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Abstract: System design methodology is poised to become the next big enabler for 
highly sophisticated electronic products.  Design verification continues to be a 
major challenge and simulation will remain an important tool for making sure 
that implementations perform as they should.  In this paper we present 
algorithms to automatically generate C++ checkers from any formula written 
in the formal quantitative constraint language, Logic Of Constraints (LOC).  
The executable can then be used to analyze the simulation traces for constraint 
violation and output debugging information.  Different checkers can be 
generated for fast analysis under different memory limitations.  LOC is 
particularly suitable for specification of system level quantitative constraints 
where relative coordination of instances of events, not lower level interaction, 
is of paramount concern.  We illustrate the usefulness and efficiency of our 
automatic trace verification methodology with case studies on large simulation 
traces from various system level designs. 
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1. INTRODUCTION 

The increasing complexity of embedded systems today demands more 
sophisticated design and test methodologies.  Systems are becoming more 
integrated as more and more functionality and features are required for the 
product to succeed in the marketplace.  Embedded system architecture 
likewise has become more heterogeneous as it is becoming more 
economically feasible to have various computational resources (e.g. 
microprocessor, dig ital signal processor, reconfigurable logics) all utilized 



2 Chapter 1
 
on a single board module or a single chip.  Designing at the Register 
Transfer Level (RTL) or sequential C-code level, as is done by embedded 
hardware and software developers today, is no longer efficient.  The next 
major productivity gain will come in the form of system level design.   The 
specification of the functionality and the architecture should be done at a 
high level of abstraction, and the design procedures will be in the form of 
refining the abstract functionality and the abstract architecture, and of 
mapping the functionality onto the architecture through automatic tools or 
manual means with tools support [1, 2].  High level design procedures allow 
the designer to tailor their architecture to the functionality at hand or to 
modify their functionality to suit the available architectures (see Figure 1).  
Significant advantages in flexibility of the design, as compared to today's 
fixed architecture and a priori partitioning approach, can result in significant 
advantages in the performance and cost of the product. 

 

Figure 1. System Design Methodology  

In order to make the practice of designing from high-level system 
specification a reality, verification methods must accompany every step in 
the design flow from high level abstract specification to low level 
implementation. Specification at the system level makes formal verification 
possible [3]. Designers can prove the property of a specification by writing 
down the property they want to check in some logic (e.g. Linear Temporal 
Logic (LTL) [4], Computational Tree Logic (CTL) [5]) and use a formal 
verification tool (e.g. Spin Model checker [6, 7], Formal-Check [8], SMV 
[9]) to run the verification.  At the lower level, however, the complexity can 
quickly overwhelm the automatic tools and the simulation quickly becomes 
the workhorse for verification. 
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Figure 2. System Verification Approaches 

The advantage of simulation is in its simplicity. While the coverage 
achieved by simulation is limited by the number of simulation vectors, 
simulation is still the standard vehicle for design analysis in practical designs. 
One problem of simulation-based property analysis is that it is not always 
straightforward to evaluate the simulation traces and deduce the absence or 
presence of an error. In this paper, we propose an efficient automatic 
approach to analyze simulation traces and check whether they satisfy 
quantitative properties specified by denotational logic formulas. The 
property to be verified is written in Logic of Constraints (LOC) [10], a logic 
particularly suitable for specifying constraints at the abstract system level, 
where coordination of executions, not the low level interaction, is of 
paramount concern.  We then automatically generate a C++ trace checker 
from the quantitative LOC formula. The checker analyzes the traces and 
reports any violations of the LOC formula.  Like any other simulation-based 
approach, the checker can only disprove the LOC formula (if a violation is 
found), but it can never prove it conclusively, as that would require 
analyzing infinitely many traces. The automatic checker generation is 
parameterized, so it can be customized for fast analysis for specific 
verification environment.  We illustrate the concept and demonstrate the 
usefulness of our approach through case studies on two system level designs.  
We regard our approach as similar in spirit to symbolic simulation [11], 
where only particular system trajectory is formally verified (see Figure 2). 
The automatic trace analyzer can be used in concert with model checker and 
symbolic simulator.  It can perform logic verification on a single trace where 
the other approaches failed due to excessive memory and space requirement. 

In the next section, we review the definition of LOC and compare it with 
other forms of logic and constraint specification.  In section 3, we discuss the 
algorithm for building a trace checker for any given LOC formula. We 
demonstrate the usefulness and efficiency with two verification case studies 
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in section 4. Finally, in section 5, we conclude and provide some future 
directions. 

2. LOGIC OF CONSTRAINTS (LOC) 

Logic Of Constraints [10] is a formalism designed to reason about 
simulation traces.   It consists of all the terms and operators allowed in 
sentential logic, with additions that make it possible to specify system level 
quantitative constraints without compromising the ease of analysis. The 
basic components of an LOC formula are: 

§ event names: An input, output, or intermediate signal in the system.  
Examples of event names are “in”, “out”, “Stimuli”, and “Display”; 

§ instances of events: An instance of an event denotes one of its 
occurrence in the simulation trace. Each instance is tagged with a 
positive integer index, strictly ordered and starting from “0”.   For 
example, “Stimuli[0]” denotes the first instance of the event 
“Stimuli”  and “Stimuli[1]” denotes the second instance of the event; 

§ index and index variable: There can be only one index variable i, a 
positive integer.  An index of an event can be any arithmetic 
operations on i and the annotations. Examples of the use of index 
variables are “Stimuli[i]”, “Display[i-5]”; 

§ annotation: Each instance of the event may be associated with one or 
more annotations. Annotations can be used to denote the time, power, 
or area related to the event occurrence.  For example, “t(Display[i-
5])” denotes the “t” annotation (probably time) of the “i -5”th 
instance of the “Display” event. It is also possible to use annotations 
to denote relationships between different instances of different event.  
An example of such a relationship is causality. “t(in[cause(out[i])])” 
denotes the “t” annotation of an instance of “in” which in turn is 
given by the “cause” annotation of the “i”th instance of “out”. 

LOC can be used to specify some very common real-time constraints: 

§ rate, e.g. “a new Display will be produced every 10 time units”: 

 t(Display[i+1]) - t(Display[i]) = 10 (1) 

§ latency, e.g. “Display is generated no more than 45 time units after 
Stimuli”: 

 t(Display[i]) - t(Stimuli[i]) ≤ 45 (2) 
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§ jitter, e.g. “every Display is no more than 15 time units away from the 

corresponding tick of the real-time clock with period 15”: 

 | t(Display[i]) - i * 10 | ≤ 15 (3) 

§ throughput, e.g. “at least 100 Display events will be produced in any 
period of 1001 time units”: 

 t(Display[i+100]) - t(Display[i]) ≤ 1001 (4) 

§ burstiness, e.g. “no more than 1000 Display events will arrive in any 
period of 9999 time units”: 

 t(Display[i+1000]) - t(Display[i]) > 9999 (5) 

As pointed out in [10], the latency constraints above is truly a latency 
constraint only if the Stimuli and Display are kept synchronized.  Generally, 
we will need an additional annotation that denotes which instance of Display 
is “caused” by which instance of the Stimuli. If the cause annotation is 
available, the latency constraints can be more accurately written as: 

 t(Display[i]) - t(Stimuli[cause(Display[i])]) ≤ 45 (6) 

and such an LOC formula can easily be analyzed through the simulation 
checker presented in the next section.  However, it is the responsibility of the 
designer, the program, or the simulator to generate such an annotation.  

By adding additional index variables and quantifiers, LOC can be 
extended to be at least as expressive as S1S [12] and Linear Temporal Logic. 
There is no inherent problem in generating simulation monitor for them.  
However, the efficiency of the checker will suffer greatly as memory 
recycling becomes impossible (as will be discussed in the next section).  In 
similar fashion, LOC differs from existing constraint languages (e.g. Rosetta 
[13], Design Constraints Description Language [14], and Object Constraint 
Language [15]) in that it allows only limited freedom in specification to 
make the analysis tractable.  The constructs of LOC are precisely chosen so 
system-level constraints can be specified and efficiently analyzed.  

3. THE LOC CHECKER 

We analyze simulation traces for LOC constraint violation.  The 
methodology for verification with automatically generated LOC checker is 
illustrated in Figure 3. From the LOC formula and the trace format 
specification, an automatic tool is used to generate a C++ LOC checker.  The 
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checker is compiled into an executable that will take in simulation traces and 
report any constraint violation. To help the designer to find the point of error 
easily, the error report will include the value of index i which violates the 
constraint and the value of each annotation in the formula (see Figure 4). 
The checker is designed to keep checking and reporting any violation until 
stopped by the user or if the trace terminates. 

 

Figure 3. Trace Analysis Methodology  

 

Figure 4. Example of Error Report 

The algorithm progresses based on index variable i. Each LOC formula 
instance is checked sequentially with the value of i being 0, 1, 2, ...etc. A 
formula instance is a formula with i evaluated to some fix positive integer 
number. The basic algorithm used in the checker is given as follows: 
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Algorithm of LOC Checker: 
 
i = 0; 
memory_used = 0; 
 
Main { 
  while(trace not end){  
    if(memory_used < MEM_LIMIT){ 
      read one line of trace; 
      store useful annotations; 
      check_formula(); 
    } 
    else{ 
      while(annotations for current  
            formula instance is not  
            available && trace not end) 
        scan the trace for annotation;  
      check_formula(); 
    } 
  }    
} 
 
check_formula { 
  while (can evaluate formula instance i) { 
    evaluate formula instance i; 
    i++; 
    memory recycling; 
  }  
} 

The time complexity of the algorithm is linear to the size of the trace. 
The memory usage, however, may become prohibitively high if we try to 
keep the entire trace in the memory for analysis.   As the trace file is scanned 
in, the proposed checker attempts to store only the useful annotations and in 
addition, evaluate as many formula instances as possible and remove from 
memory parts of the trace that are no longer needed (memory recycling). The 
algorithm tries to read and store the trace only once.  However, after the 
memory usage reaches the preset limit, the algorithm will not store the 
annotation information any more.  Instead, it scans the rest of the trace 
looking for needed events and annotations for evaluating the current formula 
instance (current i). After freeing some memory space, the algorithm 
resumes the reading and storing of annotation from the same location. The 
analysis time will certainly be impacted in this case (see Table 3).  However, 
it will also allow the checker to be as efficient as possible, given the memory 
limitation of the analysis environment. 
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For many LOC formulas (e.g. constraints 1 - 5), the algorithm uses a 
fixed amount of memory no matter how long the traces are (see table 2). 
Memory efficiency of the algorithm comes from being able to free stored 
annotations as their associated formula instances are evaluated (memory 
recycling).  This ability is directly related to the choice made in designing 
LOC.  From the LOC formula, we often know what annotation data will not 
be useful any more once all the formula instance with i less than a certain 
number are all evaluated.  For example, let's say we have an LOC formula: 

t(input[i+10]) - t(output[i+5]) < 300 (7) 

and the current value of i is 100. Because the value of i increases 
monotonically, we know that event input’s annotation t with index less than 
111 and event output’s annotation t with index less than 106 will not be 
useful in the future and their memory space can be released safely. Each 
time the LOC formula is evaluated with a new value of i, the memory 
recycling procedure is invoked, which ensures minimum memory usage.  

4. CASE STUDIES 

In this section, we apply the methodology discussed in the previous 
section to two very different design examples. The first is a Synchronous 
Data Flow (SDF) [16] design called Expression originally specified in 
Ptolemy and is part of the standard Ptolemy II [17] distribution. The 
Expression design is respecified and simulated with SystemC simulator [18]. 
The second is a Finite Impulse Response (FIR) filter written in SystemC and 
is actually part of the standard SystemC distribution. We use the generated 
trace checker to verify a wide variety of constraints. 

4.1 Expression 

 

Figure 5. Expression Design Example 

Figure 5 shows a SDF design.  The data generators SLOW and FAST 
generate data at different rates, and the EXPR process takes one input from 
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each, performs some operations (in this case, multiplication) and outputs the 
result to DISPLAY.  SDF designs have the property that different scheduling 
will result in the same behavior.  A snapshot of the simulation trace is shown 
in Figure 6. 

 

Figure 6. Expression Simulation Trace 

The following LOC formula must be satisfied for any correct simulation 
of the given SDF design: 

SLOW[i] * FAST[i] = DISPLAY[i] (8) 

We use the automatically generated checker to show that the traces from 
SystemC simulation adhere to the property.  This is certainly not easy to 
infer from manually inspecting the trace files, which may contain millions of 
lines.  As expected, the analysis time is linear to the size of the trace file and 
the maximum memory usage is constant regardless of the trace file size (see 
table 1). The platform for experiment is a dual 1.5GHz Athlon system with 
1GB of memory.  

Table 1. Results of Constraint (8) on EXPR 
Lines of Traces 104 105 106 107 
Time Used (s) < 1 1 12 130 
Memory Usage 8KB 8KB 8KB 8KB 

 

4.2 FIR Filter 

Figure 7 shows a 16-tap FIR filter that reads in samples when the input is 
valid and writes out the result when output is ready.  The filter design is 
divided into a control FSM and a data path.  The test bench feeds sampled 
data of arbitrary length and the output is displayed with the simulator.  
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Figure 7. FIR Design Example 

We utilize our automatic trace checker generator and verify the properties 
specified in constraints (1) - (5).  The same trace files are used for all the 
analysis.  The time and memory requirements are shown in table 2.  We can 
see that the time required for analysis grows linearly with the size of the 
trace file, and the maximum memory requirement is formula dependent but 
stays fairly constant. Using LOC for verification of common real-time 
constraints is indeed very efficient. 

Table 2. Result of Constraints (1 – 5) on FIR 
Lines of Traces 104 105 106 107 

Time(s) < 1 1 8 89 Constraint 
(1) Memory 28B 28B 28B 28B 

Time(s) < 1 1 12 120 Constraint 
(2) Memory 28B 28B 28B 28B 

Time(s) < 1 1 7 80 Constraint 
(3) Memory 24B 24B 24B 24B 

Time(s) < 1 1 7 77 Constraint 
(4) Memory 0.4KB 0.4KB 0.4KB 0.4KB 

Time(s) < 1 1 7 79 Constraint 
(5) Memory 4KB 4KB 4KB 4KB 

 
We also verify constraint (6) using the simulation analyzer approach. 

Table 3 shows that the simulation time grows linearly with the size of the 
trace file.  However, due to the use of an annotation in an index expression, 
memory can no longer be recycled with the algorithm in the previous section 
and we see that it also grows linearly with the size of the trace file.  Indeed, 
since we will not know what annotation will be needed in the future, we can 
never remove any information from memory.  If the memory is a limiting 
factor in the simulation environment, the analysis speed must be sacrificed to 
allow the verification to continue.  This is shown in Table 3 where the 
memory usage is limited to 50KB.  We see that the analysis takes more time 
when the memory limitation has been reached. Information about trace 
pattern can be used to dramatically reduce the running time under memory 
constraints. Aggressive memory minimization techniques and data structures 
can also be used to further reduce time and memory requirements. For most 
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LOC formulas, however, the memory space can be recycled and the memory 
requirements are small. 

Table 3. Result of Constraint (6) on FIR 
Lines of Traces 2×104  3×104  4×104  5×104  

Time (s) < 1 < 1 < 1 1 Unlimited 
Memory Mem (KB) 40 60 80 100 

Time (s) < 1 61 656 1869 Memory 
Limit (50KB) Mem (KB) 40 50 50 50 

 

5. CONCLUSION 

In this paper we have presented a methodology for system-level 
verification through automatic trace analysis.  We have demonstrated how 
we take any formula written in the formal quantitative constraint language, 
Logic Of Constraints, and automatically generate a trace checker that can 
efficiently analyze the simulation traces for constraint violations.  The 
analyzer is fast even under memory limitation.  We have applied the 
methodology to many case studies and demonstrate that automatic LOC 
trace analysis can be very useful.  

We are currently considering a few future enhancements and novel 
applications.  One such application we are considering is to integrate the 
LOC analyzer with a simulator that is capable of non-deterministic 
simulation, non-determinism being crucial for design at high level of 
abstraction.  We will use the checker to check for constraint violations, and 
once a violation is found, the simulation could roll back and look for another 
non-determinism resolution that will not violate the constraint. 
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