i]) = 3 =⇒ (val(x[i+ 1]) = 3))∧

((val(x[i− 1]) = 0 ∧ val(x[i]) = 1) =⇒

(val(x[2i− 1]) = 1 ∧ val(x[2i]) = 2 ∧

val(x[3i− 1]) = 2 ∧ val(x[3i]) = 3))

defines the language:

{s : s is a prefix of0n1n2n3∗ for somen ≥ 0} ,

for which it is easy to show that it is not context-free (e.g. see Example 6.1 in [44]).

47

One approach to generating an automaton for an LOC formula is to buffer event values.

Once all the values needed to evaluate the formula for a particular value ofi are in the buffer,

the formula can be evaluated for that value ofi. Once all values ofi that need a particular

event value are evaluated, the event value can be removed from the buffer. The results above

indicate that the buffer sizes cannot be bounded in general. However, one may hope that for

a specific finite-state system, a suitable bound can be found. Ideally, a bound may be found

for any finite-state system.

For example, any implementation of a FIFO queue needs to satisfy the data consistency

property (2.6) , i.e. thei-th value retrieved from the FIFO must match thei-the value put

into it. Clearly, we cannot represent this property with a finite-state automaton, as we can-

not bound in general the difference between the number ofinput events and the number of

output events. However, for any particular FIFO implementation, this bound can be eas-

ily established, it is just the size of the FIFO. Thus, the size of the buffer in the checking

automaton need not be bigger than the size of the FIFO. One may hope that this reasoning

generalizes to any similar property and any finitely-valued finite-state system.

To the best of our knowledge, it is not known whether a bound on buffers can be found for

any finite-state systems. However, we will use an example to show that even if such a bound

can be found, it will sometimes be too big for an efficient verification algorithm. In general,

the example is a finitely-valued finite-state system that may generaten different binary events

x1, . . . , xn, and hasp1 + · · ·+ pn states, wherep1, . . . , pn are firstn primes. The system has

n loops, and thek-th loop haspk states. The system first circles through the firstp1 states,

48

generatingx1 with value 0p1 − 1 times followed by generatingx1 with value 1 once. At the

end of the loop there is a choice of repeating it or moving to the next loop. The system in

Figure 2.2 is actually a part of such a system forp2 = 3 andp3 = 5. The language generated

the system withn loops consists of all prefixes of strings defined by regular expression:

(x1 : 0p1−1 x1 : 1)+ (x2 : 0p2−1 x2 : 1)+ . . . (xn : 0pn−1 xn : 1)+ .

Now, consider the LOC formulaval(x1[i]) = val(x2[i]) = · · · = val(xn[i]) = 1. (For read-

ability and conciseness, we abbreviate formulas of the typeτ1 = τ2 ∧ τ2 = τ3 to τ1 = τ2 =

τ3.) It is not satisfied, but the smallest value ofi that violates it isp1 ∗ p2 ∗ · · · ∗ pn. Since the

system generates allx1’s before generating any other events, allp1 ∗ p2 ∗ · · · ∗ pn values ofx1

(andx2, . . . , xn−1 for that matter) would have to be buffered. Therefore, the size of the buffer

have to be at least exponential in the number of states of the checked automaton, implying

that the number of states of the checking automaton has to be at least doubly exponential.

More practical approaches are needed.

49

Chapter 3

Simulation Verification and Analysis

Based on Formal Assertions

Simulation is the primary verification method at all the stages of the design flow, from the

system level down to the transistor level. With formal specification of design constraints (i.e.

assertions), designers are allowed to precisely specify what they want to check or analyze for

a design in verification, and the simulation verification and analysis process can therefore be

automated. This chapter focuses on assertion-based simulation verification.

3.1 Methodology of Simulation Verification and Analysis

Figure 3.1 illustrates the methodology of the simulation verification based on formal asser-

tions with automatic trace checker generation. Designers are responsible for the specification

of design constraints with certain formal languages such as LTL and LOC. Automatic tools

50

Automatic
Checker Generation

Simulation Trace

Simulation

in LTL/LOC

Trace Checker/

System Design
Design Constraints

Simulation Monitor

Trace Checking
& Analysis

Error Report

Figure 3.1:Simulation verification and analysis based on formal assertions

are utilized to generate simulation monitors or static checkers for trace analysis. Simulation

traces can then be checked during or after simulation, and design errors are reported if there

is any constraint violation. According to an error report, designers can either correct the

original design or revise the constraint specifications until the trace analysis passes the ver-

ification. In this simulation verification and analysis methodology for system level designs,

the state transitions are modeled as event occurrences. This is consistent with transaction

abstraction since only the events ordering are considered, not their tick-by-tick cycle level

behavior.1

As shown in Section 2.3, LTL and LOC have different domains of expressiveness and

indeed complement each other quite well. According to our experience, most functional

constraints, such as mutual exclusion, non-starvation, and safety, can be easily expressed

1To handle cycle level analysis, designers only need to output clock ticks as events.

51

with LTL. On the other hand, LOC is more suitable for expressing quantitative performance

constraints such as rate and latency, and transaction level functional constraints such as I/O

data consistency. In this study, the formal specification of design constraints are mainly

based on these two logics. We leverage an existing tool FoCs [14] to generate checker cores

for LTL formulas and then use our tool to automatically generate wrappers that are necessary

for simulation monitors and stand-along trace checkers. Since simulation sessions are finite,

the linear temporal operators are interpreted over finite system executions by checking the

conditions only up to the end of executions. An automatic tool set [13] has been developed

to generate trace checkers and simulation monitors for given LOC formulas according to the

algorithms and data structures presented in Section 2.4.

3.2 Simulation Verification in Metropolis

The assertion-based simulation verification methodology has been integrated in the Metropo-

lis design framework. From formal specification of LOC or LTL constraints in MMM, run-

time monitors or static checkers can be automatically generated along with simulation mod-

els in the integrated framework. Various functional and performance constraints can then

be checked during or after simulation. In this section, two design examples are used to

demonstrate the methodology implemented in Metropolis. The first is a system level de-

sign for set-top video processing,Picture-in-Picture (PiP), which is originally specified with

YAPI [49]. PiP is partially respecified and simulated with Metropolis. The other one is a

52

USRCONTROL

JU
G

G
L

E
R

MPEG

MPEG

RESIZE

PES_PARSERTS_DEMUX

PIP

Figure 3.2:Picture-in-Picture design

high level model of function-architecture mapping. We use the generated trace checkers to

verify a wide variety of functional and performance constraints.

3.2.1 A Picture-in-Picture Design

Figure 3.2 shows the PiP design. TSDEMUX demultiplexes the single input transport stream

(TS) into multiple packetized elementary streams (PES). PESPARSER parses the packetized

elementary streams to obtain MPEG video streams. Under the control of the user (USRCON-

TROL), decoded video streams can either be resized (through RESIZE) or directly feed to

JUGGLER that combines the video frames to produce the picture-in-picture videos. The en-

tire description consists of approximately 19,000 lines of Metropolis and YAPI code. With

the sample input stream we used, it produced 120,000 lines of output representing header

information for the processed frames.

In the transaction-level design of PiP, where time is still not available, we can check both

functional and performance constraints with proper annotations output from the simulation.

In the component RESIZE of PiP, the video frames processed are in interlaced format with

53

RESIZE field_start field_count: 2 size: 6720

RESIZE field_start field_count: 3 size: 10368

WINDOW win_params_update x_begin: 12 y_begin: 6

RESIZE field_start field_count: 4 size: 14016

USRCONTROL write pixels_out: 144

USRCONTROL write lines_out: 64
THSRC_CTL_OUT finfo_write value: 12876

WINDOW win_params_update x_begin: 12 y_begin: 6

WINDOW_DATA_OUT 23483 87000

Figure 3.3:PiP simulation trace

alternating fields of all odd lines, then all even. The frame size should only change after a

complete frame, each of which has 2 fields, is produced. Therefore, the field sizes of paired

even and odd fields should be the same. This constraint can be specified as an LOC formula:

size(field start [2i+ 2])− size(field start [2i+ 1]) =

size(field start [2i+ 1])− size(field start [2i]) , (3.1)

wherefield start is an event, at which RESIZE starts to output a new image field. The

annotationsize is the cumulative number of pixels processed by RESIZE. Figure 3.3 shows

snapshots of the PiP trace. The generation of the checker for this LOC formula and the actual

checking on the simulation trace take less than 1 minute of CPU time.

Another functional constraint we are interested in is that the number of the fields the

RESIZE component reads in should be equal to the number of fields it produces. Two local

54

counters, one at RESIZE’s input part and one at its output part, provide these annotations.

After a piece of video is processed, these two counters need to be compared to see if the

constraint is satisfied. The LOC formula used to check this constraint is:

field cnt(in[i]) = field cnt(out [i]) . (3.2)

The eventsin andout are generated by the input and output parts of RESIZE respectively

whenever they finish processing a whole piece of video. The annotationfield cnt represents

the number of fields processed by the input and output parts of RESIZE. The generation of

the checker for this formula and the actual trace checking take less than 1 minute of CPU

time.

We can also check performance constraints such as latency. The latency issue in RESIZE

relates to the timely response to the size specification from the user. Since PiP is specified

at the behavioral level, no detail timing information is available. We therefore specify a

bound (e.g. 5) on the number of fields processed between reading a new size specification

(read size) and the actual change in the output video image size (change size):

field cnt(change size[i])− field cnt(read size[i]) ≤ 5 , (3.3)

where eventread size is generated whenever RESIZE reads a new size specification from

USRCONTROL, and eventchange size is generated whenever the size of the output video

image is actually changed. The annotationfield cnt is the value of a global counter that is

55

CPUSched1CPU1 CPU2

Bus

Mem

CPUSched2

MemSched1

BusSched

SwTask1 SwTask4SwTask3SwTask2
Arch

S1

S2

Join Sink
channel1

channel2
channel3

Func

Mapping

Figure 3.4:A function-architecture mapping model

incremented by one whenever RESIZE processes a new frame field. The generation of the

checker for this LOC formula and the actual trace checking also take less than 1 minute of

CPU time.

3.2.2 A Function-Architecture Mapping Model

In the platform-based design, mapping is the key procedure that correlates the function to

the architecture of a design. In this design example (as shown in Figure 3.4), two source

processes (S1 and S2) write data into two independent channels. A separate process (Join)

then reads data items from both channels, manipulates them, and then sends the result data to

another process (Sink) through another channel. In the abstract architecture model, there are

two CPU/RTOS units, a bus unit, a memory unit, and a quantity manager (i.e. scheduler) for

each architectural unit.2 A CPU unit can be shared among several software tasks that may

2An architectural unit is modeled as a medium in Metropolis.

56

request services from it. When more than one service request is issued to a CPU, arbitration

is needed. The mapping procedure synchronizes the processes in the function model and the

mapping processes (representing software tasks) in the architecture model. In this example,

functional processes S1 and S2 are mapped to mapping processes SwTask1 and SwTask2,

respectively, which are associated to CPU1, and the other two processes are mapped to CPU2.

The CPU quantity managers implement a non-preemptive static-priority dynamic scheduling

policy. The two CPU units are connected to the bus, and the bus is connected to the memory

unit. During simulation, the functional events are time-stamped through the architecture

model, and thus various performance constraints can be analyzed. With the sample input we

used, the simulation took 14 minutes and produced a 1.1G trace file with 2.36×107 lines.

We analyze the throughput of the model by using an LOC formula:

time(Sink read [i+ 100])− time(Sink read [i]) ≤ 5.0× 10−5 , (3.4)

where eventSink read represents the read operation by process Sink. The formula passes

the trace verification in less than one minute, which means process Sink can perform at least

100 read operations in every time period of 5.0 ns.

Similarly, we can check the latency between the source processes and process Sink by

checking their events representing write and read operations respectively:

time(Sink read [i])− time(S1 write[i]) ≤ 1.5× 10−7 , (3.5)

57

and

time(Sink read [i])− time(S2 write[i]) ≤ 1.5× 10−7 . (3.6)

We can also analyze the processing delay of process Join using the formula:

time(Join write[i])− time(Join read [i]) ≤ 5.0× 10−7 . (3.7)

It should be emphasized that timing is only one of the possible annotations we can use in

LOC to analyze quantitative constraints of a design. Any values associated with events can

be used as annotations to check corresponding constraints (e.g. data value or power).

In addition, LTL formulas can be used to verify temporal constraints of the events gen-

erated by different processes (e.g. the event order). For example, the constraint that process

Join cannot read before both source processes write, and process Sink cannot read before

process Join writes can be verified with the formula:

G((¬Join read U (S1 write ∧ S2 write)) ∧ (¬Sink read UJoin write)) . (3.8)

Given the trace size, all these constraints formulas can be analyzed within one minute.

3.3 Verification for Network Processor Architectures

We also integrate our assertion verification methodology into the design flow for high perfor-

mance network processors. Based on Intel IXP1200 [3] network processor model, in-house

58

designers have been putting together a new architecture which is capable of higher through-

put, lower latency, and lower cost. The processor model is parameterized, so that a whole

range of different architectures can be explored. Using our assertion verification method-

ology, designers were able to write assertions and automatically generate trace checkers or

simulation monitors throughout the design process to check functionality and performance

characteristics. Bugs were subsequently found and corrected.

3.3.1 Introduction to Network Processors

As Internet gets more and more complicated with the rise of new protocols and services, so

does the cost of new equipment and upgrades. A network processor (NPU) is a base hardware

platform that provides high performance and flexible programming capabilities, which allows

it to address many market segments and a wide range of applications. As a result, the cost

of upgrade can be reduced and developing cycles for new protocols and data types can be

shortened. Therefore, NPUs are poised to replace expensive and inflexible fixed-function

silicon application-specific integrated circuits (ASICs).

A number of challenges for NPU implementation are already evident. Performance and

power dissipation are the most important among them. While high performance is achieved

by increasing the working frequency and the degree of parallelism, power dissipation has

been also increased significantly. For example, in a typical router configuration, there may

be one or two NPUs per line card. A group of line cards, e.g. 16 or 32, are generally placed

within a single rack or cabinet. Thus, the aggregated heat dissipation becomes a big concern,

59

given that each NPU typically consumes around 20 Watts and the operating temperature can

reach as high as70oC [10]. On the other hand, with the demand of performance scaling,

NPU’s clock frequency is increasing and more computation engines will be put on an NPU.

Table 3.1 shows the power and performance changes in three Intel IXP family NPUs [3,9,10].

Note that the power dissipation increases as the complexity of NPU increases. This trend

brings significant challenges for the NPU design.

System level modeling with executable languages such as C/C++ or other modeling

frameworks have been crucial in designing large electronic systems. Unfortunately, most

cycle-level accurate simulators only report performance and power data for worst and/or av-

erage cases. These data pose limitation on power/performance analysis. For example, an

NPU’s performance and power dissipation are closely related to the workload, namely the

incoming packet rate. The workload is usually unbalanced, in temporal scale or geograph-

ical scale, which may cause extreme high power dissipation occasionally. The unbalanced

workload provides opportunities for power and performance tuning. Therefore, the power

and performance distribution patterns are important complements to average/worst-case data

in the design exploration.

Table 3.1:Power and performance of Intel IXP NPUs

Description IXP1200 IXP2400 IXP2800
Performance(MIPS) 1200 4800 23000
Media Bandwidth(Gbps) 1 2.4 10
Frequency of ME(MHz) 232 600 1400
Number of MEs 6 8 16
Power(W) 4.5 10 14

60

The methodology proposed in Section 3.1 is implemented for verifying and analyzing

basic functional and performance constraints of an NPU design. It will be shown that the

assertion-based analysis methodology is also very suitable for transaction-level or cycle-level

design exploration, specially in power and performance analysis for NPU designs. From for-

mally specified assertions, trace checkers and distribution analyzers are automatically gener-

ated to validate or analyze simulation traces. Designers do not need to write separate refer-

ence models or scripts to scan through the traces. So it is very efficient in design exploration

for large systems with high complexity and functionality such as NPU designs.

3.3.2 Network Processor Model

Intel IXP1200 [3] is chosen as the reference model due to its overwhelming popularity in the

network processing applications. Given normal-size IP packets, it can achieve up to 2.2 Gbps

routing bandwidth. Being sold commercially, the processor model has been made available

to the public in order to help the designers build systems based on IXP1200. The basic

architecture of the processor is shown in Figure 3.5. IXP1200 consists of a StrongARM

core, 6 multi-threaded processing units, which are called microengines, and controllers of

peripheral units. The StrongARM core initializes the program store of the microengines

and loads necessary data into memory before enabling the microengines. Each of the six

microengines runs up to four threads concurrently. Thus, a total of up to 24 threads can be

programmed to receive, process and transmit IP packets. The controllers of SRAM, SDRAM

and IX Bus units serve the processor as interfaces to off-chip SRAM, typically used to store

61

StrongARM core

IXP 1200 IX Bus

sdram

cmd
bus

P4

P0 ME0
Register File

command
bus

arbiter

SRAM

SDRAM

IX Bus

controller

controllor

controller

P4

P0

P4

P0 ME1
Register File

ME5
Register File

RFIFO

TFIFO

sram

scratchpad

C
A
M

cmd FIFO

cmd FIFO

cmd FIFO

Figure 3.5:IXP1200 architecture

forwarding table, SDRAM, typically used to store IP packets, and network devices through

the IX Bus.

The threads in a microengine share common ALU, pipelining, and scheduling units. In-

side a microengine, each thread has an independent set of registers including general purpose

registers, local control registers, SRAM transfer registers and SDRAM transfer registers. The

microengine’s instruction set architecture contains 33 categories of instructions. Because

each instruction may have a number of different operations, the total number of op-codes

implemented is around 120. For example, thesram instruction has operations such asread,

write, push andpop, each of which corresponds to a unique op-code. Each microengine has

a 5-stage pipeline (P0 through P4): Instruction Fetch, Instruction Decoding, Operand Fetch,

Instruction Execution, and Write-Back.

62

In each microengine, memory references, which are called commands, are issued to a

two-entry command FIFO. The commands are then sent to the command bus and scheduled

by the command bus arbiter. Based on the priority of commands, the command bus arbiter

selects one or more reference commands among the six command FIFOs and move them to

the corresponding memory controllers. The SRAM controller handles all SRAM reference

commands issued from the microengines. Each SRAM reference command is enqueued,

dequeued, committed and finally done. SDRAM reference commands are handled similarly

by the SDRAM controller.

In this study, the NePSim simulator [52] is used to model NPU architectures. NePSim

is based on Intel IXP1200 and includes a cycle-accurate architecture simulator and a power

estimator. All the configurations in NePSim are parameterizable. When the architectural

parameters (e.g. number of microengines, number of threads in each microengine, number

and length of FIFO queues, size of the caches, scheduling policies) are set to be that of the

IXP1200, the behaviors of the two processor models are expected to be very similar. When

we vary the parameters, the functional “correctness” is expected to be maintained while the

performance attributes are expected to change, trading off one metric against another. Ulti-

mately, we can arrive at a design that is most suitable to the applications at hand.

3.3.3 Experimental Settings

In order to verify the processor architectural models, a set of architectural execution events

that occur during simulation are generated as simulation traces. They include instructions en-

63

Table 3.2:List of events for verification

Event Type Comments
pipeline an instruction enters the pipeline
sram enq an SRAM access request is enqueued
sram deq an SRAM access request is dequeued
sram done an SRAM access request is committed
sdram enq an SDRAM access request is enqueued
sdram deq an SDRAM access request is dequeued
sdram done an SDRAM access request is committed
bus issued a bus request is issued
bus done a bus request is committed
ip lookup start an IP address lookup starts
ip lookup done an IP address lookup finishes
receive an IP packet is received
forward an IP packet is forwarded

tering or leaving the pipeline, memory reference commands being put into or removed from

the command queues in memory controllers, signals being generated from or consumed by

functional units and threads. Table 3.3.3 lists the events that we are interested in for the veri-

fication studies. To differentiate events generated by different microengine, different threads,

and different architecture models, each event could be appropriately prefixed and suffixed.

For example,m2 t1 pipeline IXP represents the pipelining event from the microengine 2,

thread 1 of the Intel IXP1200 model. An event is annotated with timing, identification, and

other quantitative information. As presented in this section, each event instance is associated

with four annotations,cycle, pc, addr, anddata, wherecycle is used to measure time in clock

cycles, andpc is the PC (Program Counter) value for the current instruction. Depending on

the event,addr may represent memory address or next PC (NPC) address, anddata may

represent data read from memory or ALU operation result.

64

1733 19 00000300 00000000 m0_t0_sram_enq

1731 68 00120100 00000000 m2_t2_pipeline

1733 20 00000300 00000000 m0_t0_sram_deq

1733 30 00000300 00000000 m1_t0_pipeline
1733 30 00000300 00000000 m2_t0_pipeline
1733 30 00000300 00000000 m3_t0_pipeline

1732 34 0000FFF8 00000000 m5_t1_receive

1734 69 0000003F 0000050C m2_t2_pipeline
1735 34 00000300 00000518 m5_t2_pipeline
1736 35 0000001B 0000051C m5_t2_forward
1736 36 00178000 00000520 m5_t2_pipeline
1737 72 00020100 00000524 m2_t2_pipeline
1737 20 00000300 00000000 m0_t0_sram_done

Figure 3.6:NePSim simulation trace

Traces from NePSim are taken “as is” and fed into automatically generated trace check-

ers. Log traces from Intel IXP1200 are preprocessed in a straightforward manner before

being fed into trace checkers so that each event has the above annotations on the same line,

though there is no difficulty in writing a separate trace format for IXP1200. A snapshot of

the simulation trace from NePSim is shown in Figure 3.6.

In the following verification studies, we run a trie-based route lookup benchmark [60] on

NePSim and Intel IXP1200 processor models. The benchmark program is an infinite loop

which continuously look up the route for a list of IP addresses. The trie data structure is

stored in SRAM and accessed through the SRAM instructions.

3.3.4 Verification Studies

We present three categories of assertion verification throughout the design process in this

section. First, we would like to know whether NePSim, with parameters equal to those of

65

IXP1200, would achieve the same functionality and “similar” performance. We then vary

the design parameters (i.e. number of microengines, number of threads, configuration of the

microengines, amount of caches, ..., etc,) and in each case, check functional correctness of

the new design with functional assertions. Varying the design parameters obviously affect

the performance. We use performance assertion checking to determine the performance of a

particular design given a particular simulation input.

Checking with Reference Model

Using LOC, we can formally and accurately specify both functional equivalence and per-

formance similarity of two designs.3 We run the same benchmark on NePSim and Intel

IXP1200 models, and use the simulation trace from IXP1200 as the reference trace. First, we

check if the NePSim model is functionally equivalent to the reference model. The primary

function of the model resides in the forwarding table lookup for IP packets being processed,

which involves correct reading from the SRAM. More specifically, we want to check the

following constraint:

“For each SRAM access on NePSim and IXP1200, the associated memory address and

data should be the same, and all the SRAM references are executed with the same order.”

This constraint can be specified with an LOC formula:

addr(sram enq[i]) = addr(sram enq IXP [i])∧data(sram done[i]) = data(sram done IXP [i])

(3.9)

3The requirements for checking functional equivalence and performance similarity are directly from the
designers.

66

We run the benchmark on NePSim and IXP1200 for one million cycles to obtain traces

of about3 × 105 lines. Both models are configured with a single working microengine and

a single working thread so that the packet processing order is deterministic. With the auto-

matically generated trace checker, we show that this formula pass with the given benchmark

trace within 6 seconds of CPU time (see Table 3.3.) All the trace checkings presented in

this section were run on our Athlon 1.5GHz Linux machine with 1GB memory, though the

simulation sessions were run by the designers on their own machines. We report time and

memory usage only for the trace checking operations. In a preliminary version of the de-

sign, the functional equivalence checking was violated. The error report helped the designers

identify a real bug in the SRAM request scheduling algorithm.

Comparing the simulation trace from NePSim to the reference IXP1200, we also want to

make sure that the instruction pipelining behavior of NePSim is “similar” in performance to

that of IXP1200. More specifically, this constraint requires:

“On the two models, all the instructions in the benchmark are executed with the same

order, and the execution time of every pipelining instruction by NePSim is no more than

certain clock cycles away from the execution time of the corresponding instruction by Intel

IXP1200.”

This constraint can be specified with an LOC formula:

(pc(pipeline[i]) = pc(pipeline IXP [i])) ∧

(|cycle(pipeline[i])− cycle(pipeline IXP [i])| ≤ A · i+B), (3.10)

67

whereA andB are constants. The second part of the formula holds if and only if, for a

particular pipeline event, the difference in time of occurrence in NePSim and Intel IXP1200

is within A · i + B. As simulation progress, the difference accumulates, which is reflected

by A · i. The difference in startup time is accounted for by constantB. If the two designs

are truly identical, both values should be zero. The designers decided that, to account for

the differences in the two designs, the acceptable values ofA andB should be0.05, and8,

respectively. The formula failed almost immediately, and after going through the error report

and debugging the NePSim design, it was found that the SRAM access latency was not mod-

eled correctly. Once the error was fixed, the performance assertion passed (see Table 3.3).

This performance margin is sufficient for designers to declare that NePSim and IXP1200 are

similar in performance.

With the same formula (3.10) and substituting for thepipeline event, we can check the

performance similarity of other critical events such assram enq, sram done, andsdram enq,

with different acceptable values ofA andB, determined by the designers.

Functional Verification

Due to the non-determinism in thread handling within the network processor models, it is

difficult to perform deterministic functional equivalence trace checking when there are more

than one thread enabled. For normal multi-thread operations, functional constraint verifica-

tion, based on both LTL and LOC, can be very useful. Designers can write their functional

assertions in LTL or LOC. For LTL assertions, we use FoCs to generate the assertion check-

ing code in C++, and our tool then generates the necessary wrappers for trace checking.

68

To verify the normal operation of the NePSim processor model, We configure it with 6

working microengines (4 of them (m0 - m3) used for forwarding table lookup and 2 of them

(m4, m5) used for IP packet transmission) and 4 working threads for each microengine, and

run the benchmark on NePSim for one million cycles. We want to check a non-starvation

constraint for the SRAM controller of NePSim:

“Once an SRAM access request from a thread (e.g. thread 0) of a microengine (e.g.

microengine 0) is enqueued, it must be eventually committed within the next 300 SRAM

related event occurrences.”

This constraint can be specified with an LTL formula:

G(m0 t0 sram enq → X[1 : 300](m0 t0 sram done)) . (3.11)

To check this constraint, we only produce the events that are related to SRAM references to

get a trace of2.8 × 105 lines. The parameterized wrapper generator can easily generate this

assertion for all threads in all microengines, and for SDRAM controller and IX bus controller.

Another important constraint of the memory access scheduler is the correct occurring

order of the eventssram enq, sram deq, andsram done, which requires that “after an

SRAM request by a thread (e.g. thread 1) of a microengine (e.g. microengine 0) is issued

and put into the scheduling FIFO, it cannot be done before it is dequeued”. This constraint

of occurring order can be specified with a formula:

G(m0 t1 sram enq → ¬m0 t1 sram done Um0 t1 sram deq) . (3.12)

69

Table 3.3:Verification results for functional assertions

Formula Formula Instances Trace Lines Mem Time
(3.9) 10267 3× 105 40KB 6s
(3.10) 295582 3× 105 64.8 KB 7s
(3.11) 5690 2.8× 105 0.4KB 77s
(3.12) 5739 7.0× 106 50 Bytes 24s
(3.13) 5708 7.0× 106 12 Bytes 59s

Note that if the simulation trace ends, the verification of the formula will be interpreted on

a finite trace. For example, formula (3.12) will not be violated ifsram enq occurs and then

neithersram done norsram deq occurs when the trace ends.

Using LOC, we can specify data consistency constraints for different functional units.

For example, when an SRAM access request is put into to the scheduling FIFO by a thread

(e.g. thread 2) of a microengine (e.g. microengine 1) and then eventually committed, the

memory address it refers to should be the same. We express this constraint with the LOC

formula:

addr(m1 t2 sram enq[i]) = addr(m1 t2 sram done[i]) , (3.13)

where the annotationaddr is used to represent the referenced memory address. With the

automatically generated trace checkers, formula (3.11) - (3.13) are checked with no error.

The verification results are listed in Table 3.3.

Performance Assertions

The goal of design exploration for network processor is to find an architecture which would

perform “better” than the existing model. It is therefore very important to be able to analyze

70

quantitative constraints of a design. With LOC, we can express the performance requirements

or expected quantitative features. In this section, we continue with the parameter setting of

4 microengine for IP address lookup and 2 microengines for IP packet transmission. For

each microengine doing IP address lookup, we experiment with either running 2 threads or

4 threads. As a consequence, we compare the performance metrics for an 8-thread processor

model against the one with 16 threads. We run our benchmark on both configurations for one

million cycles, and get traces of about 3 million lines.

One primary function of the network processor is to perform IP address lookup, which

requires very frequent access to SRAM. Therefore, we want to check the latency between

an SRAM access request enqueued and when it is committed. We first check the SRAM

access latency from a thread (e.g. thread 0) of a microengine (e.g. microengine 2) for the two

configurations. We consider the maximum latency constraint, which can be expressed with

the following LOC formula:

cycle(m2 t0 sram done[i])− cycle(m2 t0 sram enq[i]) ≤ l1 . (3.14)

We iteratively search for the smallestl1 that will allow the traces to pass the performance

assertion (e.g. with a simple bi-partition approach on the range). For the 8-thread config-

uration, we were able to setl1 = 50, and the assertion can pass the trace checking without

any error. For the 16-thread configuration, in order to make the assertion pass, we have to

increase thel1 to 100. More threads can cause more memory access contention, and degrade

the latency for individual memory accesses. See Table 3.4 for a summary of the result.

71

The total number of running threads can actually affect the latency for individual IP ad-

dress lookups. The maximum latency of IP address lookups in a thread (e.g. thread 1) of a

microengine (e.g. microengine 0) can be specified with an LOC formula:

cycle(m0 t1 ip lookup start[i])− cycle(m0 t1 ip lookup done[i]) ≤ l2 . (3.15)

For the 8-thread configuration, we setl2 to be 900 for the assertion to pass. For the 16-thread

configuration,l2 needs to be 1200. Using the formula (3.15), we have explicitly shown

that the 8-thread configuration has lower latency for individual IP address lookups than the

16-thread configuration.

Of course, latency does not tell the whole story. Throughput is an equally important

design characteristic for network processors. More threads should achieve better overall

throughput. At the instruction level, we can check the throughput of pipelining instructions

for the processor using the LOC formula:

cycle(pipeline[i+ 10000])− cycle(pipeline[i]) ≤ t1 , (3.16)

which requires that withint1 cycles, at least 10000 instructions need to be issued to the

pipeline of the processor. For the 8-thread configuration, we need to sett1 = 4200 for the

assertion to pass. This corresponds to a minimum throughput of 2.3 instructions per cycle.

For the 16-thread configuration,t1 need to be set to3500, which corresponds to a minimum

throughput of 2.8 instructions per cycle. The 16-thread configuration has better instruction

throughput according to the analysis using the performance assertion (3.16).

72

The overall performance of the network processor is measured by the throughput of IP

packet forwarding, which can be expressed with the following LOC formula:

cycle(forward[i+ 1000])− cycle(forward[i]) ≤ t2 . (3.17)

In order for the performance assertion to pass, We need to sett2 = 3.7 × 105 for the 8-

thread configuration, and sett2 = 3× 105 for the 16-thread configuration. If we assume the

NePSim processor is running at 200MHz, we get the throughput for IP packet forwarding of

5.4× 105 packets/sec and6.6× 105 packets/sec for the 8-thread and 16-thread configuration,

respectively. Given the average packet size of 64 bytes, the routing throughput will be 2.8

Gbps and 3.3 Gbps respectively for the two configurations. Indeed, the designers need to

trade off latency and throughput for any given application to achieve the best design. LOC

assertion checking allows them to quantitatively analyze the performance of a system level

specification. During the design process, the designers can also experiment with increasing

the number of microengines, changing the size of scheduling FIFOs, or putting more caches

between storage hierarchies. All these design space explorations may bring various perfor-

mance trade-offs, which can be easily specified and analyzed by the formal performance

assertions.

The verification results of these LOC performance assertions are listed in Table 3.4. Since

a typical simulation session can take half an hour or longer, the CPU time and memory usage

for the trace checkers are trivial by comparison. Without them, however, it becomes very

73

Table 3.4:Verification results for performance assertions

Formula Configuration Parameters Time Memory
(3.14) 8-thread l1 = 50 18sec 12Bytes

16-thread l1 = 100 23sec 16Bytes
(3.15) 8-thread l2 = 900 46sec 8Bytes

16-thread l2 = 1200 44sec 8Bytes
(3.16) 8-thread t1 = 4200 20sec 40KB

16-thread t1 = 3500 26sec 40KB
(3.17) 8-thread t2 = 3.7× 105 44sec 4KB

16-thread t2 = 3× 105 44sec 4KB

difficult for the designers to conclude anything about the design except in very vague terms

(e.g. “looks good”). Our assertion-based verification methodology is indeed efficient for

dealing with large designs.

3.4 Performance and Power Analyis for Network Processor

Architectures

In this section, we focus on the assertion-based design exploration of dynamic voltage scaling

techniques in NPU architecture models. In order to efficiently analyze the power-performance

trade-offs among different DVS policies with different parameter settings, we use LOC to

specify assertion formulas for power and performance distributions. With automatically gen-

erated distribution analyzers, we can compare their power and performance characteristics

and identify optimal configurations in their large design spaces.

To automate quantitative distribution analysis that is common in design exploration, we

74

extend the LOC assertions by introducing 3 more operators./, / and .. To analyze the

distribution of some quantity over certain ranges, we can use a formula, in the form of

quantity ./ {min,max , step}, to automatically generate a corresponding analyzer. An

analysis periodis specified with a triple{min, max, step}, wheremin andmaxare lower

and upper bounds, and the interval between these two values is divided into bins of width

step. For example, given a formula:

(time(forward [i+ 100])− time(forward [i])) ./ {40, 80, 5} , (3.18)

an assertion analyzer is generated to evaluate the left hand side withi being 0, 1, 2, ... , and

report the percentage of formula instances whose values fall within the ranges of (−∞, 40],

(40, 45], ..., (75, 80], (80,+∞). If we replace the operator./ with / or ., the ranges become

(−∞, 40], (−∞, 45], ..., (−∞, 75], (−∞, 80] or [40,+∞), [45, +∞), ..., [75,+∞), [80,

+∞), respectively.

3.4.1 Experimental Settings

In this set of experiments, we use the same network processor simulator NePSim described

in Section 3.3 and choose four representative networking applications to explore different

architectural features of the NPU model, i.e.ipfwdr, url, nat, and md4. The application

ipfwdr is an IP forwarding software provided in Intel’s SDK. The routing table is stored

in the SRAM, and the output port information is stored in the SDRAM. The programurl

75

 0

 5e+07

 1e+08

 1.5e+08

 2e+08

 2.5e+08

 9:47 11:10 12:33 13:57 15:20 16:43

Th
ro

ug
hp

ut
 (b

its
/s

)

Time (Hour:Minute)

Max

Med

Min

Figure 3.7:Distribution of IP packets

routes packets based on URL requests. It checks the payload of packets frequently, so it

needs a large number of SRAM and SDRAM accesses. Innat (network address translation),

each packet only needs an access to SRAM for looking up the IP forwarding table. The

md4 provides a 128-bit digital signature algorithm. It moves data packets from SDRAM

to SRAM and accesses SRAM multiple times for computation. So it is both memory and

computation intensive. Memory accesses, specially SDRAM accesses, have long latency.

They lead to long idle time for MEs, which in turn shows up as lower power and throughput.

Computation-intensive benchmarks, those that do not wait on memories, will tend to show

higher power consumption.

The simulation data that we use follows IP traffic patterns in a real world edge router from

NLANR [12]. Figure 3.7 shows a day time distribution of IP packet arriving rates. Due to the

limited simulation speed of NePSim, it is too expensive to run the whole trace. We sample a

76

Table 3.5:List of events and event annotations for performance and power analysis

Events Details
pipeline an instruction enters the execution pipeline
forward an IP packet is forwarded
fifo an IP packet is put into the processing queue
Event Annotations Details
cycle number of core clock cycles elapsed from the beginning
time simulated time elapsed from the beginning
energy cumulative energy consumed
total pkt total packets received or transmitted
total bit total bits received or transmitted

few seconds of real traffic in high, medium, and low arriving rates as individual inputs to the

simulator.

Traces generated from simulation contain a set of architectural execution events that occur

frequently during simulation and a set of values related to power and performance, which are

called event annotations. In this set of experiments, three types of events,pipeline, forward ,

andfifo, are mainly used, as explained in Table 3.5. In a simulation trace, the events are

prefixed to differentiate different microengines (MEs), threads, or configurations. For exam-

ple, m2 pipelinerepresents a pipeline event from ME2. Each event is associated with five

annotations, also explained in Table 3.5. A snapshot of a trace file generated by NePSim

simulator is shown in Figure 3.8.

3.4.2 Dynamic Voltage Scaling

Dynamic voltage scaling (DVS) [23] is a popular low power technique that has been em-

ployed widely for microprocessors, resulting in significant power and energy savings. DVS

77

cycle time energy totalpkt total bit event
... ...

365 1.573 0.773932 1 4096 m2pipeline
365 1.573 0.768133 2 9216 m3pipeline
368 1.586 0.794108 1 4096 forward
368 1.586 0.784506 3 11264 m5pipeline
369 1.590 0.809369 2 9216 forward

... ...

Figure 3.8:NePSim simulation trace for performance and power analysis

exploits the variance of a processor’s utilization, reducing voltage and frequency (VF in

short) when the processor has low activity and increasing VF when the peak performance is

required. Dynamic power consumption is proportional toC ·Vdd2 ·α ·f , so reducing voltage

(Vdd) and frequency (f) can significantly reduce power consumption.

Although many DVS algorithms appear in literature, the unsolved difficulty is how to

derive the optimal settings from external observations, for example, by monitoring the work-

load or idle time. In this section, we will use assertion-based methodology to study and find

out optimal DVS parameters in NPUs.

3.4.3 Power Analysis

We first use our assertion-based analyzer to check the maximum power and power distribu-

tion for the NPU model. We simulate our 4 benchmarks, each of which is executed for 8×106

cycles with an unlimited packet arriving rate.

Long period of high power consumption can increase the temperature to the extend of

damaging the chips themselves. Therefore, we check a constraint for the maximum power

78

Table 3.6:Power values for the 4 benchmarks

ipfwdr md4 nat url
MAX 1.45 1.7 1.7 1.65
MIN 0.6 0.3 0.6 0.3

consumption in the six microengines: “the power consumption within every 5 instructions

pipelined should be smaller than a threshold valuea”. The constraint can be specified with

an LOC formula:

eng(pipeline[i+ 5])− eng(pipeline[i])

time(pipeline[i+ 5])− time(pipeline[i])
≤ a (3.19)

The number of 5 is the window size we used to observe the power. The window is slid-

ing, so all instances will be checked. It doesn’t change the results if the window size is 10

or 100. The checker executes in less than 1 minute of CPU time. The threshold valuea

in the formula (3.19) is changed gradually, and we get the maximum and minimum power

consumption in 5-pipeline-event time windows (Table 3.6). The characteristics of different

benchmark result in different min/max power.nat has highest maximum and minimum val-

ues. This is because it has no SDRAM accesses, so there is no long latency for memory

access and the MEs are kept busy running.

Besides checking whether the NPU consumes power within a safe range, we are also

interested in how the power values are distributed. We want to know whether it stays close to

the average value, or spreads over a wide range. Formula (3.19) is extended for distribution

79

Figure 3.9:Power distribution graph for 4 benchmarks

analysis as follows:

eng(pipeline[i+ 5])− eng(pipeline[i])

time(pipeline[i+ 5])− time(pipeline[i])
./ {0.40, 1.40, 0.01} (3.20)

Figure 3.9 shows the power distributions for the 4 benchmarks generated from the asser-

tion analyzer.4 We can see that all the benchmarks show a high percentage of power values

between 1.00W to 0.90W. The benchmarksipfwdr andmd4have 28% and 26% of total for-

mula instances (i.e.i’s) with power between 0.90W and 0.92W. Another frequent range is

between 0.98W and 1.00W, which is caused by some frequently used instruction patterns,

e.g. common computation operations. We can also see that the NPU is working around

±10% of the average power for around 70% of the total simulation time. The minimum and

maximum power consumptions rarely appear. This is a favorable situation to the chips since

they will not become too hot by running in high power for short spurts.

4For clearer presentation, infrequent ranges are merged in the graph.

80

3.4.4 Design Exploration for DVS

In a real system with DVS, the frequency and voltage are adjusted dynamically according to

the processing workload. A DVS scheduler relies on the history information of workload to

make decisions. In an NPU design, two types of information can be used for this purpose,

network traffic load and processor idle time. We call the two DVS policies traffic-based

dynamic voltage scaling (TDVS) and execution-based dynamic voltage scaling (EDVS). The

two policies are usually not combined since monitoring both traffic load and processor idle

time on a chip is expensive in terms of area and power.

We analyze the power-performance trade-offs of DVS policies by varying the window

size and threshold for voltage/frequency scaling, and search for optimal points in the design

space. We also compare the two DVS policies under different design requirements.

Traffic-based Dynamic Voltage Scaling

TDVS uses the total traffic load detected at the 16 device ports as the control parameter

for scaling. If the traffic volume in the previous time window is smaller or larger than a

particular threshold value, we scale down or up the VF of the processor by one step, until a

lower or upper bound is hit. The lower and upper bounds of VF, similar to those used in Intel

XScale [8], are from 400MHz to 600MHz and 1.1V to 1.3V. We set the frequency step to

50Mhz and compute the voltage as in XScale. In order to match higher NPU frequency, we

scale the speed of SDRAM, SRAM and ixbus to 1.3 times of those in IXP1200.

To estimate the power in TDVS, we modified NePSim’s power estimation module to

81

include the power overhead, a 32-bit adder. The adder is used to accumulate the packet sizes

in each monitor window, and compare the traffic volume with the threshold. Note this adder

is only used when a packet comes in, much less frequently than the ALUs in ME pipelines.

From the experiment results, we find the overhead is less than 1% of total power.

TDVS reduces the power, but it may adversely affect the performance. The clock cycle

becomes longer ifVdd is decreased, so the NPU takes longer time and possibly more energy

to get the same amount of work done. The trade-off motivates us to analyze both power

consumption and performance of the NPU with different TDVS policies applied. The goal

is to find the optimal points in the design space for each benchmark. We use the following

LOC formula to analyze the power consumption distribution:

energy(forward [i+ 100])− energy(forward [i])

time(forward [i+ 100])− time(forward [i])
. {0.5, 2.25, 0.01} . (3.21)

The left hand side of the formula calculates the average power consumption for each 100

packets forwarded.

To study the performance of the processor with various configurations, we analyze the

distribution of the transmitting throughputs using the following formula:

(total bit(forward [i+ 100])− total bit(forward [i]))/106

time(forward [i+ 100])− time(forward [i])
/ {100, 3300, 10} . (3.22)

The left hand side of the formula calculates the average forwarding bit rate in Mbps for each

100 packets forwarded.

82

Table 3.7:Voltage scaling values

Frequency (Mhz) 600 550 500 450 400
Voltage(V) 1.3 1.25 1.2 1.15 1.1
Traffic Threshold(Mbps) 1000 916 833 750 666

With the two formulas, we search for the optimal settings of TDVS policies. In TDVS,

two main types of parameters that need to be carefully tuned are the traffic thresholds and

window size. For each TDVS policy, the traffic thresholds are a set of volume numbers that

control the voltage scaling in different VF combinations. With the frequency and voltage

reduced, the traffic threshold is also lowered to match the reduced ME processing capability.

Taking ipfwdr as an example, if we choose a top threshold of 1000Mbps for the normal

frequency of 600MHz and other thresholds for reduced VFs are decided as listed in Table 3.7.

In our experiments, we use the benchmarkipfwdr to compare the TDVS policies with four

different top thresholds, 800, 1000, 1200 and 1400 Mbps.

The window size decides how long a traffic history is used to make voltage scaling deci-

sions, and it also directly affects the overall performance of the TDVS policy. For example,

if the window size is set to 20k clock cycles, the average traffic volume in the previous 20k

cycles is compared to the current threshold to decide whether the VF needs to be changed.

If a window size is too large, it may smooth the peak traffic with low traffic and miss a good

chance to reduce power; If window size is too small, VF may change too frequently, which

incurs more penalty and eventually hurts the performance. In the experiments, the penalty

for each voltage scaling is 10µs [52], which is equivalent to 6000 cycles at the normal fre-

83

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 #
 o

f i
ns

ta
nc

es

Power -- threshold 300Mbps

20K
40K
60K
80K

noDVS

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 #
 o

f i
ns

ta
nc

es

Power -- threshold 400Mbps

20K
40K
60K
80K

noDVS

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 #
 o

f i
ns

ta
nc

es

Power -- threshold 500Mbps

20K
40K
60K
80K

noDVS

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.6 0.8 1 1.2 1.4 1.6

N
or

m
al

iz
ed

 #
 o

f i
ns

ta
nc

es

Power -- threshold 600Mbps

20K
40K
60K
80K

noDVS

Figure 3.10:Power under different design points with TDVS

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 400 600 800 1000 1200 1400

N
or

m
al

iz
ed

 #
 o

f i
ns

ta
nc

es

Throughput -- threshold 800Mbps

20K
40K
60K
80K

noDVS

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 400 600 800 1000 1200 1400

N
or

m
al

iz
ed

 #
 o

f i
ns

ta
nc

es

Throughput -- threshold 1000Mbps

20K
40K
60K
80K

noDVS

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 400 600 800 1000 1200 1400

N
or

m
al

iz
ed

 #
 o

f i
ns

ta
nc

es

Throughput -- threshold 1200Mbps

20K
40K
60K
80K

noDVS

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 400 600 800 1000 1200 1400

N
or

m
al

iz
ed

 #
 o

f i
ns

ta
nc

es

Throughput -- threshold 1400Mbps

20K
40K
60K
80K

noDVS

Figure 3.11:Throughput under different design point with TDVS

quency of 600MHz. We compare 4 different window sizes foripfwdr, ranging from 20k to

80k cycles.

We run the simulation 8×106 cycles for each TDVS configuration. Using the automat-

ically generated distribution analyzer with the formulas (3.21) and (3.22), we compare the

84

power and performance distributions with different TDVS policies or no TDVS enabled. The

distributions for the power and performance are plotted in Figure 3.10 and Figure 3.11 re-

spectively. Each subgraph shows the power or throughput distribution with a particular top

threshold and different window sizes. In the power distribution graphs, the horizontal axis

represents possible power values and the vertical axis represents the percentages of assertion

instances that are smaller than particular power values. Similarly, in the throughput distribu-

tions, the vertical axis represents the percentages of assertion instances that are larger than

particular throughput values.

From Figure 3.10, we can see that compared with no TDVS policy, the power saving by

TDVS is obvious no matter what threshold or window size is chosen. And in most cases

(except with window size of 20k), the performance degradation is small (from Figure 3.11).

So it is shown that TDVS is a very successful power saving technique. We also see that

TDVS configurations with smaller window sizes have lower power consumption but worse

throughput, regardless the threshold values. When window size is small, e.g 20k, the TDVS

policy becomes very aggressive. The VFs are changed very frequently, and as a result, the

6000-cycle penalties almost consume 30% of the window time. That is the reason why there

is dramatic drop in throughput for window sizes of 20k. On the contrary, for 80k window

sizes, they still achieve certain power savings with almost no performance loss.

To compare the results of different thresholds more clearly and look for a best TDVS pol-

icy for ipfwdr with an optimal threshold-window size combination, we generate 3-D graphs

for power and performance distributions in Figure 3.12 and Figure 3.13. A vertex on the

85

 800
 900

 1000
 1100

 1200
 1300

 1400Threshold (Mbps) 20000
 30000

 40000
 50000

 60000
 70000

 80000

Window size (cycle)

 0.8
 0.85

 0.9
 0.95

 1
 1.05

 1.1
 1.15

 1.2
 1.25

Power (W)

Figure 3.12:Power under different design points with TDVS

 800
 900

 1000
 1100

 1200
 1300

 1400Threshold (Mbps) 20000
 30000

 40000
 50000

 60000
 70000

 80000

Window size (cycle)

 860

 880

 900

 920

 940

 960

 980

Throughput (Mbps)

Figure 3.13:Throughput under different design points with TDVS

surface shown in Figure 3.12 represents that 80% of formula (3.21) instances are lower than

a power value for a particular threshold and window size. Similarly, a vertex on the surface

in Figure 3.13 represents that 80% of formula (3.22) instances are higher than a throughput

86

value for a particular threshold and window size. As shown in Figure 3.12, for a particu-

lar window size, the threshold of 1000Mbps has higher power than others, and this trend

becomes more significant as the window size increases. As shown in Figure 3.13, if the win-

dow size is small, the performances for different thresholds are similar; as the window size

becomes larger, the performance for 1000Mbps threshold becomes much better than others.

Based on above analysis, if performance has a higher priority in the design, we should

choose threshold of 1000Mbps and 80k window size with limited power savings. On the other

hand, if saving power is more important, the configuration with 1400Mbps of top threshold

and 40k of window size is preferred.

Execution-based Dynamic Voltage Scaling

In execution based dynamic voltage scaling (EDVS), the idle time of a microengine is used

as the control parameter for voltage scaling. When the idle time is longer or shorter than a

certain percentage of an observed period, the VF of the microengine is scaled down or up by

one step, until a lower or upper bound is hit. Note that in EDVS, each ME changes its VF

independently.

Intuitively, ME idle time is usually seen to be proportional to the workload, which makes

TDVS and EDVS almost the same. However, this is not really the case in the NPU model.

Even if an ME does not process packets during low workload, it will actively execute in-

structions to poll the buffers and status registers to check new packets. In the NPU model,

the idle time of an ME is mainly introduced by long latency of memory accesses since an

87

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000 1100 1200 1300 1400

N
or

m
al

iz
ed

 #
 o

f i
ns

ta
nc

es

Throughput

20K
40K
60K
80K

noDVS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

N
or

m
al

iz
ed

 #
 o

f i
ns

ta
nc

es

Power

20K
40K
60K
80K

noDVS

Figure 3.14:Power and performance distribution for EDVS

SDRAM access can take as much as 100 clock cycles. If all the threads in an ME are waiting

for memory accesses to be completed, we consider the ME idle.

To analyze EDVS policies, the idle time thresholds and window sizes are the main param-

eters we study and others are configured as those used in TDVS. We use the assertion-based

distribution analyzer to find the good idle time thresholds by analyzing the distribution of the

idle time in simulations. It is observed that for receiving MEs, in around 90% of the total

simulation time, idle time is either under 5%, or between 30% and 40%. For transmitting

MEs, idle time is almost always under 5%. The microengines seem working under only two

statuses, either busy or idle. Here we simply choose the idle time threshold value as 10%, i.e.

if the idle time of an ME is longer or shorter than 10% of an observed period determined by

the window size, its VF may be changed. We study three different window sizes, 20k, 40k

and 60k and still useipfwdr as the example benchmark.

We run the simulation 8×106 cycles for each EDVS configuration and plot the distribu-

tions of throughput and power in Figure 3.14. From the power distribution graph, we observe

that power dissipation generally drops from 1.5W to 1.15W for most cases with EDVS ap-

88

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

noDVS
EDVS
TDVS

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

noDVS
EDVS
TDVS

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

noDVS
EDVS
TDVS

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

noDVS
EDVS
TDVS

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

noDVS
EDVS
TDVS

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

noDVS
EDVS
TDVS

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

noDVS
EDVS
TDVS

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

noDVS
EDVS
TDVS

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

noDVS
EDVS
TDVS

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

noDVS
EDVS
TDVS

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

noDVS
EDVS
TDVS

 0
 0.2
 0.4
 0.6
 0.8

 1

 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

noDVS
EDVS
TDVS

Power(W)- Min Power(W)- MedPower(W)- Max

N
or

m
al

iz
ed

 #
 o

f I
ns

ta
nc

es
ur

l

na

t

 m

d4

 i

pf
w

dr

Figure 3.15:Energy comparisons for employing DVS

plied, achieving around 23% of power saving. Meanwhile, there is nearly no performance

degradation from the throughput distributions. In EDVS, each ME changes its VF indepen-

dently and the transmitting MEs never scales down their VFs due to their low idle time.

Comparison between TDVS and EDVS

We have shown that both TDVS and EDVS are capable of saving power with little perfor-

mance impact. Now we are ready to compare the two policies, and find which one is better

given a particular power or performance requirement.

89

We sample the real traffic file in three periods with high, medium, and low traffic volumes

respectively. We simulate all four benchmarks with the optimal configurations (from previous

analysis) for two DVS policies and compare the power distributions in Figure 3.15. We don’t

show the throughput performances and only note that in all cases EDVS has no significant

performance loss while TDVS never drops more than 2-5% compared to the original NPU

model with no DVS applied.

Overall, TDVS has more power savings than EDVS. But as the traffic volume becomes

higher, power savings by TDVS are reduced quickly, while EDVS has a more steady reduc-

tion under every situation. EDVS has better results for memory intensive benchmarks. We

observe thatipfwdr shows the most power savings if traffic volume is medium or high. This

is becauseipfwdr needs to check routing tables in SRAM and the output port information in

SDRAM for each packet. There are plenty of opportunities for EDVS. The benchmarknat

shows no power savings from EDVS under every traffic patterns due to the fact thatnat has

very few memory accesses, and the MEs are kept busy.

In summary, if the power consumption is the dominant design factor, TDVS shall be

a better choice. Otherwise, if performance is more important and packet loss needs to be

avoided as much as possible, EDVS shall be used.

90

Chapter 4

Deadlock Analysis with Built-in

Simulation Monitors

In the design of highly complex, heterogeneous, and concurrent systems, deadlock detection

and resolution remains an important issue. Even with careful methodological guidance, it is

still possible to introduce unintended and undesirable behaviors into function specifications,

high level architecture models, or function-architecture mappings. Foremost among these

are deadlock, livelock, and starvation. Being semantic in nature, their complete and precise

characterization requires formal analysis or verification, which can only be done at a high

level of abstraction due to the state space explosion problem. In this chapter, we look for a

practical solution to deal with these design problems in realistic and complex system designs.

A simulation based analysis methodology is proposed for the detection and elimination of

these “semantic errors”. Designers are responsible for coming up with simulation vectors

91

and scenarios that are important and may lead to undesirable behaviors such as a deadlock.

Our approach automatically analyzes the simulation status and reports deadlocks once they

occur.

4.1 Introduction to Deadlock Analysis

Deadlock detection and resolution techniques have already been extensively studied in the

areas of operating systems and database systems [28, 61, 48, 58]. In those domains, dead-

lock prevention is possible if particular resource allocation policies are applied. Deadlock

avoidance is used as a part of scheduling algorithms to choose at least one possible execution

path where no deadlock will occur. A resource allocation graph or state graph is usually

used to analyze and identify deadlock situations for deadlock detection. Though it is possi-

ble to incorporate these techniques in a system design to eliminate deadlocks, they are not

general enough to apply to arbitrary designs due to the design flexibility required by today’s

platform-based embedded system designs. Our deadlock analysis mechanism is integrated in

the design framework (rather than the designs) to help designers analyze design errors while

allowing full design flexibility.

In communications and concurrent software, various formal verification techniques are

employed to exhaustively search deadlock situations in concurrent protocols [35,34,55,42].

In essence, synchronization protocols at a high level of abstraction, either extracted from the

design or defineda priori, are formally verified. In the latter case, lower level implementa-

92

tions are then developed manually keeping as close as possible to the higher level protocols.

The current approaches suffer from at least three problems. Firstly, abstraction of synchro-

nization protocols from a complex design is non-trivial and error-prone. Secondly, complex

modern synchronization structures are becoming too complex, and their analysis also suffers

from state explosion problem. Thirdly, when a protocol is formally verifieda priori, it is

still quite difficult to get designers to follow exactly the verified protocol, not to mention that

the design flexibility is considerably reduced. Our approach is based on simulation, so it can

handle real complex system designs.

In simulation verification, assertions that are based on temporal logics can be used to

check safety properties in a certain period of execution [6]. However, temporal assertions

have to be designed according to particular applications. They are usually used to check the

overall behavior of a system, and not suitable for identifying the causes of those undesirable

behaviors due to their “trace checking” nature. A general deadlock detection mechanism is

proposed in [50] for discrete event simulation models. However, no implementation on real

simulation models has been discussed in the literature. In emerging simulation environments

for heterogeneous system level designs, an effective and efficient deadlock analysis tool that

can be tightly integrated into the design methodology is needed, which is the main focus of

this chapter.

While our deadlock monitoring approach can apply to any system level design environ-

ment, we focus our effort on the synchronization dependency and deadlock analysis for sim-

ulation in the Metropolis design framework [20]. Metropolis is a system level design frame-

93

work for modern embedded systems. In the modeling language of Metropolis, Metropolis

Meta-Model (MMM), a design is specified as asynchronous processes with communication

specified with media and with its overall behavior limited by the synchronization constructs:

function-architecture mappings,await statements, interface function calls, constraints, and

schedulers. The function and abstract architecture of a system are specified separately and

correlated by synchronization of functional events with architectural events (mapping). An

await statement can be used to make a process wait until some conditions hold, to establish

critical sections that guarantee mutual exclusion among different processes, and to prevent

interface function calls by other processes. To limit the behavior of processes, designers

can put high-level LTL (Linear Temporal Logic) or LOC (Logic of Constraints) constraints

on the system specification without giving any specific scheduling algorithm, and leave the

implementation to the lower levels of abstraction. Designers can also write their own sched-

ulers in architecture models at a high abstraction level, which are calledquantity managers

in Metropolis. The high flexibility of the design platform allows designers to use differ-

ent modeling constructs freely in a system design. Without a platform-supported systematic

analysis mechanism, this flexibility can lead to vulnerability to design errors that may cause

deadlocks.

We identify and analyze deadlock problems in Metropolis simulation. We propose a

data structure called the dynamic synchronization dependency graph (DSDG) that reflects

the runtime blocking dependencies among processes. We also devise an associated deadlock

detection algorithm to monitor the simulation. The goal of the synchronization dependency

94

analysis is to help the designer identify the components (e.g. processes and media) and

synchronization constructs (e.g.await andsynch) that are causing any deadlock problem

and to provide an error trace or a history of dependency snapshots that show how the system

arrives at this state. We use a real world Metropolis design, theresizecomponent in a picture-

in-picture (PiP) video processing system, to demonstrate the usefulness and effectiveness of

the deadlock analysis approach. We also use a high level mapping model that includes a

functional specification, an abstract architecture model, and mapping to illustrate how design

problems from the function-architecture mapping can be analyzed.

4.2 Synchronization in Metropolis

In this section, we review the synchronization constructs in Metropolis Meta-Model and dis-

cuss how deadlock situations are caused by the synchronization mechanism in a concurrent

system model.

4.2.1 Synchronization Constructs

The modeling constructs for synchronization in MMM includesynchconstraints,awaitstate-

ments, interface functions, quantity managers, and LTL and LOC constraints. Most of these

synchronization constructs are not unique to MMM, and their counterparts are also used in

other concurrent modeling languages.

In Metropolis, the function and architecture of a system are modeled as separate networks

95

of processes communicating through media. In a functional network, functional processes

run concurrently and communicate with each other through media. In an architectural net-

work, computing and storage resources are modeled with media. Services that the architec-

ture can provide are modeled with processes, which are calledmapping processes. A function

model is mapped to an architecture model as the events of functional processes and mapping

processes are synchronized withsynchconstraints. A designer is allowed to implement par-

ticular schedulers asquantity managersto manage architectural resources and services in

an architecture model. Quantity managers are basically scheduling media that implement a

particular set of functions that can be invoked by processes to issue service requests. An ar-

chitectural mapping process may be suspended by a quantity manager if it requests resources

(quantities in Metropolis terminology) from it. The corresponding functional processes that

are mapped to the mapping process can then be blocked throughsynchconstraints.

A synchconstraint is an alternative of a rendezvous used in the concurrent program-

ming [41, 25]. It can specify that two events in two different processes must occur at the

same time. If only one of the two events can be scheduled to occur, the process containing

the event has to be blocked until the other event can occur also. Asynchcan also require that

an event cannot occur until any of the other events occur. The execution of a process has to

be blocked at a certain event until all thesynchconstraints containing the event are satisfied.

For example, assume functional processp0 and mapping processesp1 andp2 have eventse0,

e1 ande2, respectively, and are synchronized by asynchconstraintsynch(e0 => e1||e2),

which requires thate0 cannot occur untile1 or e2 occurs. This scenario may denote that a

96

System Netlist

Function Netlist Architecture Netlist

P0
P1

P2
synch (e0 => (e1 || e2))

Figure 4.1:An example of synch constraint

functional process can not run until there are free computation resources in the architecture.

The execution ofp0 may be blocked by eitherp1 or p2, as illustrated in Figure 4.1.

An await statement is used to establish mutually exclusive sections and to synchronize

processes. It contains one or more statements calledcritical sections, each controlled by a

triple (guard; testlist; setlist). Theguardcan be any Boolean expression, and thetestlistand

setlist denote sets of interfaces, which essentially work as integer semaphores that can be

incremented or decremented. A critical section is said to beenabledif its guard is evaluated

to true and none of the interfaces in thetestlisthas been set by other processes in the system.

A critical section may start executing only if it is enabled. While the critical section is

being executed, the “semaphores” specified in thesetlistare incremented and can block other

processes that require the semaphores. The interface function calls are also prevented if the

interface is set by anawait. If no critical section is enabled, the execution blocks. If more

than one critical section are enabled, the choice is non-deterministic. For example, anawait

97

statement has two critical sections:

await {

(foo(); intf00 ; intf01) {critical section0 ;}

(true; intf10 , intf11 ; intf10 , intf11) {critical section1 ;}}

The first critical section is enabled only if guardfoo() is evaluated to true andintf00 is not set

by otherawaits. If a process enters this critical section,intf01 will be set . The second critical

section is enabled only if none of interfacesintf10 andintf11 is set by other processes. If a

process enters this critical section,intf10 andintf11 will be set by the process. Note that an

interface can be set by multiple processes at a given time and must be unset by all of them to

be released.

A designer can also add general LTL and LOC constraints to a system to further restrict

the behaviors of the system. We do not present these constraints directly here since their

specification semantics are not for execution, and it is up to the simulator to make sure that

the execution is consistent with the constraints.

4.2.2 Deadlock in Metropolis

Many different definitions can be found in the literature concerning deadlock. In our ap-

proach, we define deadlock for Metropolis designs as follows:

Definition 1 A deadlockis a situation where two or more processes are blocked in execution

while each is waiting for some conditions to be changed by others.

98

Given the constructs considered in MMM, only the following situations may block the

execution of a running process:

(1) A process has to wait for synchronization from other functional or architectural pro-

cesses as required by one or moresynchconstraints.

(2) A process cannot execute an interface function due to the fact that the interface is

included in the setlist of a critical section being executed in another process’sawait

statement.

(3) A process is blocked at anawaitstatement due to the unsatisfaction of all its guard/testlist

conditions.

(4) A mapping process is suspended by a quantity manager when it is requesting some

quantity from it but cannot be satisfied.

The interaction of these synchronization constructs can be quite complicated. A dead-

lock exists if and only if there exist dependency loops among the processes in a system. We

will identify and analyze the deadlock situation and report the processes and the media to

which they are connected. Livelocks and starvations are much harder to identify. Formal

verification [55, 42] is required to conclusively identify them by searching for infinite cyclic

executions and infinite blocking conditions, respectively. However, synchronization depen-

dency analysis is still useful to provide a guide to the designer to help isolate the problem.

Furthermore, while we do not attempt to analyze a system to make sure it is deadlock-free

99

and only report deadlocks as they occur in a specific simulation, we can give heuristic guide-

lines and suggestions whether or not a deadlock is likely to occur in the future or with other

simulation vectors, by showing the system dependency condition at any given simulation

state.

4.3 Synchronization Dependency and Deadlock Analysis

In this section, we introduce a deadlock analysis methodology for system level designs. We

propose a data structure called the dynamic synchronization dependency graph (DSDG) used

in the Metropolis design environment for deadlock analysis. Though the graph is defined

according to the execution of Metropolis Meta-Model constructs, it represents general syn-

chronization characteristics in today’s system level designs and can be easily applied to other

languages and design environments. Once the synchronization dependencies are captured by

the graph, an algorithm can be used to detect deadlock situations.

4.3.1 Deadlock Analysis Methodology

Our deadlock analysis methodology is illustrated in Figure 4.2. By integrating deadlock

analysis tools in a simulation environment for system level designs, designers can efficiently

analyze complex concurrent systems with simulation and quickly identify design problems

that may cause deadlocks. The task of design analysis becomes much easier with the help

of runtime synchronization information combined with regular simulation traces and static

100

System Level
Design

Compilation

Simulation
Model

Simulation Deadlock
Analysis

Synchronization
Dependencies

Simulation
Trace

Simulation
Vectors

Analysis ReportRevise the design
and/or simulation vectors

DSDG

Deadlock
Detection

Deadlock?

update
DSDG

Deadlock
Warnings

yes

Output
Dependencies

Deadlock
Analysis

Figure 4.2:Deadlock analysis methodology

network structures. They can be used to guide a designer to revise the design to eliminate

problems or modify simulation vectors to explore different execution paths looking for other

design errors. This methodology allows full design flexibility and is able to handle large

models. The details of the deadlock analysis mechanism will be discussed in the rest of this

section.

4.3.2 Dynamic Synchronization Dependency Graph

Definition 2 A DSDG (dynamic synchronization dependency graph) is a directed graph

S=(V, E). V is a set of four categories of vertices representing processes in the network,

or-dependency, and-dependency, and eval-dependency. E is a set of directed edges between

vertices indicating dynamic synchronization dependencies.

101

Algorithm 2 Main procedure to build and update a DSDG.
procedureUPDATE DSDG()

for each processpi in the systemdo
if pi is unblocked by one or more synch. constructsthen

remove all the dependency vertices and edges frompi caused by those synch. constructs;
end if
if pi is blocked by one or more synch. constructsthen

UPDATE PROCESS(pi);
end if

end for
end procedure

In a DSDG, each process in the network is represented by a process vertex. Other de-

pendency vertices and edges are added or removed dynamically as dependencies between

processes change in the execution. Anand-dependencyrequires a process to be blocked until

all the conditions become satisfied. Anor-dependencyindicates that as long as one of the

conditions becomes valid, a process can be released. Aeval-dependencyis used to represent

that a process is blocked by a guard of anawait or by a quantity manager. Guards are not

analyzed but simply evaluated to get the valuation of “true”, “false”, or “blocked”. Simi-

larly, quantity managers are invoked to decide if processes that are making requests need

to be suspended or not. If a process is blocked by a guard or a quantity manager, it has

dependencies on the processes that may change the evaluation of the guard or the quantity

manager sometime later. A DSDG is automatically built and updated during the simulation,

and it describes the status of dependencies among all the concurrent processes of a system at

a particular execution state. If a process is actively running, there is no outgoing edge from

it in the graph. If it is blocked or released, dependency edges and vertices will be added

to or removed from the graph dynamically. A DSDG is built and updated with dependency

102

A B

P

P0

P2

P1

e

&&

||

|| P0 ||

&&

e P2

P4

P3

&&
&&

&&

&& P5

P6

synch await

C0

C1

intf00

intf10

intf11

process vertex

eval vertex

and vertex

or vertex

C

||

P0

||

P2

P4

P3

synch

synch

P1
guard (foo())

Figure 4.3:DSDG examples

Algorithm 3 Procedure to handle a blocked process.
procedureUPDATE PROCESS(px)

for each synchronization construct that blockspx do
if px is blocked by asynchconstraint that requires its waiting for any of processesp1, p2, . . .,
andpn then

add an or-dependency vertexox;
CONNECT(px, ox, {pi : i ∈ [1, n]});

else ifpx is blocked by an interface functionI then
add an and-dependency vertexax;
CONNECT(px, ax, {processes that prevent the interfaceI});

else ifpx is blocked by a quantity managerQ then
add an eval-dependency vertexex;
CONNECT(px, ex, {processes that are managed byQ});

else ifpx is blocked by anawait then
UPDATE AWAIT(px, {Ci : i ∈ [1, n] andCi is a critical section});

end if
end for

end procedure

vertices and edges dynamically added or removed using the procedures in Algorithm 2 to

5. Initially, V only includes all the process vertices, andE is set to∅. During simulation,

UPDATE DSDG() is called to updateS every time the synchronization dependencies of the

system are changed. UPDATEPROCESS() is called to update the DSDG for each blocked

process, and UPDATEAWAIT() is called for a blockingawait. CONNECT() connects newly

added vertices with directed edges.

103

Algorithm 4 Procedure to connect newly added vertices.
procedureCONNECT(src, mid , {desti : i ∈ [1, n]})

add an edge fromsrc to mid ;
for i := 1 to ndo

add an edge frommid to desti ;
end for

end procedure

Algorithm 5 Procedure to handle a blocking await.
procedureUPDATE AWAIT(px, {Ci : i ∈ [1, n]})

add an or-dependency vertexox;
for each critical sectionCi (1 ≤ i ≤ n) do

add an and-dependency vertexai;
if the guard condition is evaluated to falsethen

add a eval-dependency vertexgi;
CONNECT(ai, gi, {processes that may change the guard});

else ifthe evaluation of the guard is blockedthen
recursively call UPDATEPROCESS(ai) to add dependency vertices and edges as ifai is a
blocked process;

end if
for each prevented interfaceintfij in Ci’s testlistdo

add an and-dependency vertexaij ;
CONNECT(ai, aij , {the preventing processes});

end for
end for
CONNECT(px, ox, {ai : i ∈ [1, n]});

end procedure

Figure 4.3A shows an example DSDG of a processp0 being blocked by a constraint

synch(e0 => e1||e2), which requires thate0 cannot occur untile1 or e2 occurs. Figure 4.3B

shows an example of a processp0 being blocked by anawait. Theawait statement has two

critical sectionsC0 andC1. Assume that, inC0, the guard is evaluated to be false and is

accessible byp2 andp5, which is represented by a guard vertex. The interfaceintf00 in its

testlist is blocked byp3 andp4. In C1, the guard is always evaluated to be true, but the inter-

facesintf10 andintf11 are blocked by other processes. Figure 4.3C shows an example where

a processp0 is blocked by 2synch constraints at the same time. Note that each dependency

104

Algorithm 6 Deadlock detection.
procedureDETECT DEADLOCK(S, P)

search for simple cycles inS from process vertices inP ;
let L = {Li=(Vi, Ei)} be the set of all these simple cycles;
if L = ∅ then

return NODEADLOCK;
end if
for eachLi ∈ L do

if Li is already markedthen
continue;

end if
markLi;
if each vertex inVi is either a process or and-dependencythen

the processes inLi are deadlocked,return ;
else

D := {eval- and or-dependency vertices inVi that have two or more outgoing edges};
L′ := {Li};
repeat

find unmarked cycles inL that contains vertices inD;
mark all these cycles;
D := D ∪ {eval- and or- dependency vertices with two or more outgoing edges in these
cycles};
L′ := L′ ∪ {these cycles};

until L′ becomes stable
if ∃ vertex inD that has an outgoing edge/∈ L′ then

continue;
end if
the processes inL′ are deadlocked,return ;

end if
end for
return NO DEADLOCK;

end procedure

vertex is labeled to indicate the exact location in the source code that it is corresponding to.

This information can be made available for the designer to help identify the problem quickly.

4.3.3 Deadlock Detection Algorithm

Given a dynamic synchronization dependency graphS = (V,E) and a set of processes

that are blocked from runningP , we use Algorithm 6 to detect deadlock situations. Gen-

105

erally, the algorithm traverses the graph, searches for cyclic dependencies, and determines

deadlocked processes according to the and- , or- and eval-dependencies among processes.

The algorithm not only decides if there is any deadlock but also identify all the processes

and synchronization constructs that are involved in deadlock situations. The algorithm works

incrementally, starting from the newly added dependencies, since the part of the graph not

affected by the new dependencies has already been checked to be deadlock-free. In the worst

case, the first step of the algorithm is to find all the simple cycles in the graph. Its complexity

isO(|V | · (|V |+ |E|)) assuming that the adjacency-list representation is used for the graph.

The rest of the algorithm will traverse all the simple cycles at most twice with a complexity

of O(|V |). If a simple cycle only contains process vertices and and-dependency vertices,

then it is a deadlock. If a simple cycle also contains or- or eval- dependency vertices, there is

a deadlock only if other edges from these or- or eval- dependency vertices all lead to cycles.

Therefore, the complexity of the algorithm isO(|V | · (|V | + |E|)). |V | and |E|, the num-

bers of vertices and edges in a DSDG, are determined by the number of process instances,

interface instances, critical sections ofawait statements and quantity managers in a system.

4.3.4 Implementation

The dynamic synchronization dependency graph and deadlock detection algorithm have been

implemented in the simulator of Metropolis framework. During the simulation of a design,

a dependency graph is built and updated as the dependency state of the system changes, i.e.

as one or more processes in the system are blocked from running or released from blocking.

106

Whenever one or more processes are blocked from running, the deadlock detection algorithm

is invoked to search the DSDG for any deadlock situation. Once a deadlock is detected in the

simulation, the history of DSDG updates provides a trace that shows how the system execu-

tion goes into the deadlock. Due to the incremental nature of the DSDG update and deadlock

detection algorithms, this simulation monitoring mechanism will not introduce significant

overhead to the regular simulation.

More complex and hard-to-detect undesirable behaviors in a system are livelock and star-

vation. Informally, a livelock is a situation where two or more processes keep running and

change their states in response to changes in others, but cannot reasonably complete their

jobs. A starvation is a situation where a process is blocked due to some condition being un-

satisfied and depends on other processes to change the condition. The other processes are still

running, but will never make the condition satisfied. Though the DSDG data structure alone

does not capture the complete state of a system, a history of dynamically updated DSDGs

with other system state information kept can help catch livelock and starvation situations.

Specially, a simple algorithm can be used to search any cyclic patterns in the history of DS-

DGs, which can provide a useful guide to designers to look for livelock or starvation. The

simulation deadlock monitoring can also be combined with formal verification techniques to

detect those subtle problems in the design automatically.

107

USRCONTROL

JU
G

G
L

E
R

MPEG

MPEG

RESIZE

PES_PARSERTS_DEMUX

PIP

Figure 4.4:Picture-in-Picture design

4.4 Case Studies of Deadlock Analysis

In this section, we use two previous examples, a real design of a complex functional model for

video processing, Picture-in-Picture (see Section 3.2.1), and a high level model of function-

architecture mapping (see Section 3.2.2), to demonstrate the usefulness and effectiveness of

our deadlock analysis approach for system level designs.

4.4.1 A Function Model for Video Processing

For convenience, the PiP design is shown again in Figure 4.4. TSDEMUX demultiplexes

the single input transport stream (TS) into multiple packetized elementary streams (PES).

PESPARSER parses the packetized elementary streams to obtain MPEG video streams. Un-

der the control of the user (USRCONTROL), decoded video streams can either be resized

(RESIZE) or directly feed to JUGGLER that combines the images to produce the picture-in-

picture videos. RESIZE is the major component of PiP that computes and adjusts the size of

MPEG video frames according to user inputs. It consists of about 9,000 lines of Metropolis

108

Meta-Model source code and contains 22 concurrent processes and more than 300 media.

The video frames and control signals are passed between processes through around 80 com-

munication channels specified with media. The communication channels are modeled at the

task transition level (TTL) with bounded first-in-first-out (FIFO) buffers [32]. The mutual

exclusion and boundary checking of the bounded FIFO buffer is guaranteed by a central

protocol. To simulate the RESIZE unit, three additional processes are used to mimic user

inputs (USER), send MPEG video streams to the unit (SOURCE) and absorb the data from

it (SINK) as shown in Figure 4.5A.

In the simulation with our runtime deadlock monitoring mechanism enabled, a deadlock

is reported immediately after TMUXUV and TMEM CTL U block each other through two

await statements and their synchronization dependencies are captured in the DSDG as shown

in Figure 4.5C. As it turns out, there is a design error in process TMUXUV, which fails to

read all the data sent by TMEMCTL U.1 The data in the bounded buffer of the channel be-

tween the two processes accumulates until the buffer becomes full. Then a deadlock occurs

where TMEMCTL U is blocked waiting for the buffer space to be released by TMUXUV

while TMUX UV is also blocked waiting for reading signals from TMEMCTL U. The de-

signer can now focus on the two processes and the communication channels between them

to identify and correct those design errors. A solution is to modify process TMUXUV and

make it absorb all the data from its input channels even if not all the data is useful. We ob-

serve that, without the deadlock detection mechanism, the simulation will continue and the

1As Figure 4.5B shows, process TMUXUV gets video data from both TMEMCTL U and TMEM CTL V,
combines two streams of data and sends them to its successor process.

109

T
M

U
X

_U
V

TMEM_CTL_U

TMEM_CTL_V

SVSRC

SVSRC

RESIZE

WINDOWSHSRC SIN
K

SO
U

R
C

E

USER

&&

&&||

||

awaitCS

guardCSawait

guard

e

eTMEM_CTL_U TMUX_UV

A

B

C

Figure 4.5:RESIZE unit and its synchronization dependencies

regular simulation trace won’t show any apparent sign of deadlock until most of the processes

in the system are eventually blocked. By that time, the simulation trace is long, and a large

number of processes are blocked. Our approach automatically catch the deadlock as it first

occurs. Designers can then focus on solving the deadlock without complicating themselves

by the consequences of the deadlock.

110

CPUSched1CPU1 CPU2

Bus

Mem

CPUSched2

MemSched1

BusSched

SwTask1 SwTask4SwTask3SwTask2
Arch

S1

S2

Join Sink
channel1

channel2
channel3

Func

synch

Mapping

synch
synch

synch

S1

S2

||

synch

Join

&& e||

await

&&e ||
await

SwTask1

SwTask2
||

synch

guard

CS

CS

guard

CPUSched1

A

B

e

Figure 4.6:A mapping model and its synchronization dependencies

4.4.2 A Function-Architecture Mapping Model

In the platform-based design, the mapping is the key procedure that correlates the function

to the architecture. In this design example (as shown again in Figure 4.6A), two source pro-

cesses (S1 and S2) write the data into two independent channels. A separate process (Join)

then reads data items from both channels, manipulates them, and then sends the result data to

another process (Sink) through another channel. In the abstract architecture model, there are

two CPU/RTOS units, a bus unit, a memory unit and a quantity manager (i.e. scheduler) for

each architectural unit.2 A CPU unit can be shared among several software tasks that may

2An architectural unit is modeled as a medium in Metropolis.

111

Table 4.1: Summary of deadlock analysis case studies

Example RESIZE Unit Mapping Model
Code Size 9000 lines 5900 lines
Processes 22 8
Media 300+ 16
Deadlocked Processes 2 5
Time to Catch Deadlock 2min < 1min

request services from it. When more than one service request is issued to a CPU, arbitration

is needed. The mapping procedure synchronizes the processes in the function model and the

mapping processes (representing software tasks) in the architecture model. In this example

(as shown in Figure 4.6A), functional processes S1 and S2 are mapped to mapping pro-

cesses SwTask1 and SwTask2, respectively, which are associated to CPU1 and the other two

processes are mapped to CPU2. The CPU quantity managers implement a non-preemptive

static-priority dynamic scheduling policy. The two CPUs are connected to the bus and the

bus is connected to the memory unit.

Our deadlock detection mechanism reports a deadlock within one minute of simulation.

Due to the boundedness of the channels between processes, process S1 can not complete a

task of writing data before Join reads from and releases the channel buffer. Therefore, with

the current CPU scheduling policy, the deadlock occurs when S1 obtains the CPU service

but cannot complete a writing task while Join is still waiting for data from S2 who cannot

get CPU service. The deadlock situation involves five processes, two await statements, two

synchconstraints and a quantity manager as shown in Figure 4.6B. This analysis also suggests

several possible deadlock resolutions. The deadlock can be resolved by making the channel

112

buffer large enough to store all the data from a single writing task, increasing the number

of CPUs, or changing the CPU scheduling policy. We also observe that such deadlocks

only occur in the mapped design and are not inherent in the function specification or in the

architecture model. The simulation and analysis results for this mapping model are also listed

in Table 4.1.

113

Chapter 5

Formal Verification for System Level

Designs

This chapter focuses on formal verification of embedded system designs, especially at higher

levels of abstraction. We develop a verification methodology for designs that may go through

different levels of abstraction and a translation mechanism from system design specifications

to descriptions more suitable for formal verification engines. We devise solutions to many

challenges encountered in semantically translating from an object-based system design lan-

guage (i.e. Metropolis Meta-Model [18]) to a procedural verification modeling language

(i.e. Promela [42]). In addition, an automatic abstraction propagation algorithm is used to

simplify a design specification for specific design constraints. We use a set of realistic case

studies to demonstrate our verification approach for system level designs.

114

5.1 Introduction to Formal Verification

Formal verification can be very powerful for catching errors early in the design process.

Formal verification tools, notably model checkers (e.g. Spin [42], SMV [55]), are available to

designers. Designers can describe their designs with the given formal language and the design

constraints or properties they want to check with some logics (e.g. LTL [53,59], CTL [26]).

If a design constraint or property is found to be false for the design, an error trace is provided

by the model checker to designers to help them modify the design or the constraint. The state

explosion problem restricts the usefulness of exhaustive proof to protocols or other higher

levels of abstraction. Approximate verification (e.g. an option available in Spin [42]) allows

model checkers to automatically check a constraint with only a portion of the state space

explored. Obviously, approximate verification does not prove that a constraint is satisfied

for all conditions. A tool provides the estimated percentage of this partial exploration (i.e.

confidence factor) and reports a bug if one is found on the partial state space searched.

One problem for formal verification is that a verification model needs to be written, often

manually, from a specification model. This tedious process multiplies if designers wish to

verify a constraint of a design as it goes through various abstraction/refinement operations.

Our contribution is to fully integrate formal verification tools into the Metropolis framework.

Verification models can then be automatically generated for all levels of the design, so de-

signers no longer have to manually re-describe their design in a formal verification language

each time a design moves from high levels of abstraction toward implementation. The cen-

115

tral challenge in this approach is that verification languages, such as Promela used by Spin

model checker [42], allow only simple concurrency modeling and are not amenable to system

design specification where complex synchronization and architecture constraints are needed.

Our translator automatically constructs a verification model from a specification model, tak-

ing care of all the system level constructs.

In constraint-driven verification, only a portion of a design may be relevant to passing or

failing of a given constraint. The rest of the design may be simplified or removed, without

changing the outcome of the verification. Based on this observation, a technique of automatic

design abstraction and propagation is developed to abstract the original specification of a

design and to simplify the corresponding verification model. Designers are also allowed

to indicate what elements in the design are not relevant to the constraints being verified.

They can apply these abstraction operations, freeing in particular, to variables, statements,

and components. If the constraints are “safety” in nature (i.e. something bad will never

happen), abstraction can only lead to verification results that are either exact or conservative

(with possibly false negative result). There will never be a false positive result. We propose

an automatic algorithm to propagate this abstraction to the rest of the design exactly (i.e.

without introducing more false negatives or any false positives).

In the rest of this chapter, we introduce our verification methodology for system level

designs, define translation algorithms for the main Metropolis Meta-Model constructs (such

as processes, media, schedulers, await statements, dynamic objects, and mapping), propose

design abstraction and propagation algorithms to simplify verification models, and use a set

116

of case studies to demonstrate numerous aspects of verification before and after synthesis

and mapping procedures. While we focus on a verification methodology in the context of

Metropolis designs, the same approach can be easily applied to other abstraction/refinement

design frameworks (e.g. SystemC [7]).

5.2 Formal Verification Methodology

The task of formal verification is to exhaustively search the state space of a system design

and to check whether a particular design constraint is satisfied. After a system specification

in Metropolis Meta-Model is translated to Promela description, one can use Spin to do model

checking. Spin provides two powerful ways to specify constraints of a design: Assertion and

LTL (Linear Temporal Logic) [53,33]. Assertion is an annotation construct in Promela used

to “assert” that a particular condition (e.g. space>3) must hold. LTL is strictly a superset of

Assertion. Without loss of generality, we only deal with the LTL here.

The formal verification methodology for Metropolis is illustrated in Figure 5.1. MMM

description is automatically translated into Promela description, and LTL constraints spec-

ified in MMM are checked using the model checker Spin. It is known that only a subset

of LOC can be translated into equivalent LTL formulas and formally checked with Spin

directly(see Section 2.5). For other LOC formulas, formal verification results may be incon-

clusive, i.e. the verification is only partial. A designer may perform any synthesis step (e.g.

composition, decomposition, constraint addition, scheduler assignment), and a new Promela

117

Pass verification?

Done

MMM Design w/
LTL/LOC Constraints

Promela Description

design
Modify original Add constraints

or schedulers

Yes

No

Synthesis
procedures

Translation

Feed to SPIN

Formal Checking

Figure 5.1:Metropolis formal verification methodology

code can be automatically generated to verify design constraints. If it does not pass, the error

trace may be used to help the designer figure out whether the design needs to be altered. If

a verification session runs too long, approximate verification can be used to explore a subset

of the state space and report the probability that a constraint will pass. Obviously, a partial

exploration cannot prove that a constraint is satisfied. However, it is our experience that a

lot of “easy” bugs can be found within a relatively small amount of time and memory usage.

If a Spin verification session continues to run after a long time, it is highly likely that the

constraint will eventually pass.

Figure 5.2 shows a prototypical network ofmproducers andn consumers communicating

through a single medium. The producers receive inputs from the environment, process the

data in some way, and then output it to a medium of a single space. The consumers read

118

 M1

P1 C1

Environment

Pm Cn

Figure 5.2:Example of a bytelink meta-model

in the data from that medium, process it, and then output to the environment. It is possible

for all producers and consumers to execute concurrently. If we want to check the constraint,

“whenever a producer writes an item into the medium, there must be some space in the

medium”, it can be specified as an LTL formula:

G((P1 write ∨ · · · ∨ Pm write) →M1 not full) , (5.1)

and be verified with Spin after the specification model is automatically translated into Promela.

The same methodology can also be used for a verification-driven synthesis approach. If

a constraint does not pass the verification, an error trace is generated and examined. Based

on the error trace, the original design may be incorrect, or refinement need be applied to the

original specification for it to have the desired constraint. At a higher level of abstraction,

abstract constraints can be used to constrain the behavior so the design property can pass

verification. At a lower level of abstraction, designers must ensure that these constraints are

implemented. This may be achieved, for example, with schedulers on a particular platform.

119

5.3 Translation from MMM to Promela

The Metropolis [18] design framework enables designers to represent and to manipulate their

designs at multiple levels of abstraction and with multiple models of computation (MoC).

Central to the framework is the Metropolis Meta-Model (MMM) representation. Different

high-level languages, models of computation, design constraints, as well as specifications

of system functions and architecture platforms can be represented in MMM while retaining

their correct semantics. Constructs in MMM are chosen to facilitate the transformations and

refinements between different abstraction levels. Incorporated into the Metropolis design

environment is a set of back-end tools, with which one can simulate, synthesize, and verify a

design at hand.

In Metropolis, the model checker Spin [42] is utilized as one of its back-end verification

engines. A design specification in Metropolis Meta-Model is automatically translated into a

verification model in Promela, the modeling language of Spin, and constraints of the design

can then be formally verified with Spin. Four main issues in the translation from MMM to

Promela are the modeling of MMM processes, interfaces andawaitstatements for coordina-

tions, dynamic objects, and function-architecture mapping. We do not believe that it will be

profitable, at this stage, to develop a new model checker specific to a system level specifica-

tion language. Instead, we rely on automatic translation, both to decouple this very complex

problem and to make it easier for Metropolis to take advantage of the latest advancement

from the formal verification community.

120

5.3.1 MMM Processes

In MMM, communication between processes is made by calling functions defined in the

media. One way to model function calls in Promela is to to use active processes to model

all instances of meta-model functions, which include all the member functions of processes,

media and other objects in the meta-model. Each member function is translated into an

active Promela process, which is instantiated and initiated at the very beginning of the ex-

ecution, and a function call in MMM is translated as invoking an execution of the corre-

sponding Promela process. The invocation is accomplished through message passing using

a rendezvous channel (i.e. FIFO channel of size 0). Figure 5.3 illustrates this approach.

Figure 5.3(a) shows the function thread() of process P1 making a call to a member function

method1(). In Promela (see Figure 5.3(c)), this is interpreted as the process P1thread send-

ing a message to process P1method1 through a rendezvous channel sP1method1 (using

operator !). The function return follows the same paradigm. When P1method1 finishes, it

sends back a notification message through the same channel to P1thread. P1thread receives

the message (using operator ?) and continues its execution. Thus, the sequential execution

flows and control transfers of the MMM processes are assured. Due to Spin’s limitation on

the number of running processes and its resource recycling mechanism [5], dynamically cre-

ating new processes is prohibitively expensive. Instead, all Promela processes, except the

processes representing meta-model constructors and threads, are initialized at the beginning

of execution as active processes blocked waiting for an invoking message from their calling

processes through the corresponding rendezvous channels. Member variables of an MMM

121

process P1{
 void thread(){
 ...
 method1();
 ...
 }
 void method1() {
 ...
 }
}

inline P1_method1(){
 ...

}

Function
Return

 ...

 ...

active proctype P1_thread(){

 sP1_method1 ? notification;

}

chan sP1_method1 = [0] of {bool};

active proctype P1_method1(){

}

 sP1_method1 ! invoking_message;

 do

 sP1_method1 ! notification;
 ...

 od;

 :: sP1_method1 ? invoking_message;

Function
Call

MMM Design

 ...

P1_method1()
 ...

}

active proctype P1_thread(){

Promela Translation with Funcation Inlining

(b)

(c)

(a)

Promela Translation without Inlining

Figure 5.3:Translations of MMM functions

process or medium are represented by global variables of Promela after they are renamed

appropriately.

To further reduce the overall complexity of the verification, we use a translation approach

that inlines all the functions into the process that calls them directly or indirectly. The trans-

lator simply pastes its translated code into the point of the invocation in the calling process

(see Figure 5.3(b)). No process or channel is needed. In the situation of multiple level func-

tion calls, all the functions are inlined recursively so that one MMM process corresponds

to only one Promela process. Thus the total number of Promela processes can be shrunk,

122

exit await

Critical Sections

pass ?

Guard & Test 1

Guard & Test k

atomic

await

pass one

none

if
::(awaitFlag_1 == true) −>
 //stmts1
:: (awaitFlag_2 == true) −>
 //stmts2

:: (awaitFlag_k == true) −>
 //stmtsk
fi;

 ...

 //enter and execute a critical section

// select critical section 2

::(guard2 && intfc2_active == 0 && intfc2_exclusive == 0)
 −> intfc2_exclusive ++;
 awaitFlag_2 = true;

// set setlist 2

 await {
 (guard1; testlist1; setlist1) {stmts1}

 (guardk; testlistk; setlistk) {stmtsk}

 ...

 }

 (guard2; testlist2; setlist2) {stmts2} if //evaluation of guards and testlists

 ...

 :: atomic {

::(guard1 && intfc1_active == 0 && intfc1_exclusive == 0)
 −> intfc1_exclusive ++;

// select critical section k

// select critical section 1

::(guardk && intfck_active == 0 && intfck_exclusive == 0)
 −> intfck_exclusive ++;
 awaitFlag_k = true;

 awaitFlag_1 = true;

// set setlist k

// set setlist 1

 od;

 do //start of await

 }

Figure 5.4:Translation of an await statement

which reduces the inherent complexity of the Promela program. With functional inlining, the

verification becomes much more efficient regarding both time and memory usage. We use

this as our standard translation method.

However, the translation approach without functional inlining is still useful as a debug

mode, because it provides a detailed graphic trace that makes it much easier to trace function

calls.

5.3.2 Interfaces and Await Statements

In MMM, an interface is used to define the I/O data ports of the process or medium and the

I/O control points of the process or medium. To implement the control point, the MMM

interface is used as a semaphore in thesetlistandtestlistof anawait statement. We translate

each interface into a pair of integer variables used as semaphores in Promela. The first vari-

123

able, calledACTIVEis used to indicate whether the interface (and its member functions) are

in active state (whether they are being executed). Another one calledEXCLUSIVEindicates

whether this interface semaphore is set (i.e. whether it is included in thesetlistof someawait

statement that is currently executing). We use these variables as semaphores to signal that in-

terface functions appearing intestlist’s are being executed and to prevent, when appropriate,

interface functions appearing insetlist’s from being executed. Figure 5.4 illustrates how an

awaitstatement is translated in Promela. Promela constructs such asatomic, repetitiondo-od

and case selectionif-fi are utilized to guarantee the exact semantics equivalence. Specially, if

theawait statement has more than one critical sections that are enabled, one of them will be

chosen non-deterministically and executed. This non-determinism is directly supported by

Promela indo-odandif-fi statements.

5.3.3 Dynamic Objects

Another interesting aspect of MMM is the dynamic object (i.e. the reference type). For

example, an array is a reference type in MMM, and its memory space could be allocated

and changed dynamically at runtime. However, most model checkers (including Spin) only

support static memory allocation, i.e. arrays have to be declared explicitly at design time.

To solve the problem, we have to put some restrictions on the MMM code All the reference

types have to be declared explicitly once and only once, so that they can be translated to

Promela as static objects. An array declaration in MMM, “int[] a = new int[12];” can be

translated to Promela as a static array “int a[12];”. After the arraya is declared in MMM, its

124

reference cannot be changed any more. If the dimension of the MMM array is dynamic, e.g.

“ int[] a = new int [n];” wheren is a variable, it is also translated to Promela as a static

array “int a[ARRAY MAX];”, whereARRAY MAX is a constant set by the designer at

compilation time. It is up to the designer to guarantee thatARRAY MAX is always larger

than or equal to the maximum value ofn. Other dynamic objects such as class types in MMM

are similarly translated to static data objects of Promela.

5.3.4 Function-Architecture Mapping

In MMM, the function of a system is specified as processes communicating through me-

dia. The architecture is represented as a set of media and mapping processes. Synchroniza-

tion constraints are used to map the function to the architecture. To translate the function-

architecture mapping, we need to use Promela to implement the MMM synchronization con-

straints that actually relate the function processes and the architectural mapping processes

together. In Promela, we use a rendezvous channel (or synchronous channel) to synchronize

two concurrent processes. An example of a synchronization constraint in MMM is as follows

(see Figure 4.6):

“ltl synch(beg(P1, P1.write), beg(MapP1, MapP1.CPUWrite));”,

The beginning ofP1’s write and the beginning ofMapP1’s CPUWriteare synchronized (both

write andCPUWriteare function calls). In Promela, whenP1 andMapP1run to the points

that need to be synchronized, one of them (e.g.P1) sends a synchronization signal to a

rendezvous channel, and wait for the other process (i.e.MapP1). In this way, the events of

125

the function processes and their corresponding mapping processes are synchronized and the

mapping is realized.

5.4 Producer-Consumer Network

In this section, we present a set of case studies that consider a prototypical network ofm

producers andn consumers communicating through one or more media (see Figure 5.2 and

5.6). Producers receive inputs from the environment, process the data in some way, and then

output it to a medium of a single space. Consumers read in information from that medium,

process it, and then output to the environment. It is possible for all producers and consumers

to execute concurrently. We verify constraints of the design before and after synthesis steps.

5.4.1 Verification of Data Integrity

Given a network of consumers and producers with one medium(see Figure 5.2), we want

to check the constraint specified as formula (5.1) in Section 5.2, and we rewrite it here for

convenience:

“Whenever a producer starts to write an item into the medium, there must be some space

in the medium.”

The constraint can be specified with LTL as:

G((P1 write ∨ · · · ∨ Pm write) →M1 not full) , (5.2)

126

wherewrite indicates the condition that a producer initiates a write operation, andnot full

indicates the condition that there is still some space in the medium.

Here we consider the case where m=2. This design has 102 lines of MMM source code

and 670 lines of Promela code after translation. The formula is proved by Spin within one

minute on a 1.5GHz Athlon machine with 1GByte of memory. The same setup is used for

all case studies in this section. The detailed resource usage of this verification is listed in

Table 5.1, where the states generated are the total number of unique global system states that

are stored by the algorithm.

Another constraint we want to check is:

“When a consumer wants to read and there is no data in the medium and none of the

producers has started to write, the consumer cannot finish reading until some producer starts

to write.”

This constraint can be specified with LTL as:

G((Cx start ∧M1 empty ∧ ¬(P1 start ∨ · · · ∨ Pm start))

→ ((¬Cx end) U (P1 start ∨ · · · ∨ Pm start))) , (5.3)

wherestart indicates the condition that a consumer initiates a read operation or a producer

initiates a write operation, andendindicates that they complete the operations. We consider

the case where m=2. The constraint is verified by Spin within one minute of CPU time on

the same machine. All relevant verification parameters are listed in Table 5.1.

127

Table 5.1: Summary of verification for the producer-consumer network

Constraint formula (5.2) (5.3) (5.10)
Depth reached 26765 62839 1112111
States generated 120983 289828 1.49894e+07
State transitions 234014 561226 6.6521e+07
Total memory used 12.382 MB 42.584 MB 101.626MB

(Partial Order Reduction) (Graph Encoding)
CPU time elapsed <1s 1.49s 31m:54s

Finally, we want to prove the following constraint:

“If the consumers are able to keep reading data from the medium, then whenever a pro-

ducer initiates a write, it will eventually complete the write”:

In LTL, the constraint can be expressed as:

G F(C1 read ∨ · · · ∨ Cn read) → G(Px start→ FPx end) , (5.4)

wherereadindicates the condition that a consumer completes a read operation,start indicates

the condition that a producer initiates a write operation, andendindicates that the producer

completes this write operation. Specifically, we consider the case where m=2, n=1 and x=1.

Spin reports that the constraint does not hold. From the error trace using the debug mode

(see Figure 5.51), we see that there is possibility of starvation. It is possible forP2 to keep

accessing the medium and preventP1 from ever be able to write.

1The numbers indicate the verification steps, and arrows indicate communications between processes
through channels.

128

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

	�	�	
	�	�	

�
�

�
�

�����
�����
�����
�����

32
32
3939

C1_thread()
C1_readByte()

37
37

45 45 4747
61 61

68 68

75
75

93 93

105
105

113
113

101 101

Cycle

read end

read start

write start

write end

write start

write end

77 77

85
8583 83

89
89

67 67

P2_thread()
P2_writeByte()

P1_writeByte() P1_thread()

P1 stuck from here

Figure 5.5:Verification error trace produced by Spin

5.4.2 Assumptions and Schedulers

In Metropolis, formal assumptions (specified with LTL or LOC) can be used to limit the

possible behavior of a design. However, the downstream synthesis procedure must guarantee

that assumptions are correctly implemented. If we want the constraint (5.4) (with m = 2, n=1,

and x = 1) to hold, i.e.P1 is not allowed to starve, we may specify the following assumption

in the MMM design:

P1 start ∧ P2 start→ ¬P2 end UP1 end , (5.5)

129

wherestart indicates the condition that a producer initiates a write operation, andend indi-

cates that it completes the write operation. The assumption is trivially “translated” into Spin

environment as the left-hand-side of an implication. Constraint (5.4) should be proved only

for the cases where the assumption is satisfied. In other word, we prove the LTL formula:

Assumption (5.5) → Constraint (5.4) . (5.6)

Formula (5.6) is proved by Spin within one minute of CPU time.

In an architecture specification, assumption (5.5) can be implemented as a scheduler(or

arbiter) that has a static-priority policy withP1 having higher priority. After mapping the

function to the architecture, We use Spin to prove that constraint(5.4) (with m =2, n = 1,

and x = 1) holds in the presence of such scheduler. In addition, if we assignP2 to have

higher priority, the constraint fails. Another scheduling policy that can be proved to allow

constraint (5.4) (with m =2, n = 1, and x = 1 or 2) to hold is round robin scheduling, where

producers take turns accessing the medium.

5.4.3 Transformation and Refinement

Of course, system level synthesis procedures may not always be driven by the result of func-

tional verification. For example, communication media may be combined to reduce the cost.

MMM can be used to formally represent the design before and after a particular synthesis

step. Consider the example in Figure 5.6. In (a),m media are used and producer-consumer

130

(a)

(b)

Environment

Environment

P1

Pm

M1

Mm

C1

Cm

P1

Pm

M1

C1

Cm

Figure 5.6:Example of a design refinement

data streams are running independently. It is trivial to verify that

G(Cx start ∧Mx empty ∧ ¬Px start→ ¬Cx end UPx start) , (5.7)

wherex = 1, . . . ,m, start indicates the condition that a consumer initiates a read operation

and a producer initiates a write operation, andend indicates that the consumer finishes its

read operation. Now, let us consider Figure 5.6(b) where a single medium is used. It is

derived from the network in Figure 5.6(a) through a structural composition. The constraint

G(Cx start ∧M1 empty ∧ ¬Px start→ ¬Cx end UPx start) (5.8)

131

is not guaranteed to be satisfied. Indeed, Spin verifies that the constraint does not hold within

one minute of CPU time. The error trace shows that for the constraint to hold, an assumption

must be added such that streams of data do not mix (i.e. ifPx write, then no consumer can

read untilCx read):

G(Px write→
∧
y 6=x

(¬Cy read UCx read)) . (5.9)

With these assumptions, the constraint may be verified by Spin using the LTL formula:

Assumption (5.9) → Constraint (5.8) . (5.10)

We verify the case where m=2. This design has 113 lines of MMM source code and 836 lines

of Promela code after translation. The verification completes without error. Table 5.1 lists

the detailed resource usage of the verification.

We also run a verification session with a dynamic scheduler of the following form: “if

Px writes, then no consumer can consume untilCx does”. As expected, the constraint is

satisfied with similar complexity measurements. Through experimentation, we find that no

round-robin scheduling nor any static priority real-time scheduler allow the constraint to pass.

5.5 Automatic Abstraction and Propagation

Working from a high abstraction level of a design, such as Metropolis Meta-Model, provides

two pivotal advantages. First, an abstraction applied to a higher level specification will also

132

make its lower level verification model more abstract as well. It is therefore advantageous to

apply abstraction operations directly on the higher level model and simplify the higher level

model as much as possible. Second, designers now have opportunities to specify abstraction

operations on their own directly at a specification model according to their knowledge about

the design.

It is obvious that only a portion of a design may be relevant to the passing or failing of a

given constraint in constraint-based verification. The rest of the design may be simplified or

removed, without changing the outcome of the verification. Unfortunately, identifying pre-

cisely what simplification or removal can be made correctly is as complex as the verification

problem itself. Up until now, the process of design abstraction (i.e. the simplification of the

design) is usually done by hand or left to the verification tools as they explore the reachable

states and analyze the constraints. Based on these observations, we propose a technique of

automatic design abstraction and propagation to simplify specification models and to lead to

simpler verification models.

The automatic abstraction propagation consists of two separate operations, designer-

driven propagation and constraint-driven propagation. Designers can specify free-able vari-

ables or statements according to their in-mind knowledge about the design, and then use the

automatic propagation to exactly propagate them and abstract the entire design. Constraints

being formally verified may themselves suggest an exact abstraction as well. The constraint-

driven propagation can automatically free the variables and statements that are not relevant.

No designer’s interaction is required.

133

Abstraction
Operations

Meta−Model
Abstracted

Other ToolsFV Tool

Meta−Model
Compiler

Abstraction
Propagation

Abstracted AST

(AST)
Abstract Syntax Tree

Frontend Compiler

Verification Tool
Simulation

Other Backends
Backend

Formal Verification
Backend

Simulation
Backend

Meta−Model

Operations
Revise Abstraction Meta−Model

Design
Properties

System
Specification

Figure 5.7:Metropolis compiler architecture with abstraction propagation

The implementation of automatic abstraction propagation in Metropolis is illustrated in

Figure 5.7. If a regular verification session cannot complete or takes too much time to com-

plete, a designer can turn on a compile-time flag to enable the abstraction, which can recog-

nize the abstraction keywords and perform the automatic abstraction propagation to simplify

the system design for verification. The abstraction propagation starts from the abstract syntax

trees (ASTs), the intermediate representation of the Meta-Model language, uses on-demand

traversal method to traverse the ASTs, and identifies the variables and statements that are eli-

gible for abstraction according to the control and data dependencies in the design. Designers

are allowed to specify more abstractions, and the tool will propagate them automatically to

abstract the design as much as possible to speed up verification. The abstracted specification

can then be verified by other verification tools more efficiently.

134

Variable Vertex Expression Vertex Control Stmt Vertex

a = b + (c = x * y + z); If (a) z = x +y;
else if (b) z = x * y;

f1(int a) {
 int b = a * a;
 int c = f2 (a, b) }

f2(int x, int y) {
 int ret = x*x + y;
 return ret*2; }

a

b c

zyx

z

yx

if

a b f1.a

f1.b

f2.x

f1.c

f2.ret

f2.y

A B D

while(i <10){
 z = x +y;
 i = i + 1;}

z

y

x

while

i

C

Figure 5.8:CDDG examples

5.5.1 Control and Data Dependency Graph

We use a control and data dependency graph (CDDG), built statically from the language

syntax information of the original design, to automate abstraction propagation processes. The

control and data dependency graph we use is a directed graph that has three types of vertices,

representing variables, expressions and control statements respectively. More specifically,

given an MMM specification, a CDDG is built according to the following general rules:

1) Each variable in the design corresponds to a vertex in the graph. For each assign-

ment expression, there is a expression vertex to represent its right-hand side expression. For

each variable in the right-side expression, there is an edge from the variable vertex to the

expression vertex. There is also an edge from the expression to the left-side variable. Fig-

ure 5.8A shows an example of a complex assignment statement. Note that the operations on

the variables are skipped and only dependencies are captured in a CDDG.

2) Each control statement is represented as a vertex in the graph. If a variable is in

135

the decision part of a control statement, there is an edge from the variable to the control

statement; if a variable may change its value in the execution part of a control statement,

there is an edge from the control statement to the variable. Control statements are further

divided into three categories, branching statements such asif andswitch, loop statements

such aswhile andfor, and synchronization statements such asawait andsynch. Figure 5.8B

and Figure 5.8C shows examples ofif andwhilestatements respectively.

3) Function calls are generally treated as operations and expressions. The CDDG of a

design specification is built as if all of its functions are flattened. Functions are connected

together through passing arguments and returning values when they invoke each other. For

a function, there is an expression vertex for each of its formal parameters and an expression

vertex for the return value. There are edges between the variable vertices (in both invoking

and invoked functions) and these expression vertices as variables are passed as arguments

and return values are assigned to variables. As Figure 5.8D shows, functionf1 calls function

f2 by passinga andb as arguments and assigning the return value toc. So there are three

expression vertices connecting the variables in two functions.

Note that vertices representing expressions don’t contain any useful syntax information

themselves and are only used to connect multiple variables to a variable or an expression as

intermediate vertices. Though they are eventually removed to simplify the graph represen-

tation and traversal in the implementation, for the convenience of presentation, we still keep

them in the illustrations. We define that a vertexvj dependson a vertexvi if there exists a

directed path fromvi to vj in a CDDG, wherevi andvj represent either variables or control

136

Algorithm 7 Designer-driven abstraction propagation
1: D′ := D
2: for eachv ∈ D do
3: D′ := D′∪ {ui ∈ V : there exists a path fromv to ui}
4: end for
5: Remove all the variables (including their operations) and statements inD′ from the de-

sign.

statements. In Figure 5.8A, variablea depends on variablesb, c, x, y andz. In Figure 5.8C,

variablei and the while loop depend on each other.

The number of vertices in a CDDG is the total number of variables, assignment expres-

sions, formal parameters of functions and control statements. So the size of a CDDG is linear

to the size of the original source code.

5.5.2 Abstraction Propagation Algorithms

Let G = {V, E} be a control and data dependency graph that is built from a design spec-

ification, whereV is the set of all the vertices andE is a set of dependency edges. In the

designer-driven abstraction propagation, a designer can specify free-able variables and state-

ments including variables and control statements, and automatically propagate them to the

entire design. Assuming a set of variables and statementsD ⊆ V is chosen by the designer

to start from for the designer-driven abstraction propagation, the algorithm is listed in Algo-

rithm 7.

The algorithm searches for and then abstracts the variables and statements that depend on

the designer’s input in the entire specification. Using the example shown in Figure 5.8C, if

a designer specifies that the while loop is free-able, then the whole while loop including the

137

Algorithm 8 Constraint-driven abstraction propagation
1: L := P
2: for eachv ∈ P do
3: L := L ∪ {all the vertices that have a path tov }
4: end for
5: for each synchronization statements ∈ V do
6: L := L ∪ {s}
7: L := L ∪ {all the vertices that have a path tos }
8: end for
9: Remove all the variables (including their operations) and statements inV − L from the

design.

variablei and the assignment statement ofz will be totally abstracted and the abstraction can

also be propagated to other variables and statements that depend on them. In the designer-

driven abstraction propagation, the amount of false negative results due to the abstraction is

decided solely by the designer’s input. Its propagation is guaranteed to be exact and no false

negative result will present as a consequence of the propagation.

Assume a set of variablesP ⊆ V is being checked in the constraints. The algorithm of

theconstraint-driven abstraction propagationis listed in Algorithm 8. The algorithm keeps

what the constraints and synchronization statements depend on, and abstracts the rest of the

design. Using the example shown in Figure 5.8C, ifP = {x, y}, V − L = {z}, the code

fraction is then abstracted to: “while(i < 10) i = i + 1;”.

Note that the synchronization statements are not freed at this point even if they don’t di-

rectly control the variables in the constraints. This is because a synchronization statement

controls the execution of the processes in a concurrent system, and the complex interaction

between processes make it difficult to free these synchronization statements exactly. The au-

tomatic abstraction propagation does not intend to handle the synchronization of concurrent

138

DataGen

DataGen

TTL2yapi

BoundedFifo

RdWrThreshold

yapi2TTL Sum

TTL Channel

YapiChannel Sum

YAPI Channel

Refine

Figure 5.9:YAPI and TTL channels

systems and their abstractions are left to the designer by the designer-driven propagation.

The algorithm also assumes that there are no non-terminating loops that may cause “dead”

code.

Methodologically, the constraint-driven propagation should be applied first in the process

of abstraction verification since it doesn’t need any interaction from the designer and will

not introduce false negative results. Then a designer can apply several iterations of designer-

driven abstractions to further abstract the design specification and simplify the verification

problem as much as possible, even by introducing false negative results. The worst case for

both algorithms is to traverse the entire CDDG|V | times, so their complexity isO(|V |2) and

they will introduce little overhead compared to the overall compilation time. The effective-

ness of the automatic abstraction propagation we have proposed will be studied through a

formal verification case study in the next section.

139

5.6 Formal Verification for TTL Channel

In this section, we use a realistic Metropolis design as an example to illustrate the usage of

the formal verification mechanism in Metropolis and to demonstrate the effectiveness of the

automatic abstraction propagation we have proposed in Section 5.5.

Y-chart Application Programmer’s Interface (YAPI) is a popular model of computation

for designing signal processing systems [49]. It is basically a Kahn process network [46]

extended with the ability to non-deterministically select an input port to consume and an

output port to produce. Within Metropolis, a library environment is set up such that any

YAPI design can be written using constructs in the Metropolis library. Central to YAPI is the

definition of communication channel and its refinement into Task Transition Level (TTL) [21,

32]. Figure 5.9 shows how a YAPI channel is refined to a TTL channel in Metropolis. A

YAPI channel models an unbounded First-In-First-Out (FIFO) buffer, similar to Kahn process

network. Asynchronously, writer processes write data into one end of the channel and reader

processes read data from the other end of the channel. At the lower level (TTL), the channel

is modeled with a bounded FIFO buffer. A central protocol is used to control the mutual

exclusion and boundary checking of the bounded FIFO buffer. As Figure 5.9 shows, the TTL

channel has a bounded FIFO (BoundedFifo) whose size is set at design time, and a control

medium (RdWrThreshold) which implements a protocol to guarantee correctly writing to

and reading from the FIFO buffer. To test the YAPI channel and its TTL refinement, we use

a writer process (DataGen) to write a series of data into the channel and a reader process

(Sum) to read the data from it.

140

Due to the boundedness of the TTL buffer, the writer process will block when there

is not enough free buffer slots to write data, and the reader process will block when there

is not enough data available in the buffer. The protocol implemented in the TTL channel

controller(RdWrThreshold) uses a threshold value to indicate if the writer or the reader can

be unblocked. If there is a condition on which a process may be unblocked, the controller uses

eventswakeupreaderorwakeupwriter to signal unblocking. The detail of this algorithm can

be found in [21]. The TTL channel model has 720 lines of code in Metropolis Meta-Model

and about 2200 lines code in Promela after translation. The experiments presented in this

section are all conducted with Spin 4.1.3 on a 3.0GHz Pentium 4 machine with 4GB of total

memory.

5.6.1 A Deadlock Free Constraint

One important constraint we want to check on the TTL channel is that there should be no

deadlock situation within the channel, i.e. once the writer starts writing data into the channel,

it will finish writing eventually. This constraint can be specified as an LTL formula:

G(datagen start → (F datagen finish)) , (5.11)

whereG is theglobally operator,F is theeventuallyoperator in LTL, and→ is the Boolean

imply operator.

Firstly, we try to verify a preliminary version of the TTL channel that contains a real

bug causing a deadlock situation. Using Spin, the bug can be easily caught within less than

141

Table 5.2: Summary of formal verification for TTL channel

Verification Manual Designer-driven Constraint-driven
w/o abstraction abstraction abstraction prop. abstraction prop.

state vector 432 bytes 352 bytes 232 bytes 188 bytes
depth reached 75607 74073 54359 33897
states generated 2.36686e+09 2.36607e+09 2.26572e+09 2.26481e+09
state transitions 3.65231e+09 3.60348e+09 3.42441e+09 3.54922e+09
memory usage 1094.545 MB 1091.66MB 1086.046 MB 1081.028 MB
CPU time usage 11h:48m:51s 10h:26m:24s 6h:41m:03s 5h:37m:24s
hash factor 3.62926 3.63046 3.79126 3.79278
*Optimization techniques, partial order reduction and bitstate, are applied.

one minute.2 Then, after fixing the bug, we re-run the verification session and the revised

TTL model can pass the formal verification without any error. The total CPU time used for

the verification is a little less than 12 hours. Table 5.2 lists the details about the verification

sessions for the non-deadlock constraint of the TTL model with and without abstractions and

propagations applied.

Considering that the non-deadlock constraint only checks the control part of the TTL

channel, its data-path can be abstracted to reduce the verification complexity. So we first

manually free the data storages in both the writer process (DataGen) and the reader process

(Sum) without using the automatic abstraction propagation. This abstraction saves about

12% of verification time, and requires modifying more than 10 statements throughout the

original design. Then we use the designer-driven abstraction propagation to propagate these

two abstractions to rest of the design. As a result, the internal data-path in the TTL channel

is also abstracted and 43% of the verification time is saved.
2After the abstractions and their propagations are applied later, the bug in the preliminary TTL channel can

also be caught within less than one minute. So the abstractions and their propagation are considered safe.

142

To show the effectiveness of the constraint-driven automatic abstraction propagation, we

also apply it on the original design. It automatically frees not only the FIFO structure but

also the buffers in other two connecting components (yapi2TTL and TTL2yapi), which

are directly connected to the FIFO, and their operations. From Table 5.2, we can see the

constraint-driven abstraction propagation can save 52% of verification time without any hu-

man interaction.

Practically, the designer-driven and constraint-driven abstraction propagations comple-

ment each other and should be used together to simplify verification as much as possible.

5.6.2 Checking Data Consistency

When the writerDataGenwrites a data into the TTL channel, it produces an event of

prepared ; when the readerSumreads a data from the channel, it produces an event of

processed . We use the annotationdata to represent the value of data written into or read

from the channel. An important constraint that can be expressed with LOC is data consis-

tency of the TTL channel, i.e. the input data of the TTL channel should be read from the

channel in exactly the same order without a loss. The data consistency constraint is defined

as:

data(prepared [i]) = data(processed [i]) . (5.12)

The TTL channel shown in Figure 5.9 is initially specified in Metropolis Meta-Model

(MMM) [18]. From the MMM specification of the TTL channel design, we use the Metropo-

143

lis backend tool to generate a corresponding Promela (Spin’s modeling language) descrip-

tion [42], which can be verified by the model checker Spin for a particular LTL formula. The

TTL channel design has 634 lines of MMM source code and 2049 lines of Promela code after

translation.

From the discussion above, we know that the data consistency constraint (5.12) of the

TTL channel cannot be expressed by LTL directly. Therefore, we have to assume that, “after

thex-th write byDataGen, at most 31 writes can be done before thex-th read bySum”. 3 Then

we use arraysprepared data[32] andprocessed data[32] to store the recent 32 pieces of data

written byDataGenand read bySumrespectively. We also useprepared i andprocessed i

(which take values of 0 to 31) to keep the index of the most recent data in the arrays. The

assumption is written in LTL as:

G(prepared occur → prepared i 6= processed i) , (5.13)

and it is verified to hold by Spin. The data consistency constraint is written in LTL as:

G(processed occur → prepared data[processed i] = processed data[processed i]) .

(5.14)

Becauseprocessed [x] always followsprepared [x], the data consistency only needs to be

3This assumption is derived from the actual buffer size of the TTL channel.

144

Table 5.3: Summary of formal verification for data consistency

Formula (5.13) (5.15)
Depth reached 51257 57221
States stored (×108) 2.2431 2.3156
State transitions (×108) 2.85523 3.09726
Total memory (MB) 735.098 819.517
CPU time 1h37m55s 3h03m18s
Hash factor 4.78686 4.63699

checked when an instance ofprocessed is occurring. The formula:

Assumption(5.13) → Constraint(5.14) (5.15)

is also verified to hold by Spin.

With the bitstate technique [43], Spin verifies the formulas (5.13) and (5.15) using about

1.5 hours and 3 hours of CPU time respectively on our 1.5GHz Athlon machine with 1GByte

of memory. And all the other relevant verification parameters are listed in Table 5.3. From

this case study (compared to the case studies in Chapter 3 and Chapter 4), we can clearly

see the tradeoff between the simulation trace checking and the formal verification. The sim-

ulation trace checking is usually much more efficient in terms of memory and CPU time

usage, but its verification results totally depend on the design of test cases for simulation. On

the other hand, the formal verification is more expensive but the results are more confident.

Therefore, it should be used for small but important design modules like the TTL channel.

145

Chapter 6

Conclusions

In this thesis, we have presented a comprehensive and complete study on verification and

analysis methodologies for system level designs and have mainly based our approaches on

formal specification of design constraints. Both simulation and formal verification techniques

have been discussed for system designs with functional and performance constraints. LOC

(Logic of Constraints) and LTL (Linear Temporal Logic) are two main formal languages

that we use for constraint specification. The contributions of this work are summarized as

follows.

We have extensively studied the verification aspects of our quantitative constraint for-

malism, Logic of Constraints. We compare LOC with LTL, a popular functional constraint

specification formalism, find that LOC has a different domain of expressiveness from LTL,

and conclude that LOC can express important constraints that cannot be expressed with LTL.

We have proposed two feasible verification approaches, simulation trace analysis and model

146

checking for LOC. We use a set of case studies on these approaches to demonstrate their

usefulness and effectiveness.

A simulation verification and analysis methodology has been proposed based on for-

mal specification of design constraints, i.e. assertions. We apply our methodology on the

Metropolis design framework and the network processor architecture simulator NePSim.

LTL is used to express and verify functional constraints such as non-starvation and execution

ordering, and LOC is used to specify quantitative performance and functional constraints

such as latency, throughput, and data consistency. All these constraints can be checked with

automatically generated trace checkers on simulation traces using small amounts of CPU

time and memory. The ability of LOC to carry out performance evaluation at the system

level also opens up design exploration avenue uncharted before. We therefore utilize LOC

in the design exploration of dynamic voltage scaling techniques in the network processor

model. Our approach is shown to be an efficient tool to help a designer choose an optimal

configuration in a large design space, specially when the number of considered parameters is

large and manual analysis of simulation results becomes tedious.

In addition to the assertion-based simulation verification, we have also proposed a dead-

lock analysis approach with built-in simulation monitors. We study deadlock problems in

system level designs that include complex synchronization constructs and function-architecture

separation and mapping. We discuss our deadlock analysis approach including a data struc-

ture called the dynamic synchronization dependency graph and an associated deadlock de-

tection algorithm. We use two examples, a complex function model for video processing and

147

a model of function-architecture mapping, to demonstrate the effectiveness and efficiency of

our approach in deadlock analysis for system level designs.

For small but important designs or library modules that will be instantiated many times

across different designs, it is possible and useful to exhaustively prove the desired proper-

ties at a high level of abstraction using formal verification techniques. We have therefore

proposed a formal verification methodology for system level designs with the approach of

automatic generation of verification models from design specifications. This methodology

is unique in that it is able to operate at different levels of abstraction and to allow verifica-

tion to drive the design process. In addition, system functions, abstract architectures, and

mappings can all be verified. Integral to the methodology is a semantically correct translator

from a system level language, Metropolis Meta-Model, to a software verification language,

Promela. Case studies have been performed to show the power of such an approach both in

terms of constraint verification driving synthesis and formal verification of designs before

and after synthesis steps. In addition, automatic abstraction and propagation algorithms have

been proposed to further simplified generated verification models.

148

Bibliography

[1] http://www. omg.org, object constraint language specification, 1997.

[2] http://www.eda.org/dcwg, quick reference guide for the design constraints description
language, 2000.

[3] http://developer.intel.com/design/network/ixa.html, Intel IXP1200 network processor
family hardware reference manual, 2001.

[4] http://www.open-vera.com, OpenVera assertions white paper, Synopsys, Inc., 2002.

[5] http://netlib.bell-labs.com/netlib/spin /whatispin.html, Spin manual, 2003.

[6] http://www.eda.org/vfv, PSL homepage, 2003.

[7] http://www.systemc.org, SystemC homepage, 2003.

[8] http://developer.intel.com/design/intelxscale, Intel XScale microarchitecture, 2004.

[9] http://www.intel.com/design/network/products/npfamily/ixp2400.htm, Intel IXP2400
network processor, 2004.

[10] http://www.intel.com/design/network/products/npfamily/ixp2800.htm, Intel IXP2800
network processor, 2004.

[11] http://www.itrs.net/common/2004update/2004update.htm, International Technology
Roadmap for Semiconductors, 2004.

[12] http://www.nlanr.net, NLANR measurement and network analysis, 2004.

[13] http://www.cs.ucr.edu/ cadgroup/pac, Performance Assertion Checker homepage, 2005.

[14] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfsthal. FoCs - automatic
generation of simulation checkers from formal specifications.Technical Report, IBM
Haifa Research Laboratory, Israel, 2003.

[15] M. Abramovici, M. A. Breuer, and A. D. Friedman.Digital Systems Testing and
Testable Design. Wiley-IEEE Press, 1994.

[16] P. Alexander, C. Kong, and D. Barton. Rosetta usage guide. http://www.sldl.org. 2001.

149

[17] B. Alpern and F. Schneider. Verifying temporal properties without temporal logic.ACM
Transactions on Programming Languages, 11(1):147–167, Jan. 1989.

[18] F. Balarin, L. Lavagno, C. Passerone, A. Sangiovanni-Vincentelli, M. Sgroi, and
Y. Watanabe. Modeling and designing heterogeneous systems.Technical Report
2001/01 Cadence Berkeley Laboratories, Nov. 2001.

[19] F. Balarin, Y. Watanabe, J. Burch, L. Lavagno, R. Passerone, and A. Sangiovanni-
Vincentelli. Constraints specification at higher levels of abstraction. InProceedings
of International Workshop on High Level Design Validation and Test, Nov. 2001.

[20] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangiovanni-
Vincentelli. Metropolis: an integrated electronic system design environment.IEEE
Computer, 36(4):45– 52, Apr. 2003.

[21] J. Brunel, E. A. de Kock, W. M. Kruijtzer, H. J. H. N. Kenter, and W. J. M. Smits. Com-
munication refinement in video systems on chip. InProceedings of the7th International
Workshop on Hardware/Software Codesign, pages 142–146, 1999.

[22] J. R. B̈uchi. On a decision method in restricted second order arithmetic. InProceedings
of International Congress on Logic, Methodology and Philosophy of Science, pages
1–11. Standford University Press, 1960.

[23] T. Burd and R. Brodersen. Design issues for dynamic voltage scaling. InProceedings
of International Symposium on Low Power Electronics and Design, pages 9–14, 2000.

[24] E. Cerny, B. Berkane, P. Girodias, and K. Khordoc.Hierarchical Annotated Action
Diagrams: An Interface-Oriented Specification and Verification Method. Kluwer Aca-
demic Publishers, 1998.

[25] A. Charlesworth. The multiway rendezvous.ACM Transactions on Programming Lan-
guages and Systems, 9(3):350–366, 1987.

[26] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons
using branching time temporal logic.Workshop on Logics of Programs, pages 52–71,
1981.

[27] E. M. Clarke, O. G. Jr., and D. A. Peled.Model Checking. The MIT Press, 2000.

[28] E. G. Coffman, M. Elphick, and A. Shoshani. System deadlocks.ACM Computing
Surveys, 3(2):67–78, 1971.

[29] C. Eisner and D. Fisman. Sugar 2.0 proposal presented to the accellera formal verifica-
tion technical committee. Mar. 2002.

[30] H. B. Enderton.A Mathematical Introduction to Logic. Academic Press, Inc., 1972.

150

[31] F. Fallah, P. Ashar, and S. Devadas. Simulation vector generation from HDL de-
scriptions for observability-enhanced statement coverage. InProceedings of the 36th
ACM/IEEE Design Automation Conference, pages 666–671, 1999.

[32] O. Gangwal, A. Nieuwland, and P. Lippens. A scalable and flexible data synchroniza-
tion scheme for embedded hw-sw shared-memory systems. InProceedings of Interna-
tional Symposium on System Synthesis, Oct. 2001.

[33] P. Godefroid and G. J. Holzmann. On the verification of temporal properties. InPro-
ceedings of IFIP/WG6.1 Symposium on Protocols Specification, Testing, and Verifica-
tion, June 1993.

[34] P. Godefroid and D. Pirottin. Refining dependencies improves partial-order verification
methods. InProceedings of the 5th Conference on Computer Aided Verification, volume
697 ofLecture Notes in Computer Science, pages 438–449. Springer-Verlag, June 1993.

[35] A. N. Habermann. Prevention of system deadlocks.Communications of the ACM,
12(7):373–377, 1969.

[36] T. Hafer and W. Thomas. Computational tree logic and path quantifiers in the monadic
theory of the binary tree.Proceedings of International Colloquium on Automata, Lan-
guages, and Programming, July 1987.

[37] Z. Har’El and R. P. Kurshan. Software for analysis of coordination. InProceedings of
the International Conference on System Science, pages 382–385, 1988.

[38] J. P. Hayes.Computer Architecture and Organization. McGraw-Hill, 1988.

[39] J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B. Paige, T. Rauhe, and A. Sand-
holm. Mona: Monadic second-order logic in practice. InProceedings of Tools and
Algorithms for the Construction and Analysis of Systems, First International Workshop,
TACAS ’95, LNCS 1019, 1995.

[40] R. C. Ho, C. H. Yang, M. A. Horowitz, and D. L. Dill. Architecture validation for
processors. InProceedings of the 22nd Annual International Symposium on Computer
Architecture, pages 404–413, June 1995.

[41] C. A. R. Hoare. Communicating sequential processes.Communications of the ACM,
21(8):666–677, 1978.

[42] G. J. Holzmann. The model checker Spin.IEEE Transactions on Software Engineering,
23(5):279–258, May 1997.

[43] G. J. Holzmann. An analysis of bitstate hashing.Formal Methods in Systems Design,
13(3):289–307, Nov. 1998.

[44] J. E. Hopcroft and J. D. Ullman.Introduction to automata theory, languages, and
computation. Addison Wesley, 1979.

151

[45] F. Jahanian and A. K. Mok. Safety analysis of timing properties in real-time systems.
IEEE Transactions on Software Engineering, pages 890–904, 1986.

[46] G. Kahn. The semantics of a simple language for parallel programming. InProceedings
of IFIP Congress, pages 471–475. North Holland Publishing Company, 1974.

[47] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli. System
level design: orthogonalization of concerns and platform-based design.IEEE Transac-
tions on Computer-Aided Design, 19(12):1523–1543, Dec. 2000.

[48] E. Knapp. Deadlock detection in distributed databases.ACM Computing Surveys,
19(4):303–328, 1987.

[49] E. d. Kock, G. Essink, W. Smits, P. v. d. Wolf, J. Brunel, W. Kruijtzer, P. Lieverse, and
K. Vissers. YAPI: application modeling for signal processing systems. InProceedings
of the37th Design Automation Conference, June 2000.

[50] M. Krishnamurthi, A. Basavatia, and S. Thallikar. Deadlock detection and resolution in
simulation models. InProceedings of the 26th Conference on Winter Simulation, pages
708–715. Society for Computer Simulation International, 1994.

[51] T. Kropf. Introduction to Formal Hardware Verification. Spinger-Verlag, 1998.

[52] Y. Luo, J. Yang, L. Bhuyan, and L. Zhao. NePSim: A network processor simulator with
power evaluation framework.IEEE MICRO, special issue on network processors, Sept.
2004.

[53] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent systems: Spec-
ification. Springer-Verlag, 1992.

[54] E. J. McCluskey.Logic Design Principles. Prentice Hall, 1986.

[55] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

[56] A. Mok and G. Liu. Early detection of timing constraint violation at runtime. InPro-
ceedings of IEEE Real-Time Systems Symposium, pages 176–186, Dec. 1997.

[57] A. Mok and G. Liu. Efficient run-time monitoring of timing constraints. InProceedings
of Real-Time Technology and Applications Symposium, pages 252–262, June 1997.

[58] J. L. Peterson and A. Silberschatz.Operating System Concepts. Addison-Wesley, 1983.

[59] A. Pnueli. The temporal logic of programs. InProceedings of the18th IEEE Symposium
on Foundation of Computer Science, pages 46–57, 1977.

[60] M. Sanchez, E. Biersack, and W. Dabbous. Survey and taxonomy of IP address lookup
algorithms.IEEE Network Magazine, 15(2):8–23, 2001.

152

[61] M. Sfinghal. Deadlock detection in distributed systems.IEEE Computer, 22(11):37–48,
1989.

[62] F. Vahid and T. Givargis.Embedded System Design: A Unified Hardware/Software
Approach. John Wiley & Sons, 2002.

[63] M. Y. Vardi. An automata-theoretic approach to linear temporal logic.Logics for
Concurrency. Structure versus Automata, LNCS Vol 1043, Springer-Verlag, pages 238–
266, 1996.

[64] P. Wolper. Temporal logic can be more expressive.Information and Control, (56):72–
99, 1983.

153

Appendix A

Formal LOC Syntax and Semantics

A.1 Representing System Behaviors

We use the termbehaviorto denote the sequence of inputs and outputs that a system exhibits

when excited by the input sequence. In general, we want to consider both finite and infinite

sequences, as well as hybrids where some inputs or outputs appear infinitely many times, and

some appear only finitely many times. Formally, letE be a set ofevent names1 and for each

e ∈ E let V (e) be itsvalue domain. Then, abehaviorβ is a partial function fromE × Z to⋃
e∈E V (e) such that:

(1) β(e, n) ∈ V (e) for eache ∈ E, and each positive integern for whichβ(e, n) is defined,

1 In this work, we assume thatE is finite. However, the approach presented here could easily be extended
to arbitrary sets of event names. This extension would allow us to consider networks with dynamic process and
interconnection creation.

154

(2) if β(e, n) is not defined for somee ∈ E and positive integern, thenβ(e,m) is not

defined for anym > n.

(3) β(e, n) is not defined for anye ∈ E and anyn ≤ 0. 2

If n is the largest integer for whichβ(e, n) is defined, then we say that there aren instances

of e in β. We also say for all positive integersk ≤ n thatβ(e, k) is the value of thek-th

instance ofe in β.

A systemis specified by a set of event names, their value domains and aset of behaviors.

In a typical system, event names may represent interconnections, e.g. wires in a hardware

system, or mailboxes in a software system. The behavior of the system is then characterized

by sequences of values observed on the wires, or sequences of messages to mailboxes.

Behaviors, by themselves, are not sufficient to evaluate performance constraints that may

involve quantities like timing or power of the system. For this, we need additional infor-

mation regarding performance measures. We represent this information as annotations to

behaviors. Formally, given an arbitrary setT , an annotationof behaviorβ of typeT is a

partial functionf fromE × Z to T , such thatf(e, n) is defined if and only ifβ(e, n) is. We

refer tof as aT -valued annotation ofβ. Similarly to events, iff is aT -valued annotation,

then we say thatT is the value domain off . An annotated behavioris a pair(β,A) whereβ

is a behavior andA is a set of annotations ofβ.

2 Clearly, we could have definedβ as a partial function on positive integers, but this definition happens to
be more convenient when we define the semantics.

155

Here we show a few uses of annotations, but make no proposal for their specification.

We assume that they are part of the functional specification, and thus specified with the

same language as the functional specification. In a way, they are an extension of an already

common design practice, where comments and assertions are placed in the code to ease

design understanding and debugging.

Annotated behaviors are structures for which we want to state constraints. In other words,

annotated behaviors are models of LOC formulas.

A.2 LOC Syntax

LOC formulas are defined relative to a multi-sorted algebra(A,O,R), whereA is a set of

sets (sorts),O is a set of operators, andR is a set of relations on sets inA. More precisely,

elements ofO are functions of the formT1× · · · × Tn 7→ Tn+1, wheren is a natural number,

andT1, . . . , Tn+1 are (not necessarily distinct) elements ofA. If o ∈ O is such a function,

then we say thato isn-ary andTn+1-valued. Similarly, ann-ary relation inR is a function of

the formT1×· · ·×Tn 7→ {true, false}. We require thatA contains at least the set of integers,

and the value domains of all event names and annotations appearing in the formula. For ex-

ample, ifA contains integers and reals,O could contain standard addition and multiplication,

andR could contain usual relational operators(=, <,>, . . .).

The basic building blocks of LOC formulas areterms. We distinguish terms by their

value domains:

156

• i is an integer-valued term,

• for each value domainT ∈ A, and eachc ∈ T , c is aT -valued term,

• if τ is an integer-valued term,e ∈ E is an event name, andf is aT -valued annotation,

then val(e[τ]) is aV (e)-valued term, andf(e[τ]) is aT -valued term,

• if o ∈ O is aT -valuedn-ary operator, andτ1, . . . , τn are appropriately valued terms,

theno(τ1, . . . , τn) is aT -valued term.

We say thatτ in a term of the form val(e[τ]) or f(e[τ]) is anindex expression.

Terms are used to build LOC formulas in the standard way:

• if r ∈ R is an n-ary relation, andτ1, . . . , τn are appropriately valued terms, then

r(τ1, . . . , τn) is an LOC formula,

• if φ andψ are LOC formulas, so areφ, φ ∧ ψ, andφ ∨ ψ.

For example, ifa andb are names of integer-valued events, andf andg are integer-valued

annotations, then the set of LOC formulas includes the following:

val(a[i]) = 5 ∧ val(a[i+ 1]) = 5

f(a[i+ 4]) + f(b[g(a[i])]) < 20

val(a[i]) = 0 ∨ f(b[i]) = 0 .

When reading these formulas, it is helpful to think ofi as being universally quantified, as

clarified in the LOC semantics next.

157

A.3 LOC Semantics

We first define thevalueof formulas and terms with respect to an annotated behavior and a

value of the variablei. We use a special symbolundef to denote that the value of a term

or a formula is not defined, and assume thatundef is distinct from any element of any sort

in A. We useVn
(β,A)[[α]], whereα is a term or a formula, to denote the value ofα evaluated

at the annotated behavior(β,A) and the valuen of variablei. If α is aT -valued term, then

Vn
(β,A)[[α]], is inT ∪ {undef }, and ifα is a formula, thenVn

(β,A)[[α]] is in {true, false, undef }.

Note that this implies that for somek-aryT -valued operatoro, the formulao(τ1, . . . , τk) can

take valueundef , while o itself cannot, because it isT -valued. There is no contradiction

here, only a slight abuse of notation, as we use the same symbolo to represent both the

operator and its name appearing in LOC formulas. This ambiguity in the meaning ofo, can

always be easily resolved from the context in whicho appears. Also note that we do not

make a requirement that all annotations appearing in the formula must be defined inA. For

such undefined annotations, we use valueundef . The value of an LOC formula is defined

recursively as follows:

• Vn
(β,A)[[i]] = n,

• Vn
(β,A)[[c]] = c for each elementc of each value domainT ,

• for each event namee and each integer-valued termτ ,

158

Vn
(β,A)[[val(e[τ])]] =

undef if Vn
(β,A)[[τ]] = undef ,

or β(e,Vn
(β,A)[[τ]]) is not defined

β(e,Vn
(β,A)[[τ]]) otherwise,

• for each annotationf , each event namee, and each integer-valued termτ ,

Vn
(β,A)[[f(e[τ])]] =

undef if f 6∈ A,

or Vn
(β,A)[[val(e[τ])]] = undef ,

f(e,Vn
(β,A)[[τ]]) otherwise,

• for eachk-ary operatoro, usingvj to denoteVn
(β,A)[[τj]] for eachj = 1, . . . , k,

Vn
(β,A)[[o(τ1, . . . , τk)]] =

undef if vj = undef for somej,

o(v1, . . . , vk) otherwise,

• for eachk-ary relationr, usingvj to denoteVn
(β,A)[[τj]] for eachj = 1, . . . , k,

Vn
(β,A)[[r(τ1, . . . , τk)]] =

undef if vj = undef for somej,

r(v1, . . . , vk) otherwise,

• Vn
(β,A)[[φ]] =

true if Vn
(β,A)[[φ]] = false,

false if Vn
(β,A)[[φ]] = true,

undef otherwise,

159

• Vn
(β,A)[[φ ∧ ψ]] =

true if Vn
(β,A)[[φ]] = true,

andVn
(β,A)[[ψ]] = true,

false if Vn
(β,A)[[φ]] = false,

or Vn
(β,A)[[ψ]] = false,

undef otherwise,

• Vn
(β,A)[[φ ∨ ψ]] =

true if Vn
(β,A)[[φ]] = true,

or Vn
(β,A)[[ψ]] = true,

false if Vn
(β,A)[[φ]] = false,

andVn
(β,A)[[ψ]] = false,

undef otherwise.

We say that an annotated behavior(β,A) satisfies a formulaφ, if Vn
(β,A)[[φ]] = false does not

hold for any integern.

160

Appendix B

Proof of LOC Verification Complexity

Before we present the proofs of Theorem 1 and Lemma 1 (in Section??), we need to define

systems that we are dealing with. Formally, a finitely-valued finite-state system is a sextuple

(S, S0, T, E,G, α) where:

• S is the set ofstatesthat must be finite,

• S0 ⊆ S is the set ofinitial states,

• T ⊆ S × S is thetransition relation,

• E is the set of event names such that for eache ∈ E the value domainV (e) is finite,

• G : {(e, v) : e ∈ E, v ∈ V (e)} 7→ 2T is thegeneration function,

• annotation axiomα is an LOC formula that may refer to values of event inE, but

also to some annotations. Value domains of all the annotations appearing inα must be

finite.

161

We useG(e) as an abbreviation of
⋃

v∈V (e)G(e, v). Intuitively,G(e, v) is the set of transitions

on whiche is generated with valuev.

An annotated behavior(β,A) is in the set of behaviors of the system(S, S0, T, E,G, α)

if it satisfiesα, and there exists a (possibly finite) sequence of statess0, s1, . . . such that:

• s0 ∈ S0,

• (si−1, si) ∈ T for all i > 0 for whichsi exists,

• for all e ∈ E, all transitions(si−1, si), and all positive integersn: if e is generated on

(si−1, si) for then-th time, then it must be possible to generate the valueβ(e, n) on

that transition, i.e. if it holds that:

(si−1, si) ∈ G(e) ,

n =
∣∣{j : 1 ≤ j ≤ k, (sj−1, sj) ∈ G(e)}

∣∣ ,
then the following must also hold:

(si−1, si) ∈ G(e, β(e, n)) .

B.1 Proof of Theorem 1

We will reduce thePost Correspondence Problem (PCP)[44] to checking whether a finitely-

valued finite-state system with LOC annotation axioms satisfies an LOC formula. Recall

162

that a PCP instance is given by two ordered lists of strings,a1, . . . , an andb1, . . . , bn. The

question is whether there is a sequence of integersi1, . . . , ik (all form 1 ton) such that strings

ai1ai2 . . . aik andbi1bi2 . . . bik are the same.

We now describe the system used in the reduction. The states of the system are 4-tuples

(ia, ja, ib, jb) whereia andib range from1 to n, ja ranges between1 and the length of the

string aia, andjb ranges between1 and the length of the stringbib. Initial states are those

whereja = jb = 0. In addition, there is a special state denoted byDONE. The system has

two eventsa andb, both valued from0 to n. Informally, the system moves into(ia, ja, ib, jb)

after it sees theja-th letter ofaia, which must also be thejb-th letter ofbib. Formally, the

transitions in the system are the following:

• From (ia, ja − 1, ib, jb − 1) to (ia, ja, ib, jb) if ja-th letter in stringaia is the same as

jb-th letter in stringbib. If ja = jb = 0, then eventa with valueia and eventb with

valueib are generated. Otherwise, no events are generated on this type of transitions.

• From(ia, ja − 1, ib, jb) to (ia, ja, i
′
b, 1) if bib hasjb letters, andja-th letter in stringaia

is the same as the first letter in stringbi′b. A b event with valuei′b is generated on this

type of transitions.

• From(ia, ja, ib, jb − 1) to (i′a, 1, ib, jb) if aia hasja letters, andjb-th letter in stringbib

is the same as the first letter in stringai′a. An a event with valuei′a is generated on this

type of transitions.

• From (ia, ja, ib, jb) to (i′a, 1, i
′
b, 1) if aia hasja letters,bib hasjb letters, and the first

163

letters in stringsai′a andbi′b are the same. Ana event with valuei′a, and ab event with

valuei′b are generated on this type of transitions.

• From(ia, ja, ib, jb) toDONE if aia hasja letters, andbib hasjb letters. Eventsa andb

are generated on this type of transitions, both with value 0.

The system has a single binary annotation calledgood, and the annotation axiom is:

good(a[i]) ⇐⇒ (val(a[i]) = val(b[i]) ∧ ((i = 1) ∨ good(a[i− 1]))) .

PCP has a solution if and only if the system above does not satisfy the LOC formula:

val(a[i]) = 0 .

Indeed the formula above is violated if and only if there is a path in the system from some

initial state toDONE, such that along this patha andb are generated the same number of

times (sayk + 1), and the firstk values of ofa andb are not only equal but also larger than

0. If i1, . . . , ik denotes those values, then it is not hard to check that stringsai1ai2 . . . aik and

bi1bi2 . . . bik are the same.

We have just shown that PCP can be reduced to checking whether a finitely-valued finite-

state system with LOC annotation axioms satisfies an LOC formula. Since the former is

known to be undecidable, it follows that the latter is also undecidable.

164

B.2 Proof of Lemma 1

In this section we define the Presburger formulaSY SI whose existence was claimed by

Lemma 1. We do so in several steps. First, we characterize the transition relation with

formulasTRANsq for each pair of states(s, q). These formulas have free variablestpr, one

for each transition(p, r) ∈ T . We constructTRANsq such that an assignmenttpr = npr ∈ Z

satisfiesTRANsq if an only if there is a path inT from s to q that crosses transition(p, r)

exactlynpr times. We set:

TRANsq = FLOWsq ∧ CONNs

FormulaFLOWsq requires that the number of times a path enters the state must be equal to

the number of times it leaves the state. The exceptions to this rule are statess, which must

be exited one extra time, andq, which must be entered one extra time. Formally:

FLOWsq =
∧

(p,r)∈T

(tpr ≥ 0)

∧
∧
r∈S

(∑
(p,r)∈T

tpr + Indr=s =
∑

(r,w)∈T

trw + Indr=q

)
,

whereIndP is 1 if propositionP holds, and it is 0 otherwise.

165

For example, for the system in Figure 2.2:

FLOW13 =(t12 ≥ 0) ∧ · · · ∧ (t84 ≥ 0)

∧ (t12 = t23 = t31 + 1 = t12 + t14)

∧ (t14 + t84 = t45 = t56 = t67 = t78 = t84) .

Unfortunately,FLOWsq is not sufficient to fully characterize paths froms to q. For

example, the assignmentt12 = t23 = 1, t31 = t14 = 0, t45 = t56 = t67 = t78 = t84 = 2

satisfiesFLOW13 but it does not describe a path from 1 to 3. Rather, it describes a path

and a loop not connected to the path. To eliminate such loops, in addition toFLOWsq we

must state that iftpr > 0, then there must exist a simple path froms to p, i.e. there must

exist a sequences1, . . . , sk−1, sk of no more than|S| states, such thats1 = s, sk = p, and

tsi−1si
> 0 for all i = 2, . . . , k. This is stated by formulaCONNs which uses|S| variables

vk to represent this path. Here, we assume thatS is a subset of integers. This assumption can

be made without loss of generality, as integer encodings can be easily defined for any finite

set. If the path is of lengthl < |S|, we require thatvk = p for all k > l. So, if the value ofvk

is notp, we are still in the active portion of the path and we must require thattxy > 0, where

166

x andy are values ofvk andvk+1 respectively. Formally, we define:

CONNs =
∧

(p,r)∈T

(tpr > 0)=⇒∃v1 . . . ∃v|S| :
(
(v1 = s) ∧ (v|S| = p)

∧
|S|−1∧
k=1

(vk = p)=⇒(vk+1 = p)

∧
|S|−1∧
k=1

(vk = p)=⇒
(∨
(x,y)∈T

(vk = x) ∧ (vk+1 = y) ∧ (txy > 0)
))

.

It may appearTRANsq needs a term similar toCONNs stating that iftpr > 0, there

must exists a simple path fromr to q, but in fact, this statement is already implied by the

conjunction ofFLOWsq andCONNs.

For example, for the system in Figure 2.2:

CONN1 = ((t45 > 0)=⇒(t14 > 0)) ∧ . . . ,

implying that:

TRAN13 =(t31 ≥ 0)

∧ (t12 = t23 = t31 + 1)

∧ (t14 = t45 = t56 = t67 = t78 = t84 = 0) .

In the next step, we useTRANsq to characterize generation relation with formulasGENsq

for each pair of states(s, q). These formulas have a free variablesge for each evente ∈ E.

We constructGENsq such that an assignmentge = ne ∈ Z satisfiesTRANsq if an only if

167

there exists a path inT from s to q along which evente is generated exactlyne times. It is

not hard to see that :

GENsq = ∃ . . . ∃tpr . . .︸ ︷︷ ︸
over alltpr s.t. (p,r)∈T

: TRANsq ∧
∧
e∈E

(
ge =

∑
(x,y)∈G(e)

txy

)

For example, for the system in Figure 2.2:

GEN13 =∃t12 . . . ∃t84 : TRAN13

∧ (gx1 = t12 + t23 + t31)

∧ (gx2 = t45 + t56 + t67 + t78 + t84) ,

which can be simplified to(gx2 = 0) ∧ (∃j ≥ 0 : gx1 = 3j + 2).

So far, we have characterized a system independently of the LOC formula. Next, we will

defineSY SI for a specific interpretationI of the set of event expressionsEφ. But first, we

need to introduce some additional notation. In the rest of the section, we will useeε, aε,

andbε to denote the event name and constants appearing in event expressionε, i.e. we will

assume that everyε is of the form val(eε[aεi+ bε]) or f(eε[aεi+bε]), wheref is an annotation.

We say that two event expressionsε andε′ aresimilar, and writeε ∼ ε′, if they refer to the

same event, i.e.eε = eε′ and they both refer to the value ofeε, or they both refer to the same

annotation ofeε.

We say that an ordered tuple(q0, s1, q1, . . . , sN , qN) ∈ S2N+1 is aninstanceof interpre-

tationI of Eφ if the following is satisfied:

168

(1) q0 is an initial state, i.eq0 ∈ S0.

(2) (sn, qn) is a transition, i.e∀n = 1, . . . , N : (sn, qn) ∈ T

(3) There exists a partitionE1, . . . , EN of Eφ such that for alln = 1, . . . , N and allε ∈ En

the following holds:

(a) if ε is of the form val(eε[aεi+ bε]), then the eventeε can be generated on transition

(sn, qn) with the value required byI, i.e. the following holds:

(sn, qn) ∈ G(eε, I(ε)) ,

(b) I assigns the same value to all similar event expressions in the same partition,

i.e.:

∀ε′ ∈ En : (ε′ ∼ ε) =⇒
(
I(ε′) = I(ε)

)
.

We call any such a partition aninstantiating partitionof instance(q0, s1, . . . , qN).

Intuitively, by traversing a path visiting(s1, q1) . . . (sN , qN) we could generate all event

values required byI. However,SY SI must also ensure that these values are generated at

correct values of index expression. To do so,SY SI uses a variableyej, for eache ∈ E and

eachj = 1, . . . , N , to count how many times evente is generated on a path segment form

169

qj−1 to sj. Formally:

SY SI =
∨

(q0,s1,...,qN)

∨
(E1,...,EN)

∃ . . . ∃yej . . .︸ ︷︷ ︸
over allyej s.t.e∈E,1≤j≤N

:
N∧

n=1

(
GENqn−1sn(. . . , yen, . . .)

∧
∧

ε∈En

(n∑
k=1

(yeεk + Ind(sk,qk)∈G(eε)) = aεi+ bε
))

,

where the first disjunction ranges over all instances ofI, the second disjunction ranges over

all instantiating partitions of the current instance, andGENqn−1sn(. . . , yen, . . .) denotes the

formula obtained formGENqn−1sn by substituting variablesge with yen for all e ∈ E. The

equation requires for allε ∈ En that the total number of times thateε is generated on the path

from the initial state to the transition(sn, qn) is exactly as required by the index expression

aεi+ bε.

For example, the interpretationI which assigns 1 both to val(x1[3i]) and val(x2[i]) in

formula (2.17) has a single instance(1, 3, 1, 8, 4) with the unique instantiating partitionE1 =

{val(x1[3i])}, E2 = {val(x2[i])}. Therefore:

SY SI =∃yx11∃yx12∃yx21∃yx22 :
(
GEN13(yx11, yx21) ∧GEN18(yx12, yx22)

∧ (yx11 + 1 = 3i)

∧ (yx21 + yx22 + 1 = i)
)
.

170

One can check that:

GEN13(yx11, yx21) =(yx21 = 0) ∧ (∃j ≥ 0 : yx11 = 3j + 2)

GEN18(yx12, yx22) =(∃j ≥ 0 : yx12 = 3j) ∧ (∃j ≥ 0 : yx22 = 5j + 4) ,

soSY SI can be simplified to(∃j > 0 : 5j = i), as we anticipated in Section 2.6.

171

	List of Figures
	List of Tables
	Introduction
	System Level Design
	Verification Methods
	Functional and Performance Constraints
	Metropolis Design Framework
	Framework and Design Methodology
	Metropolis Meta-Model Language

	Thesis Overview

	Logic of Constraints
	Introduction to LOC
	LOC Syntax and Semantics
	Expressiveness of LOC
	Checking LOC Formulas with Simulation
	Runtime Monitoring
	Dealing with Memory Limitation
	A Case Study of FIR Filter

	Formal Verification of LOC Formulas
	Complexity of Verifying LOC Formulas

	Simulation Verification and Analysis Based on Formal Assertions
	Methodology of Simulation Verification and Analysis
	Simulation Verification in Metropolis
	A Picture-in-Picture Design
	A Function-Architecture Mapping Model

	Verification for Network Processor Architectures
	Introduction to Network Processors
	Network Processor Model
	Experimental Settings
	Verification Studies

	Performance and Power Analyis for Network Processor Architectures
	Experimental Settings
	Dynamic Voltage Scaling
	Power Analysis
	Design Exploration for DVS

	Deadlock Analysis with Built-in Simulation Monitors
	Introduction to Deadlock Analysis
	Synchronization in Metropolis
	Synchronization Constructs
	Deadlock in Metropolis

	Synchronization Dependency and Deadlock Analysis
	Deadlock Analysis Methodology
	Dynamic Synchronization Dependency Graph
	Deadlock Detection Algorithm
	Implementation

	Case Studies of Deadlock Analysis
	A Function Model for Video Processing
	A Function-Architecture Mapping Model

	Formal Verification for System Level Designs
	Introduction to Formal Verification
	Formal Verification Methodology
	Translation from MMM to Promela
	MMM Processes
	Interfaces and Await Statements
	Dynamic Objects
	Function-Architecture Mapping

	Producer-Consumer Network
	Verification of Data Integrity
	Assumptions and Schedulers
	Transformation and Refinement

	Automatic Abstraction and Propagation
	Control and Data Dependency Graph
	Abstraction Propagation Algorithms

	Formal Verification for TTL Channel
	A Deadlock Free Constraint
	Checking Data Consistency

	Conclusions
	Bibliography
	Formal LOC Syntax and Semantics
	Representing System Behaviors
	LOC Syntax
	LOC Semantics

	Proof of LOC Verification Complexity
	Proof of Theorem 1
	Proof of Lemma 1

