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Abstract

Network processors (NPUs) have emerged as successful
platforms to provide both high performance and flexibility
in building powerful routers. With the scaling of technol-
ogy and higher requirements on performance and function-
ality, power dissipation is becoming one of the major de-
sign considerations in NPU development. In this paper,
we present an assertion-based methodology for system-level
power/performance analysis of network processor designs,
which can help designers choose the right architecture fea-
tures and low power techniques. We write power and per-
formance assertions, based on Logic of Constraints. Trace
checkers and simulation monitors are automatically gener-
ated to analyze the power and performance characteristics of
the network processor model. Furthermore, we apply a low
power technique, dynamic voltage scaling (DVS), to the net-
work processor model, and explore their pros and cons with
the assertion-based analysis technique. We demonstrate that
the assertion-based methodology is useful and effective for
system level power/performance analysis.

1 Introduction and Motivation

As Internet gets more and more complicated with the rise
of new protocols and services, so does the cost of new equip-
ments and equipment upgrades. Network processor (NPU) is a
hardware platform that provides high performance and flexible
programming capability, which allows it to address many mar-
ket segments and a wide range of applications. As a result, the
upgrade cost can be reduced and developing cycles for new
protocols/data types can be shortened. Therefore, NPUs are
poised to replace expensive and inflexible fixed-function sili-
con application-specific integrated circuits (ASICs).

A number of challenges for NPU implementation are al-
ready evident, and power dissipation is one of them. For ex-
ample, in a typical router configuration, there may be one or
two NPUs per line card. A group of line cards, e.g. 16 or
32, are generally placed within a single rack or cabinet. Thus,
the aggregated heat dissipation becomes a big concern, given
that each NPU typically consumes around 20 Watts and the
operating temperature can reach as high as 70°C [4]. On the
other hand, with the demand of performance scaling, NPU’s
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Description IXP1200 | IXP2400 | 1XP2800
Performance(MIPS) 1200 4800 23000
Media Bandwidth(Gbps) | 1 2.4 10
Frequency of ME(MHz) | 232 600 1400
Number of MEs 6 8 16
Power(W) 45 10 14

Figure 1. Power and performance characteris-
tics of Intel IXP NPUs

clock frequency is increasing and more computation engines
will be put on NPUs. Figure 1 shows the power and perfor-
mance characteristics of three Intel IXP family NPUs [2, 3, 4].
Note that the power dissipation increases as the complexity of
an NPU increases. This trend poses a significant challenge for
the NPU design.

System level modeling with executable languages such as
C/C++ or other modeling frameworks have been crucial in de-
signing a large electronic system. One essential approach is
to develop a cycle-level accurate simulator. To software de-
velopers, the simulator enables application software develop-
ment and performance optimization long before the product
becomes available in silicon. To NPU designers, the simula-
tor facilitates conducting power and performance analysis and
fine tuning architectural parameters.

Unfortunately, most cycle-level accurate simulators only
report power and performance data for worst and/or average
cases, which limits the capability of power and performance
analysis. For example, the performance and power dissipa-
tion of an NPU are closely related to its workload, namely the
incoming packet rate. The workload is usually unbalanced,
which may cause extreme high power dissipation at one time
versus another. On the other hand, the unbalanced workload
provides opportunities for power-performance tuning. There-
fore, the power and performance distribution can be an im-
portant complement to average/worst case data in the design
analysis.

We believe that the assertion-based analysis methodology
is very suitable for transaction-level or cycle-level power and
performance analysis for NPU designs. From formally speci-
fied assertions, trace checkers or simulation monitors are auto-
matically generated to validate and analyze simulation traces.
Designers do not need to write separate reference models or



scripts to scan through the traces. So it is very efficient in de-
sign analysis for large systems with high complexity and func-
tionality such as NPU designs. In order to analyze the quan-
titative power and performance characteristics of the NPU de-
sign, we use Logic of Constraints (LOC) [6] to specify asser-
tions for the rate, latency, power and energy, and analyze their
distributions.

In [8], basic functional and performance properties of an
NPU design were verified and analyzed. Our contributions in
this paper are in two aspects. The first is to demonstrate power
analysis using the assertion-based methodology. This helps
designers quickly find right architectures and configurations
according to a set of particular power/energy requirements.
The second contribution is to extend the use of assertions
to analyze the power-performance distributions and trade-offs
under various workloads, with low power techniques, such as
the dynamic voltage scaling (DVS) [5].

The rest of the paper is organized as follows. In the next
section, we introduce the network processor model and its
simulator NePSim. In Section 3, we discuss the approach of
assertion-based power and performance analysis for the net-
work processor designs. In Section 4, we demonstrate the use-
fulness and effectiveness of our approach using two analysis
case studies, general power analysis and dynamic voltage scal-
ing analysis. Section 5 concludes the paper.

2 Network Processor M odel

A network processor design usually contains multiple RISC
processing cores, dedicated hardware for common networking
operations, high-speed memory interfaces, high-speed 1/O in-
terfaces and interfaces to general purpose processors. Here
we use NePSim simulator [9] to model our NPU architec-
ture. NePSim is based on Intel 1XP1200 and includes a cycle-
accurate architecture simulator and a power estimator. All the
configurations in NePSim are parameterizable.

The reference model of our network process design,
IXP1200, consists of a StrongARM core, six multi-threaded
processing units called microengines (MEsS), memory con-
trollers, high-speed buses and packet buffers. The basic ar-
chitecture of the processor is shown in Figure 2. The Stron-
gARM core initializes the program store of the microengines
and loads necessary data into memory before enabling the mi-
croengines. The off-chip SRAM (up to 8M) is typically used
to store the forwarding table, while the SDRAM (up to 256M)
is typically used to store IP packets. The usage of each com-
ponent is highly dependent on the application and workload.

The instruction set of a microengine contains 33 categories
of instructions. Memory access takes much longer time com-
pared to other instructions in an NPU design. In each mi-
croengine, memory references are issued to a two-entry com-
mand FIFO. The commands are then sent to the command
bus. Based on the priority of commands, the command bus

arbiter selects one or more reference commands among the
command FIFOs and move them to the corresponding mem-
ory controller. In the NePSim model, to fetch a block of data
stored continuously in SRAM requires 7 cycles to fetch the
first piece of 32-bit data, and then 2 cycles for each subsequent
piece. Because SDRAM bus is shared by the StrongArm core,
MEs and PCl, SDRAM access latency is even longer. Due
to varying command queuing time, the latency for SDRAM
reading/writing varies in the range of 10 to 60 cycles.
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Figure 2. IXP1200 architecture.

3 Assertion-Based Analysis M ethodology

Assertion-based trace checking and analysis are similar to
the popular embedded assertion technique in hardware design,
where simple comparison circuitry is inserted into HDL de-
scriptions to help designers uncover bugs during simulation.
The methodology begins with a formalism, Logic of Con-
straints (LOC) [6] [7], and generates stand-alone checkers,
independent of any simulation language and platform. The
detailed procedure of the methodology is shown in Figure 3.
Furthermore, LOC is designed to specify quantitative perfor-
mance and functional properties for analysis of transaction-
level execution traces. To express the constraints effectively,
LOC uses integer index variable to express properties that be-
long to infinite automata domain. The basic components of
LOC are event names, instances of events, annotation, and a
single index variable i. For example, a latency property (a
dequeue event happens no later than 50 cycles after the corre-
sponding enqueue) can be formally specified as an LOC for-
mula: cycle(deq[i])- cycle(eng[i])<=50. The formula is sat-
isfied if it holds for all event instances, i.e. for all values of i.
The automatically generated checkers are used to analyze sim-
ulation trace files and report all the violations of the assertions.
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Figure 3. Assertion-based analysis methodol-
ogy.

To automate quantitative distribution analysis that is com-
mon in power and performance analysis, we extend the as-
sertion analysis methodology by introducing 3 simple opera-
tors >4, < and . To analyze the distribution of some quan-
tity over certain ranges, we can use a formula quantity >
{min,max,step} to automatically generate a corresponding
analyzer. An analysis period is represented as a triple {min,
max, step}, where min and max are lower and upper bounds,
and the interval between these two values is divided into bins
of width step. For example, given the formula

(eng(forward[i 4 100]) — eng(forward(i]))/
(= {40,80,5}) , (1)

the assertion analyzer evaluates the left hand side with i being
0,1, 2, ..., and etc., and report the percentage of i whose for-
mula values fall within the ranges of (—o, 40], (40, 45], ...,
(75, 80], (80, +0). If we replace the operator > with < or i,
the ranges become (—oo, 40], (—, 45], ..., (—o0, 75], (—o0, 80]
or [40, +), [45, +), ..., [75, +), [80, +) respectively.

The distribution analysis still relies on assertion-formulas
to generate traces during simulation. It’s essentially an exten-
sion to do multiple assertion analysis together. It improves
the efficiency of the calculation, and saves the execution time.
Our methodology is independent on the accuracy of simulator.
We choose NePSim because it provides detail power estima-
tor for network processor, and easily changes configurations.
If the power model is more accurate, we can always get bet-
ter results with the same methodology. In the next section,
it will be shown that the LOC based quantitative distribution
analyzer is a very useful and efficient tool in power and per-
formance analysis for NPU designs.

4 Power/Performance Analysisfor NPU

In this section, we present our assertion-based power and
performance analysis for NPU architectures through a set of
case studies. We first introduce our experimental environ-
ment, and then perform simple Min/Max power analysis. We
proceed to analyze the power/performance trade-offs with or
without dynamic voltage scaling (DVS). We also compare the
NPU base model with the power-optimized model that uses
less microengines.

4.1 Experimental settings

In our experiments, the cycle-accurate simulator NePSim is
used to simulate the network processor models with or without
DVS applied and generate traces for power and performance
analysis.

411 Benchmarks

We choose four representative networking applications to ex-
plore different architectural features of our NPU model, i.e.
ipfwdr, url, nat and md4. The application ipfwdr is an IP for-
warding software provided in Intel’s SDK. The routing table is
stored in the SRAM and the output port information is stored
in the SDRAM. The program url routes packets based on URL
requests. It checks the payload of packets frequently, so it
needs a large number of SRAM and SDRAM accesses. In nat
(network address translation), each packet only needs an ac-
cess to SRAM for looking up the IP forwarding table. The md4
provides a 128-bit digital signature algorithm. It moves data
packets from SDRAM to SRAM and accesses SRAM multiple
times for computation. So it is both memory and computation
intensive.

Memory accesses, specially SDRAM accesses, have long
latencies. They lead to long idle times for MEs, which in turn
causes lower power and throughput. Computation intensive
benchmark applications, which have much less memory ac-
cesses, will tend to show higher power consumption due to the
high power usage of ALUs.

4.1.2 Simulation traces

The simulator provides the assertion analyzer with necessary
data traces. The traces contain a set of architectural execu-
tion events that occur frequently during simulation and a set
of power/performance related values (annotations). We use
two types of events in our current power/performance analy-
sis. A pipeline event occurs when an instruction enters the
ME pipeline. and a forward event occurs when an IP packet
is forwarded. The events are prefixed to differentiate different
MEs or configurations. For example, m2_pipeline represents a
pipeline event from ME2.
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Figure 4. Power distribution graph for 4 benchmarks

Each event is associated with a set of annotations, cycle,
time 1, eng and bit. We use cycle to annotate the number of
core clock cycles, time to represent the simulated time, eng to
represent the cumulative energy consumed from the beginning
to the occurrence time of the event and bit for the total bits of
data that has been processed. Figure 5 shows a snapshot of a
trace file generated by the NePSim simulator.

cycle time(us) eng bit event

365 1.573 0.773932 5120 m2_pipeline
365 1.573 0.768133 5120 m3_pipeline
368 1.586 0.794108 5632 forward

368 1.586 0.784506 5632 mb5_pipeline
369 1.590 0.809369 6144 forward

Figure 5. NePSim simulation trace

4.2 Min/Max power analysis

We use our assertion-based analyzer to check the maximum
power and power distribution for the NPU model. We simulate
our 4 benchmarks, each of which is executed for 8 x 10° cycles
with an unlimited packet arriving rate.

Long period of high power consumption can increase the
temperature to the extend of damaging the chips themselves.
Therefore, we check a property for the maximum power con-
sumption in the six microengines: “the power consumption
within every 5 instructions pipelined should be smaller than a
threshold value a”. The property can be specified with an LOC

1The simulated time is important for measurements with DV'S enabled,
where the NPU clock frequency is changing and we cannot directly get time
value from cycle number.

formula:

(eng(pipeline[i + 5]) — eng(pipelineli]))/
(time(pipeline[i +5]) —time(pipelinefi])) <a (2)

The number of 5 is the window size we used to observe the
power. The window is sliding, so all instances will be checked.
It doesn’t change the results if the window size is 10 or 100.
The checker executes in less than 1 minute of CPU time. The
threshold value a in the formula (2) is changed gradually, and
we get the maximum and minimum power consumption in 5-
pipeline-event time windows (Figure 6). The characteristics
of different benchmark result in different min/max power. nat
has highest maximum and minimum values. This is because
it has no SDRAM accesses, so there is no long latency for
memory access and the MEs are kept busy running.

ipfwdr | md4 | nat | url
MAX | 1.45 1.7 1.7 | 1.65
MIN | 0.6 03 | 06|03

Figure 6. Power values for 4 benchmarks

Besides checking whether the NPU consumes power within
a safe range, we are also interested in how the power values
are distributed. We want to know whether it stays close to the
average value, or spreads over a wide range. The formula (2)
is extended for distribution analysis as follows:

(eng(pipeline[i+5]) — eng(pipelineli]))/

(time(pipeline[i + 5]) —time(pipeline[i]))
{0.40,1.40,0.01} (3)

Figure 4 shows the power distributions for the 4 bench-
marks generated from the assertion analyzer 2. We can see that

2For clearer presentation, infrequent ranges are merged in the graph.
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Figure 7. Energy distributions for NPU

all the benchmarks show a high percentage of power values be-
tween 1.00W to 0.90W. The benchmarks ipfwdr and md4 have
28% and 26% of total formula instances (i.e. i’s) with power
between 0.90W and 0.92W. Another frequent range is between
0.98W and 1.00W, which is caused by some frequently used
instruction patterns, e.g. common computation operations. We
can also see that the NPU is working around +10% of the av-
erage power for around 70% of the total simulation time. The
minimum and maximum power consumptions rarely appear.
This is a favorable situation to the chips since they will not
become too hot by running in high power for short spurts.

4.3 Power and performanceanalysisfor DVS

Dynamic voltage scaling [5] has been employed widely for
microprocessors, resulting in significant lower power and en-
ergy. DVS exploits the variance of processor utilization, re-
ducing voltage and frequency (VF in short) when the processor
has low activity and increasing VF when the peak performance
is required. Dynamic power consumption is proportional to
C-Vdd?-a- f, so reducing voltage (Vdd) and frequency (f)
can significantly reduce power consumption.

Here, we use the ME idle time as a control parameter for
DVS. When the idle time is longer or shorter than 10% of each
monitored period, we scale down or up the VVF by one step, un-
til a lower or upper bound is hit. The bounds of VF, similar to
those used in Intel XScale [1], are from 400MHz to 600MHz
and 1.1V to 1.3V. We set the frequency step to 50Mhz and
compute the voltage as in XScale. In order to match higher
NPU frequency, we scaled the speed of SDRAM, SRAM and
ixbus to 1.3 times of XP1200 configuration.

DVS reduces the power, but it may adversely affect the
performance. The clock cycle becomes longer if Vdd is de-
creased, so the NPU takes longer time and possibly more en-
ergy to get the same work done. This motivates us to check
both power consumption and performance of the NPU with or
without DVS enabled. For power consumption, we can use
the following LOC formula to analyze the traces from both
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Figure 8. Throughput distributions for NPU

configurations:

(eng(forward[i 4 100]) — eng(forward(i]))/
(time(forward[i + 100]) — time(forward]i]))
>{0.5,2.25,0.01} . (4)

The left hand side of the formula calculates the average power
consumption for each 100 packets forwarded. We can con-
struct a similar formula for DVS-enabled NPU by replacing
forward in the formula (4) with dvs_forward.

DVS is expected to save power, so if the DVS-enabled pro-
cessor consumes more power, then the DVS policy applied
must have made wrong decisions. With the assertion analyzer,
we simulate several different configurations for DVS policy
and pick the best one.

To compare the performances of the processors with and
without DVS enabled, we study the forwarding rates (Mbps)
of the two configurations. We calculate the rates during the
period of forwarding every 100 packets. The distribution anal-
ysis formula is listed as followed.

(bit(forward (i 4 100)) — bit (forward(i))/10°)/
(time(forward(i + 100)) — time(forward(i)))
<{100,3300,10} , (5)

where bit is used to annotate the total number of bits that have
been forwarded. With DVS applied, we know the performance
may degrade. So we need to combine the performance results
with the power/energy savings to decide whether DVS really
helps.

With our current settings for the DVS policy [9], we run the
simulation 8 x 108 cycles for each benchmark with and without
DVS enabled. The packets are arriving with uniform intervals
of 16x 108 second, which is approximately 5Gbps. The sim-
ulation time is around 3 minutes for each, and the assertion
checking time takes less than 10 seconds.

The results for power and performance comparisons are
shown in Figure 7 and Figure 8 respectively. Each graph



shows the percentage of instances (of checking) that violates
a particular maximum power or minimum throughput require-
ment. In certain range of power or throughput, the correspond-
ing slope of the curve is very large. It means a large number of
instances belong to this range. All curves in Figure 7 are very
steep. This is consistant with the result we observed in the pre-
vious section, that 70% of the instances are around the average
power. From Figure 7, we can see that ipfwdr shows the most
power savings with DVS applied. When we run ipfwdr on the
regular NPU, the max power threshold could be as high as 1.8
W (the point where the number of violated instances turns to
0), while in the NPU model with DVS, the max power thresh-
old changes to 1.3 W, which is 72% of the original 1.8W value.
This result is due to the fact that ipfwdr has abundant time un-
der low VF operations. Similarly, for md4 and url, the power
thresholds can be decreased to 89% and 90% by using DVS.
The benchmark nat shows no change for the power consump-
tion after applying DVS. This is because there is no chance for
nat to scale down VF. The DVS policy triggers lowering the
VF only if enough microengine idle time is detected, but nat
keeps 6 microengines busy all the time without the need of ac-
cessing the long-latency SDRAM. Therefore, no power saving
is observed for nat.

On the other hand, we observe small performance degrada-
tion for most cases from the results shown in Figure 8. There
is no performance degradation for url. But for md4 and ipfwdr,
there are approximately 2% to 3% performance drops. Over-
all, three of the four benchmarks (except nat) show at least
10% of power saving and only 2% to 3% of performance loss.
We can see DVS is a very effective low power technique in the
NPU design for most applications.

The accuracy of these power and performance measure-
ments mainly relies on the network processor power estimator.
However the assertion-based distribution analysis methodol-
ogy we are utilizing is a general and useful tool for all the
simulation models.

5 Conclusions

In this paper, we presented an assertion-based power and
performance analysis methodology for network processor ar-
chitectures. We utilized LOC assertions to specify and analyze
the quantitative performance and power properties such as en-
ergy, power and throughput. These assertions were efficiently
analyzed with automatically generated trace checkers and dis-
tribution analyzers on the simulation traces. Specifically, we
analyzed the minimum and maximum power distributions for
different benchmark applications and the power-performance
trade-offs with and without DVS techniques. We showed tha
the optimal configuration of an NPU model usually depends
on multiple design factors such as the execution characteris-
tics of the application, IP traffic workload and and power or
performance requirements. The assertion-based methodology

was shown to be an efficient tool to help a designer analyze
power and performance characteristics of a design and choose
an optimal configuration for it.
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