
Semi-Supervised Time Series Classification

Li Wei Eamonn Keogh
Department of Computer Science and Engineering

University of California, Riverside
{wli, eamonn}@cs.ucr.edu

Abstract
The problem of time series classification has attracted great
interest in the last decade. However current research assumes the
existence of large amounts of labeled training data. In reality,
such data may be very difficult or expensive to obtain. For
example, it may require the time and expertise of cardiologists,
space launch technicians, or other domain specialists. As in many
other domains, there are often copious amounts of unlabeled data
available. For example, the PhysioBank archive contains
gigabytes of ECG data. In this work we propose a semi-
supervised technique for building time series classifiers. While
such algorithms are well known in text domains, we will show
that special considerations must be made to make them both
efficient and effective for the time series domain. We evaluate our
work with a comprehensive set of experiments on diverse data
sources including electrocardiograms, handwritten documents,
manufacturing, and video datasets. The experimental results
demonstrate that our approach requires only a handful of labeled
examples to construct accurate classifiers.

Keywords
Semi-supervised Learning, Time Series, Classification, Data
Mining

1 INTRODUCTION

Time series data are ubiquitous and are of interest to many
communities. Such data can be found in virtually all avenues of
human endeavor including medicine, aerospace, finance, business,
meteorology, and entertainment [18][26][36][41]. The problem of
time series classification has been the subject of active research
for decades [11][12][14][22][24][30]. However current methods
are limited by the need for large amounts of labeled training data.
In reality, such data may be very difficult or expensive to collect.
For example, it may require the time and expertise of
cardiologists [18], space launch technicians [26], entomologists
[41], or other domain experts to manually label the data.
As in many other applications, copious amounts of unlabeled data
are often readily available. For example, the PhysioBank archive
[18] contains more than 40 gigabytes of ECG data freely available
over the web, and hospitals often archive even larger amounts of
ECG data for legal reasons. Recent advances in sensor technology
have made it possible to collect enormous amounts of data in real
time.
In this work we propose a semi-supervised technique for building
time series classifiers that takes advantage of the large collections
of unlabeled data. As we will demonstrate, our approach requires

only a handful of labeled examples to construct accurate
classifiers. Furthermore, we are able to leverage off recent
advances in time series query filtering to use these classifiers very
efficiently, particularly for streaming problems [41].
To enhance the readers’ appreciation of the diversity of domains
which can benefit from a semi-supervised technique for building
time series classifiers, we begin by considering some applications
that we will later address experimentally.
Indexing of handwritten documents: There has been a recent

explosion of interest in indexing handwritten documents [28],
driven in large part by Google and Yahoo’s stated interest of
making large archives of handwritten text searchable [27]. It has
recently been shown that simply treating the words as “time
series” (see Figure 1) is an extremely competitive approach [28]
for classifying (and thus indexing) handwritten documents.

Figure 1: A) A sample of text written by George Washington. B)
The word “Alexandria” after having its slant removed. C) A time
series created by tracing the upper profile of the word (Image
courtesy of Raghavan Manmatha, used with permission)
The fundamental problem in creating highly accurate
handwriting classifiers is that they must be trained on each
individual’s particular handwriting; a classifier built for George
Washington will not generalize to Isaac Newton. However the
cost of obtaining labeled data for each word, for every
individual is very expensive as measured in human time. A
semi-supervised approach where a user annotates just a few
training examples would have great utility [28].

Heartbeat Classification: As noted earlier, the PhysioBank
archive [18] contains more than 40 gigabytes of freely available
medical data, including EEG, gait, and ECG data. Such large
datasets are potential goldmines for a researcher wishing to
build a classifier. However, only a tiny subset of this data has
been annotated. Furthermore, as with handwriting, some level
of personalization can be useful here. Once again, a semi-

A)

B)

C)

A)

B)

C)

supervised approach where a cardiologist annotates just a few
training examples, could be of great utility [41].

The rest of this paper is organized as follows. In Section 2 we
review background material. We introduce our semi-supervised
time series classification algorithm in Section 3. Section 4 sees a
comprehensive empirical evaluation. Finally in Section 5 we offer
some conclusions and directions for future work.

2 BACKGROUND MATERIAL

In order to frame our contribution in the proper context, we begin
with a review of the necessary background material.

2.1 Value of Unlabeled Data
The idea of using unlabeled data to help classification may sound
initially unintuitive. However, several studies in the literature
have indicated the utility of unlabeled data for classification [13].
For example, early studies [17][19][34] asserted that unlabeled
data should be used whenever available. Castelli [8] and Ratsaby
et. al. [37] showed that “unlabeled data are always asymptotically
useful for classification”.
Although unlabeled data alone are generally insufficient to yield
better-than-random-guess classification, they do contain
information which can help classification. We can see this with
the simple contrived example in Figure 2 (the reader may find it
useful to look at Figure 12 to see why this is a “time series”
problem). Here we have a dataset of just three labeled instances,
although eight unlabeled instances (U) also exist. We need to
classify the instance marked with “?”, which clearly belongs to
the F (female) class. However this particular image happens to
show the actor in a pose which is very similar to one of the M
(male) instances, M1, and is thus misclassified1.

Figure 2: A simple example to motivate semi-supervised
classification. The instance to be classified (marked with “?”) is
actually a F (female) but happens to be closer to a M (male) in
this small dataset of labeled instances

Note that while F1 happens not to be a close match to the instance
awaiting classification, it is a close match to the unlabeled
instance U4. Because it is such a good match to this instance, we
could simply change the label from U4 to F2, and add it to our

1 If viewing this graphic on a monochrome printout, it may be helpful to

note that the male actor has a knee length leotard.

dataset of labeled instances. In fact, the basic tenet of semi-
supervised learning is that we can do this repeatedly, and thus end
up with the situation shown in Figure 3.

Figure 3: The small dataset of labeled instances shown in Figure
2 has been augmented by incorporating the previously unlabeled
examples. Now the instance to be classified (marked with “?”) is
closest to F5, and is correctly classified

It is important to note that the usefulness of unlabeled data
depends on the critical assumption that the underlying models /
features / kernels / similarity functions match well with the
problem at hand [43]. Otherwise the addition of unlabeled data
may degrade the performance of the classifier [1][7][32][40].

2.2 Semi-supervised Learning
Learning from both labeled and unlabeled data is called semi-
supervised learning (SSL). Because semi-supervised learning
requires less human effort and generally achieves higher
accuracy, it is of great interest both in theory and in practice.
There are many semi-supervised learning methods proposed in the
literature. Based on their underlying assumptions, they can be
organized into five classes: SSL with generative models, SSL
with low density separation, graph-based methods, co-training
methods, and self-training methods [9][43].
Generative models are the oldest semi-supervised learning
methods. They assume that the data are drawn from a mixture
distribution which can be identified by large amounts of unlabeled
data. The strength of the generative approach is that knowledge of
the structure of the data can be naturally incorporated into the
model. It has been applied to diverse domains including text
classification [32] and face orientation discrimination [1].
However, to our knowledge, there has been no discussion of the
mixture distribution assumption for time series data in the
literature.
Low density separation approaches try to leverage off the
assumption “the decision boundary should lie in a low density
region” by pushing the decision boundary away from the
unlabeled data. The most common approach to achieve this goal
is to use a margin maximization algorithm such as Transductive
Support Vector Machines (TSVM). Since finding the exact
TSVM solution is NP-hard, several approximation algorithms
have been proposed [4][10][15][16][21]. However, the unique
structure of time series makes the density measure less
meaningful. For example, in [23] Keogh et. al. showed that
“(abnormal time series) do not necessarily live in sparse areas of
n-dimensional space” and “repeated patterns do not necessarily
live in dense parts”.

Labeled Training Instances

M1 M2F1?

Unlabeled Instances

U1 U2 U3 U4

U5 U6 U7 U8

Labeled Training Instances

M1 M2F1?

Unlabeled Instances

U1 U2 U3 U4

U5 U6 U7 U8

Labeled Training Instances

M1 M2F1?
(U1) F5 (U2) F4 (U3) F3 (U4) F2

(U5) M6 (U6) M5 (U7) M4 (U8) M3

Labeled Training Instances

M1 M2F1?
(U1) F5 (U2) F4 (U3) F3 (U4) F2

(U5) M6 (U6) M5 (U7) M4 (U8) M3

Recently graph-based semi-supervised learning methods have
received a lot of attention. Based on the assumption that “the
(high-dimensional) data lie (roughly) on a low-dimensional
manifold”, these methods represent the data by nodes in a graph,
whose edges are the distances between the nodes. After the graph
is constructed, several approaches can be used, such as graph
mincut [5], Tikhonov Regularization [2], Manifold Regularization
[3], etc.. The key problem of this method is that graph
construction needs to be hand crafted for each domain, because it
encodes prior knowledge. In this paper, we are looking for a
general semi-supervised classification framework for time series,
so we do not consider graph-based methods.
The idea of co-training was first proposed by Blum and Mitchell
[6]. It divides the features of the data into two disjoint sets, with
each set being sufficient to train a good classifier. Two classifiers
are trained separately on each feature subset, and the predictions
of one classifier are used to enlarge the training set of the other.
For example, in our contrived problem in Figure 2, one classifier
could use the shape features, and the other classifier could use
only color features. The underlying assumption of the co-training
approach is that features of data are independent and can be
divided. However, time series is known to have very high feature
correlation [22], which makes the co-training approach infeasible
for this type of data.
One of the least studied semi-supervised learning methods is self-
training [43]. In self-training, a classifier is first trained by the
small amount of labeled data. It then classifies the unlabeled data,
and adds the most confidently classified examples (along with
their predicted labels) into the training set. The procedure repeats
and the classifier is gradually refined. The classifier is actually
using its own predictions to teach itself. Because of its generality
and very few assumptions, we use self-training as a starting point
for our work.
Note that this review of semi-supervised learning is necessarily
brief. We refer the interested reader to [9] and [43] for a more
detailed treatment.

2.3 Time Series Classification
Although we believe that this is the first paper to formally address
semi-supervised classification of time series, a thorough literature
search and personal experience suggest that people working on
real world time series problems have already done this informally.
For example in the context of motion capture indexing, Kovar and
Gleicher [25] noted that they “…add robustness to the search by
concentrating on finding these closer motions and then using
them as new queries in order to find more distant motions”.
Likewise in our own experience of building insect classifiers [41],
faced with enormous amounts of sound data which contain
relatively few labeled examples, we found this a useful technique.
Below we place these ideas in a more formal footing.
For concreteness, we begin with a definition of our data type of
interest, time series.

Definition 1. Time Series: A time series T = t1,…,tm is an
ordered set of m real-valued variables.

Time series data usually come in two formats: as a long time
series (for example, eight hours recording of a patient’s heartbeat)
or as a set of short time series (for example, a set of individual
abnormal heartbeats). Data miners are typically not interested in
any of the global properties of a time series. For example, if we
are given eight hours ECG data, we are not interested in

classifying the whole time series; rather, we are interested in
deciding whether each subsection is normal or abnormal.
Therefore if we are given a long time series, we convert it into a
set of short time series, where each time series in the set is a
subsequence of the long time series.

Definition 2. Subsequence: Given a time series T of length m,
a subsequence Cp of T is a sampling of length w < m of
contiguous positions from T, that is, Cp = tp,…,tp+w-1 for 1 ≤ p
≤ m – w + 1.

The extraction of subsequences from a time series is achieved by
use of a sliding window.

Definition 3. Sliding Window: Given a time series T of length
m, and a user-defined subsequence length of w, all possible
subsequences can be extracted by sliding a window of size w
across T and extracting each subsequence Cp.

The most common distance measure for time series is the
Euclidean distance.

Definition 4. Euclidean Distance: Given two time series (or
time series subsequences) Q and C both of length n, the
Euclidean distance between them is the square root of the sum
of the squared differences between each pair of corresponding
data points:

() ()∑ −≡
=

n

i
ii cqCQD

1

2,

Before calling the distance function, each time series subsequence
is normalized to have mean zero and a standard deviation of one,
because it is well understood that in virtually all settings, it is
meaningless to compare time series with different offsets and
amplitudes [11][12][22][23][28][41].

Definition 5. Time Series Classification: Given a set of
unlabeled time series, the task of time series classification is
to map each time series to one of the predefined classes.

Time series classification has typically been treated like a classic
discrimination problem, for example, the famous problem of
distinguishing between “Democrat” and “Republication” in the
UCI Vote dataset [31]. However we argue that realistic instances
of the problem are much more like text filtering problems [32] in
two important ways:
• It is typically not the case that we have two or more well

defined classes. Rather we often have a positive class with
some structure, say Premature Ventricular Event (from
cardiology [18]) or Stuck Poppet Anomaly (from space
telemetry launch monitoring [26]), and negative examples that
have little or no common structure. The reason why negative
examples have no well-defined structure is because every
subsequence extracted from a sliding window must be either
classified as positive or negative. We cannot in general
assume that subsequences not belonging to the positive class
look similar to each other. As a consequence, usually there is
only one (or some small number of) way(s) to be in the
positive class, while there are an essentially infinite number of
ways to be in the negative class.

• Like text filtering, it is typically the case that positive labeled
examples are rare, but unlabeled data is abundant. For
example, ECG data is often collected continuously overnight
when patients are sleeping, which makes real-time annotation
almost impossible. Usually cardiologists annotate at most the
first five minutes of the ECG data.

Based on these two observations, we focus on building binary
time series classifiers for extremely imbalanced class
distributions, with only a small number of labeled examples from
the positive class.

3 SEMI-SUPERVISED TIME SERIES
CLASSIFICATION

In this section, we begin by introducing the one-nearest-neighbor
classifier. Later we show the special considerations necessary to
convert it to a semi-supervised framework.

3.1 One-nearest-neighbor with Euclidean
Distance Classifier

The problem of time series classification has attracted great
interest recently. Although many algorithms have been proposed,
it has been shown that one-nearest-neighbor with Euclidean
distance is very difficult to beat [22]. For example, many different
classification techniques have been tried on the famous Control-
Chart problem [31], see Table 1. However, to our knowledge,
none of them can beat the simple one-nearest-neighbor with
Euclidean distance approach. Furthermore, most approaches listed
in Table 1 are quite complicated and require many parameters to
be set, whereas one-nearest-neighbor with Euclidean distance is
parameterless. In addition, Keogh et. al. [22] have conducted an
extensive set of experiments to show that one-nearest-neighbor
with many other similarity measures can not beat the simple
strawman.

Table 1: The error rates for various classification techniques on
Control-Chart Dataset

Approach Error Rate
One-nearest-neighbor with Euclidean distance [22] 1.3%
First order logic rules with boosting [38] 3.6%
Multi layer perceptron neural network [30] 1.9%
Multiple classifier system [11] 7.2%
Multi-scale histogram approach [12] 6.0%

Note that the works in Table 1 do make contributions in telling us
something about boosting, neural network, or other classification
methods. In addition, the authors are to be commended for
experimenting on datasets that are in the public domain. Our point
is simply that if you want accurate classification of time series,
one-nearest-neighbor with Euclidean distance is very hard to beat.
For this reason, we only consider one-nearest-neighbor with
Euclidean distance in this work.

3.2 Training the Classifier
In the previous section, we have shown that one-nearest-neighbor
with Euclidean distance is very competitive for time series
classification. Therefore we have adopted it as our base classifier.
Note that it also needs a large labeled training set to work well.
Below we show how to apply semi-supervised learning to make it
feasible for the situation where only a small set of labeled data is
available. The idea is simple. We let the classifier train itself
through the following steps:
Step 1. The classifier is trained on the initial training set, where

all labeled instances are positive and all unlabeled
instances are regarded as negative (recall that an instance
must be either positive or negative, see Section 2.3).

Note that the size of the training set never changes during
the training process, but the labeled set is augmented
gradually.

Step 2. The classifier is used to classify the unlabeled data in the
training set. For each unlabeled instance, we find its
nearest neighbor in the training set. If its nearest
neighbor is labeled (as positive of course), the instance
will be classified as positive. Otherwise, its nearest
neighbor has not been labeled (and thus is negative) and
we classify the instance as negative.

Step 3. Among all the unlabeled instances, the one we can most
confidently classify as positive is the instance which is
closest to the labeled positive examples. This instance,
along with its newly acquired positive label, will be
added into the positive set. With the training set being
adjusted, we go back to Step 1 to refine the classifier.
The procedure repeats until some stopping criterion is
reached (we will discuss the stopping criterion in more
detail later).

The intuition of the idea is straightforward. The labeled positive
examples serve as a model which describes what a positive
example “looks like”. If an unlabeled instance is very similar to a
positive example, the probability of it being positive is very high.
For example, in our contrived problem in Figure 2, the unlabeled
instance U4 is a very close match to the labeled instance F1.
Therefore we can label it as F (female) with high confidence. By
adding such an example into the positive set, we are refining the
description of the positive class, which in turn will help in
classifying the unlabeled data. The hope is that the modeling
process and the classification process can reinforce each other
iteratively and correctly label as many positive examples as
possible.
In Table 2 we formalize this idea. Given a set P of positively
labeled examples and a set U of unlabeled examples, the
algorithm iterates the following procedure. First, use P and U to
train the one-nearest-neighbor classifier C (note again we regard
instances in P as positive examples and instances in U as negative
examples). Second, use classifier C to classify the unlabeled set
U. Third, select one unlabeled example which is nearest to any
instance in set P (breaking ties randomly), and add it to P.

Table 2: Semi-supervised time series classification algorithm
 Function [P] = Semi_Supervised_Classification(P, U)
1
2
3
4
5
6
7

Until (some stopping criterion)
use P and U to train the one-nearest-neighbor classifier C
use classifier C to classify unlabeled set U
select the example that C most confidently labels as positive
add this example into P
delete this example from U

End

To be concrete, in Figure 4 we demonstrate our algorithm with a
simple two-class toy problem, where initially only one example is
known as positive (the solid square in Figure 4). Using our
approach, we can correctly classify almost all the examples in the
positive class after seventeen iterations, as shown in Figure 4. In
contrast, if we simply put the seventeen nearest neighbors of the
single labeled example to the positive class, we will get very poor
accuracy.

Figure 4: A) A simple two-class dataset. B) The chaining effect of
semi-supervised learning: a positive example is labeled which
helps labeling other positive examples and so on. Eventually all
positive examples are correctly classified. C) If we simply put the
seventeen nearest neighbors of the single labeled example to the
positive class, we would wrongly include many negative
examples into the positive class

3.2.1 Stopping Criterion
As we will show in the empirical evaluation, a self-training
classifier can achieve high accuracy with only a handful of
labeled examples. In this section, we will discuss the stopping
criterion for training the classifier, an issue we have deliberately
ignored to this point. Ideally we would like the training procedure
to stop when the performance (accuracy or precision-recall etc.)
of the classifier begins to deteriorate. However, it is very hard (if
not impossible) to know the true performance of the classifier,
because we do not know the ground truth of the data.
In our case, we are using a distance-based classifier. So the
distance statistics may give us some hint about how well the
classifier is doing. To develop our intuition, we perform self-
training classification on several datasets and look at the minimal
distance between two instances in the labeled positive set. For
each iteration in the training procedure, we record the precision-
recall breakeven point (explained in greater detail in Section 4)

and the distance between the closest pair in the labeled positive
set. Figure 5 shows the results obtained on the ECG dataset (a
detailed description of the ECG dataset can be found in Section
4.1). We can see that the minimal nearest neighbor distance
decreases dramatically in the first few iterations, stabilizes for a
relatively long time, and drops again. Interestingly, the precision-
recall breakeven point achieved by the classifier has a
corresponding trend of increasing, stabilizing, and decreasing.

Figure 5: Statistics on ECG dataset
In hindsight, this phenomenon is not surprising. In the first few
iterations, the labeled positive set is relatively small. In other
words, the known positive space is relatively sparse. By adding
more positive examples into it, the space gets denser, and as a
result, the minimal nearest neighbor distance decreases gradually.
At some point, the closest pair of the positive examples is
incorporated in the labeled set. The minimal nearest neighbor
distance will be the distance between them. Adding more positive
examples will not change the minimal distance (this corresponds
to the stabilizing phase). However if a negative example is being
labeled as positive, chances are high that we will keep adding
negative examples because the negative space is much denser
than the positive space. And the closest pair in the labeled
positive set will be the pair of two negative examples. Thus we
will see a drop of the minimal nearest neighbor distance of the
positive set. Figure 6 illustrates the process on a small sample
dataset.
Similar observations were made on other datasets. These indicate
that, even though the question of when to stop the self-training
procedure remains unsolved and is an open problem, we can use
the change in the minimal nearest neighbor distance in the labeled
positive set as a good heuristic in most cases.

0.2

0.4

0.6

0.8

1

P
re

ci
si

on
-r

ec
al

l
br

ea
ke

ve
n

po
in

t
50 100 150 200 250 300 350 400

0

0.5

1

1.5

2

2.5

Number of iterations

D
is

ta
nc

e
be

tw
ee

n
th

e
cl

os
es

t p
ai

r i
n

P

moving into
negative space

adding positive
examples

find the closest
pair

 A)

B)

C)

Single positively labeled example

Positive Class
Negative Class

Single positively labeled example

Positive Class
Negative Class

Single positively labeled example

Positive Class
Negative Class

Added in first iteration
Added in second iteration

…

Added in seventeenth iteration

Figure 6: A sample dataset shown in two-dimensional space. A)
Initially the two solid (red) squares are labeled as positive. B) At
some point the closest pair in the positive set is added into labeled
positive set. C) A negative instance is being added into labeled
positive set. D) The closest pair in labeled positive set changes to
two negative instances

3.3 Using the Classifier
By the end of the training, much more data in the training set are
labeled, and we can use the classifier to classify other datasets. At
first glance, this is easy. For each instance to be classified, check
whether its nearest neighbor in the training set is labeled or not,
and assign it the corresponding class label. However recall that
the training set is huge (because of the enormous amount of
negative examples). Comparing each instance in the testing set to
each example in the training set is untenable in practice.
To make the classification tractable, we modify the classification
scheme of the one-nearest-neighbor classifier, using only the
labeled positive examples in the training set. If an instance to be
classified is within r distance to any of the labeled positive
examples, it will be classified as positive. Otherwise it is negative.
Recently we have successfully applied this scheme to the problem
of monitoring streaming time series for a set of predefined
patterns [41]. A natural value for r would be the average distance
from a positive example to its nearest neighbor. The intuition is
that if the positive examples we have seen before tended to be
about r apart, then a future positive object will probably also be
within r of one (or more) positive example(s) in the training set.
Paradoxically, we may be victims of our own success. By greatly
enlarging the size of the labeled positive set with our semi-
supervised algorithm, it appears that we will greatly increase the
time taken to classify new instances. Fortunately this is not the
case. We can leverage off an envelope-based lower-bounding
technique [41] to speed up the classification procedure. For

example, in [41] we applied this technique on an ECG dataset and
the speedup achieved is more than 100 times. Because we are
focusing on the effectiveness of the semi-supervised learning
classifier in this paper, we will not discuss the speedup technique
any more. We refer interested readers to [41] for more details.

4 EMPIRICAL EVALUATION

In this section, we test our semi-supervised learning classifier
with a comprehensive set of experiments on diverse domains. We
compare the semi-supervised approach to a naive k-nearest-
neighbor approach, where the k nearest neighbors of the labeled
positive set are classified as positive and others as negative (see
Figure 4.C for an example). As the reader may already appreciate,
the setting of k is a non-trivial problem, since the classifier does
not know in advance how many positive examples there are in the
testing set. To help the strawman achieve the best performance,
we allow it to search over all possible values of k and only report
the best result.
The performance of the classifier at each iteration is reported
using precision-recall breakeven point. Since the class distribution
is highly skewed, accuracy is not a good performance metric. The
classifier can simply classify everything as negative to ensure
high accuracy. Note that precision-recall breakeven point is a
standard information retrieval measure for binary classification
[20][32]. Precision and recall are defined as:

sprediction positive of #
sprediction positivecorrect of #Precision =

examples positive of #
sprediction positivecorrect of #Recall =

The precision-recall breakeven point is the value at which
precision and recall are equal [20]. It is a single performance
value over all binary classification tasks and it is insensitive to the
distribution of the classes.
For simplicity in the experiments we did not evaluate the stopping
heuristic described in Section 3.2.1. We just keep training the
classifier until it achieves its highest precision-recall and allow a
few more iterations after that. For most of the experiments, we
use distinct training set and testing set. The Word Spotting dataset
and Yoga dataset are too small to be split, so for them we train
and test on the same dataset. However we note that it is still non-
trivial to classify the training set because most data in the training
set are unlabeled.

4.1 ECG Dataset
As noted earlier, heartbeat classification has received a lot of
attention because of the large amounts of freely available data and
the potential applications in medical field. Our first experiment is
on an ECG dataset obtained from the MIT-BIH Arrhythmia
Database [18]. Each data record in the ECG dataset is a time
series of the measurements recorded by one electrode during one
heartbeat. The data has been annotated by cardiologists and a
label of normal or abnormal is assigned to each data record. Of
the 2,026 data records in the dataset, 520 were identified as
abnormal and 1,506 were identified as normal. All the data
records have been normalized and rescaled to have length 85
(recent results suggest that we lose nothing by rescaling [35]). We
randomly split the data, using half for training and half for testing,

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2

Closest pair in
labeled positive set

Closest pair in
labeled positive set

Positive
Negative

Positive
Negative

Positive
Negative

Positive
Negative

A) B)

C) D)

A negative instance
is added into
labeled positive set

as summarized in Table 3. Because usually cardiologists are more
interested in the occurrences of the abnormal heartbeats, here
abnormal heartbeats are our target (positive class).

Table 3: Number of positive and negative instances in the training
set and the testing set for ECG Dataset

 Training Set Testing Set
Positive (Abnormal) 208 312
Negative (Normal) 602 904
Total 810 1,216

For the semi-supervised approach, we randomly choose 10
positive examples in the training set as the initial labeled positive
set P. In each iteration, the semi-supervised algorithm adds one
example to the positive set P and uses the adjusted training set to
classify the testing set. The precision-recall breakeven point
achieved is recorded. Note that the initial labeled set P has an
effect on the performance of the classifier (a good initial set P
may give the classifier a high precision-recall in the beginning
while a bad initial set P may take the classifier more iterations to
achieve good performance). To avoid the bias introduced by the
initial set, we ran the experiments 200 times and report the results
in Figure 7. The bold line is the average performance over the 200
runs. The gray lines bounding it from above and below are one
standard deviation intervals. Note that the precision-recall
breakeven value increases dramatically in the beginning and
stabilizes after about ten iterations. On average, the maximal
precision-recall breakeven value achieved by the semi-supervised
approach is 94.97%. The shaded area in Figure 7 is where the
performance of the semi-supervised classifier deteriorates because
it begins to ingest negative examples.

Figure 7: Classification performance on ECG Dataset
We then ran another 200 experiments (each time with the same
initial labeled set P as used in the semi-supervised experiment)
for the naive k-nearest-neighbor approach (with k = 312).
However, even with the optimal k value, the k-nearest-neighbor
approach only achieves an average precision-recall breakeven
value of 81.29%, which is much lower than that of the semi-
supervised approach. This shows that with the help of the
unlabeled data, the semi-supervised approach can greatly increase
the performance of the classifier.

4.2 Word Spotting Dataset
In second experiment, we consider classification of handwritten
documents. We test on the Word Spotting dataset, which was
created by Rath and Manmatha for word image matching [36]. It

contains 2,381 word images from 10 handwritten pages. We take
the images of 50 common words such as “the”, “and”, etc. and
obtain 905 instances in total. Each word image is represented by a
four dimensional time series which describes the profile of the
image. For example, in Figure 1, we have shown the upper profile
of the word “Alexandria”. For simplicity we only consider the
first dimension of each image, which is of an average length of
270. Here we focus on the two-class problem of differentiating
the word “the” from others. In total, there are 109 images for
word “the” and 796 images for other words. In this experiment,
we use the same 905 images both for training and testing, as
summarized in Table 4.

Table 4: Number of positive and negative instances in the training
set and the testing set for Word Spotting Dataset

 Training Set Testing Set
Positive (Word “the”) 109 109
Negative (Other words) 796 796
Total 905 905

As before, for the semi-supervised approach, each time we
randomly choose 10 positive examples in the training set as the
initial labeled positive set P and record the precision-recall
breakeven point for each iteration. We repeated the experiment 25
times and the results are shown in Figure 8. The bold line is the
average performance over the 25 runs, and the gray lines are one
standard deviation intervals. We can see that the performance
increases steadily at the beginning, reaches its maximal value
86.2% at about fifty iterations, and then begins to decrease (the
shaded area in Figure 8). We then ran the same 25 experiments
for the naive k-nearest-neighbor approach (with k = 109). On
average, the precision-recall breakeven value obtained by the k-
nearest-neighbor approach is only 79.52%.

Figure 8: Classification performance on Word Spotting Dataset
Handwritten text is an intuitive domain so we spend more time
analyzing its results. For example, it is instructive to take a closer
look at what happened during the training procedure. Figure 9
shows the changes of the rankings of two instances during the
training process, where Image 19 is a positive example and Image
585 is a negative example. The ranking of an instance is
determined by its distance to the labeled positive set – the larger
the distance, the higher the ranking. So an instance with higher
ranking has lower probability to eventually be classified as
positive. In Figure 9, as training begins, Image 19 has a relatively
high ranking, while Image 595 has a relatively low ranking. This
represents a bad initial labeled set, where Image 19 happened to

20 40 60 80 100 120 140 160 180
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of iterations

P
re

ci
si

on
-r

ec
al

l b
re

ak
ev

en
 p

oi
nt

10 20 30 40 50 60 70 80 90 100
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

Number of iterations

P
re

ci
si

on
-r

ec
al

l b
re

ak
ev

en
 p

oi
nt

be similar to none of the examples in the initial labeled positive
set, while Image 595 is similar to one or more of them.
Fortunately, even with a bad start, the semi-supervised learning
classifier is able to correctly label more positive examples, which
in turn helps it model the positive examples better. As a result, the
ranking of Image 19 decreases and the ranking of Image 585
increases after several iterations.

Figure 9: Ranking changes of two instances in Word Spotting
dataset during semi-supervised training

4.3 Gun Dataset
The gun dataset contains two-dimensional time series extracted
from video of two actors either aiming a gun or simply pointing at
a target. The two dimensions correspond to the X and Y
coordinates of the actors’ right hand. For simplicity we only
consider the Y-axes here. The dataset contains four classes:

Class A: Actor 1 with gun
Class B: Actor 1 without gun (point)
Class C: Actor 2 with gun
Class D: Actor 2 without gun (point)

Here we focus on the two-class problem of differentiating Actor 1
with gun from others – (A) vs. (B+C+D). In total, there are 57
instances in Class A, and 190 instances in other classes. Each
instance has the same length of 150. Again, we randomly split the
data, using half as the training set and half as the testing set, as
summarized in Table 5.

Table 5: Number of positive and negative instances in the training
set and the testing set for Gun Dataset

 Training Set Testing Set
Positive (Class A) 27 30
Negative (Class B,C,D) 95 95
Total 122 125

In this experiment, we start with one labeled positive example and
train the classifier. We ran the experiment 27 times (once for each
positive example) and show the results in Figure 10. Starting with
only one labeled example, the classifier is able to identify other
positive examples and achieves a maximal precision-recall
breakeven point of 65.19% on average. One may notice that the
variance of this experiment is higher than that of the previous
ones (in Figure 10 the two gray lines are farther away from the
bold line). This is because we start with a single labeled example,
which increases the bias of the initial labeled set.
We ran the same experiments using the k-nearest-neighbor
classifier (with k = 27), the average precision-recall breakeven
point achieved is 55.93%. This again shows the superior of our
semi-supervised approach: it only needs a small number of
labeled examples (as few as one in this case) to build accurate
classifier.

Figure 10: Classification performance on Gun Dataset

4.4 Wafer Dataset
The wafer dataset is a collection of time series containing a
sequence of measurements recorded by one vacuum-chamber
sensor during the etch process of silicon wafers for semiconductor
fabrication [33]. Each wafer has an assigned classification of
normal or abnormal. The abnormal wafers are representative of a
range of problems commonly encountered during semiconductor
manufacturing. Of the 7,164 time series in wafer dataset, 762
were identified as abnormal and 6,402 were identified as normal.
We randomly picked half the dataset as the training set and used
the other half as the testing set. Table 6 summarizes the contents
of the training and testing set. As in the ECG experiment, the
abnormal data are our target.

Table 6: Number of positive and negative instances in the training
set and the testing set for Wafer Dataset

 Training Set Testing Set
Positive (Abnormal) 381 381
Negative (Normal) 3,201 3,201
Total 3,582 3,582

For the semi-supervised approach, we ran the experiment 50
times, each time starting with one randomly chosen labeled
positive example. The average performance is shown as the bold
line in Figure 11. As we can see, the performance increases
dramatically during the first few iterations and achieves a
maximal precision-recall breakeven point of 73.17% on average.

Figure 11: Classification performance on Wafer Dataset

0 50 100 150 200 250

Image 19

0 50 100 150 200 25010 20 30 40 50 60 70 80 90 1000

20

40

60

80

100

120

Iterations

140 Image 595
595

19M
or

e
lik

el
y

to
 b

e
cl

as
si

fie
d

as
 “t

he
”

Le
ss

 li
ke

ly
 to

 b
e

cl
as

si
fie

d
as

 “t
he

”

0 50 100 150 200 250

Image 19

0 50 100 150 200 25010 20 30 40 50 60 70 80 90 1000

20

40

60

80

100

120

Iterations

140 Image 595
595

19M
or

e
lik

el
y

to
 b

e
cl

as
si

fie
d

as
 “t

he
”

Le
ss

 li
ke

ly
 to

 b
e

cl
as

si
fie

d
as

 “t
he

”

5 10 15 20 25 30 35 40 45 50
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of iterations

P
re

ci
si

on
-r

ec
al

l b
re

ak
ev

en
 p

oi
nt

5 10 15 20 25
0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Number of iterations

P
re

ci
si

on
-r

ec
al

l b
re

ak
ev

en
 p

oi
nt

We ran the same experiments using the k-nearest neighbor
classifier (with k = 381), and the average precision-recall
achieved is only 46.87%.

4.5 Yoga Dataset
For our last experiment, we revisit the classification problem in
Figure 2 on a realistic dataset. The dataset was obtained by
capturing two actors transiting between yoga poses in front of a
green screen. It has been shown recently that in many domains it
can be useful to convert images into pseudo time series. Therefore
we have converted the motion capture data into time series by a
well-known technique as in Figure 12.

Figure 12: Shapes can be converted to time series. The distance
from every point on the profile to the center is measured and
treated as the Y-axis of a time series

In total, we have 316 time series with an average length of 426.
Among them, 156 time series came from the female actor and 150
time series came from the male actor. We use the same dataset
both for training and testing, as shown in Table 7.

Table 7: Number of positive and negative instances in the training
set and the testing set for Yoga Dataset

 Training Set Testing Set
Positive (Female) 156 156
Negative (Male) 150 150
Total 306 306

We ran the experiment 10 times, each time randomly choosing
one positive example as labeled. The results are shown in Figure
13. As we can see, the precision-recall breakeven point increases
steadily with the number of iterations, and gets to a maximum of
89.04% on average. While the same experiments on the naive k-
nearest-neighbor approach (with k = 156) only achieves an
average precision-recall of 82.95%.

Figure 13: Classification performance on Yoga Dataset

5 CONCLUSIONS

It is well known that building accurate classifiers requires large
quantities of labeled data and such labeled data is often difficult
to obtain. To mitigate this discrepancy, we propose a semi-
supervised learning framework to build accurate time series
classifiers when only a small set of labeled examples is available.
While there are many semi-supervised algorithms in other
domains, their underlying assumptions rarely hold for time series
data. Special considerations have been taken to make the semi-
supervised classification both efficient and effective for the time
series domain. The experimental results show that the reduction in
the number of labeled examples needed can be dramatic: our self-
training classifiers require only a handful of labeled examples to
achieve high precision-recall. This suggests that the self-training
method of using unlabeled data has a potential for significant
benefits in time series classification.
There are many directions in which this work may be extended.
We intend to perform a thorough investigation on the stopping
criterion for the training process. In addition, we plan to extend
our framework to other distance measures which have been
shown to be effective, for example, Dynamic Time Warping
(DTW) [35]. Finally, we are conducting a field study of insect
classification using the semi-supervised approach.

6 ACKNOWLEDGEMENTS

We gratefully acknowledge the datasets donors. We also
acknowledge insightful comments from Dr. Christian Shelton.
Thanks also to Helga Van Herle M.D. for her expertise in
cardiology, Dr. Raghavan Manmatha for help with the Word
Spotting dataset, and Xiaopeng Xi for help with the Yoga dataset.
Reproducible Research Statement: In the interests of
competitive scientific inquiry, all datasets used in this work are
freely available at the following URL [42]. This research was
partly funded by the National Science Foundation under grant IIS-
0237918.

7 REFERENCES

[1] Baluja, S. (1998). Probabilistic modeling for face orientation
discrimination: learning from labeled and unlabeled data. in
Neural Information and Processing Systems, pp. 854-860, 1998.

[2] Belkin, M., Matveeva, I., & Niyogi, P. (2004). Regularization
and semi-supervised learning on large graphs. COLT, 2004.

[3] Belkin, M., Niyogi, P., & Sindhwani, V. (2004). Manifold
regularization: a geometric framework for learning from
examples. Technical Report TR-2004-06, University of Chicago.

[4] Bennett, K. & Demiriz, A. (1999). Semi-supervised support
vector machines. Advances in Neural Information Processing
Systems, 11, pp. 368-374, 1999.

[5] Blum, A. & Chawla, S. (2001). Learning from labeled and
unlabeled data using graph mincuts. In proceedings of 18th
International Conference on Machine Learning, 2001.

[6] Blum, A. & Mitchell, T. (1998). Combining labeled and
unlabeled data with co-training. In proceedings of the Annual
Workshop on Computational Learning Theory, 11th Annual
Conference on Computational Learning Theory, Madison,
Wisconsin, pp. 92-100, 1998.

[7] Bruce, R. (2001). Semi-supervised learning using prior
probabilities and EM. Presented at the International Joint

20 40 60 80 100 120 140
0.8

0.82

0.84

0.86

0.88

0.9

0.92

Number of iterations

P
re

ci
si

on
-r

ec
al

l b
re

ak
ev

en
 p

oi
nt

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Conference of AI Workshop on Text Learning: Beyond
Supervision, Seattle, Washington, 2001.

[8] Castelli, V. (1994). The relative value of labeled and unlabeled
samples in pattern recognition. PhD thesis, Stanford University,
CA, 1994.

[9] Chapelle, O., Scholkopf, B., & Zien, A. (2006). Semi-Supervised
Learning. In press. MIT Press.

[10] Chapelle, O. & Zien, A. (2005). Semi-supervised classification
by low density separation. In proceedings of the Tenth
International Workshop on Artificial Intelligence and Statistics
(AISTAT 2005), 2005.

[11] Chen, L. & Kamel, M. S. (2005). Design of Multiple Classifier
Systems for Time Series Data. Multiple Classifier Systems, pp.
216-225, 2005.

[12] Chen, L., Özsu, M. T., & Oria, V. (2005). Using Multi-Scale
Histograms to Answer Pattern Existence and Shape Match
Queries. In proceedings of 17th International Conference on
Scientific and Statistical Database Management, 2005.

[13] Cohen, I., Cozman, F. G., Sebe, N., Cirelo, M. C., & Huang, T.
(2004). Semisupervised learning of classifiers: theory,
algorithms, and their application to human-computer interaction.
IEEE Transaction on Pattern Analysis and Machine
Intelligence, vol. 26, no. 12, pp. 1553-1567, December 2004.

[14] Cohen, W. (1993). Efficient pruning methods for separate-and-
conquer rule learning systems. In proceedings of the 13th
International Joint Conference on Artificial Intelligence,
Chambery, France. pp. 988-994, 1993.

[15] Demirez, A. & Bennett, K. (2000). Optimization approaches to
semisupervised learning. Applications and algorithms of
complementarity. Boston: Kluwer Academic Publishers, 2000.

[16] Fung, G. & Mangasarian, O. (1999). Semi-supervised support
vector machines for unlabeled data classification, Technical
report 99-05, Data Mining Institute, University of Wisconsin
Madison, 1999.

[17] Ganesalingam, S. & McLachlan, G. J. (1978). The efficiency of
a linear discriminant function based on unclassified initial
samples. Biometrika, vol. 65, pp. 658-662, December, 1978.

[18] Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P.,
Mark, R., Mietus, J., Moody, G., Peng, C., & He, S. (2000).
PhysioBank, PhysioToolkit, and PhysioNet: Components of a
New Research Resource for Complex Physiologic Signals.
Circulation 101(23): pp. 215-220, 2000.

[19] Hosmer, D. W. (1973). A comparison of iterative maximum
likelihood estimates of the parameters of a mixture of two
normal distributions under three different types of sample.
Biometrics, vol. 29, pp. 761-770, December 1973.

[20] Joachims T. (1998). Text categorization with support vector
machines: learning with many relevant features. In proceedings
of 10th European Conference on Machine Learning, pp. 137-142,
1998.

[21] Joachims, T. (1999). Transductive inference for text
classification using support vector machines. In proceedings of
16th International Conference on Machine Learning, pp. 200-
209, 1999.

[22] Keogh, E. & Kasetty, S. (2002). On the need for time series data
mining benchmarks: A survey and empirical demonstration. In
proceedings of the 8th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp 102-111, 2002.

[23] Keogh, E., Lin, J., & Fu, A. (2005). HOT SAX: Efficient finding
the most unusual time series subsequence. In proceedings of the
5th IEEE International Conference on Data Mining (ICDM
2005), pp. 226-233, 2005.

[24] Kibler, D. & Langley, P. (1988). Machine learning as an
experimental science. In proceedings of the 3rd European
Working Session on Learning. pp. 81-92, 1988.

[25] Kovar, L. & Gleicher, M. (2004). Automated extraction and
parameterization of motions in large datasets. In proceedings of
SIGGRAPH ’04, pp. 559–568, 2004.

[26] Landford, J. P. & Quan, A. (2002). Evolution of knowledge-
based applications for launch support. In proceedings of Ground
System Architecture Workshop, El Segundo, CA, 2002.

[27] Levy, S. (2004). Google's Two Revolutions. Newsweek. Dec. 27
/ Jan. 3 issue, 2004.

 [Available at www.msnbc.msn.com/id/6733225/site/newsweek]
[28] Manmatha, R. & Rath, T. M. (2003). Indexing of Handwritten

Historical Documents - Recent Progress. In: Proc. of the 2003
Symposium on Document Image Understanding Technology
(SDIUT), Greenbelt, MD, pp. 77-85, April 9-11, 2003.

[29] Moreno, P. J. & Agarwal, S. (2003). An experimental study of
EM-based algorithms for semi-supervised learning in audio
classification. In proceedings of the ICML 2003 Workshop on
the Continuum from Labeled to Unlabeled Data, Washington,
DC, 2003.

[30] Nanopoulos, A., Alcock, R., & Manolopoulos, Y. (2001).
Feature-based Classification of Time-series Data. International
Journal of Computer Research, pp. 49-61, 2001.

[31] Newman, D.J., Hettich, S., Blake, C.L., & Merz, C.J. (1998).
UCI Repository of machine learning databases.
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine,
CA: University of California, Department of Information and
Computer Science.

[32] Nigam, K., Mccallum, A. K., Thrun, S., & Mitchell, T. (2000).
Text classification from labeled and unlabeled documents using
EM. Machine Learning, 39(2/3), pp. 103 – 134, 2000.

[33] Olszewski, R. T. (2001). Generalized feature extraction for
structural pattern recognition in time-series data. PhD thesis,
Carnegie Mellon University, 2001.

[34] O’Neill, T. J. (1978). Normal discrimination with unclassified
observations. Journal of the American Statistical Association,
vol. 73, no. 364, pp. 821-826, 1978.

[35] Ratanamahatana, C. A. & Keogh. E. (2004). Everything you
know about Dynamic Time Warping is wrong. In proceedings of
the Third Workshop on Mining Temporal and Sequential Data,
in conjunction with the Tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, August
22-25, 2004.

[36] Rath, T. & Manmatha, R. (2003). Word image matching using
dynamic time warping. In proceedings of IEEE Conference on
Computer Vision and Pattern Recognition, Vol. II, pp. 521-527,
2003.

[37] Ratsaby J. & Venkatesh S. S. (1995). Learning from a mixture
of labeled and unlabeled examples with parametric side
information. In proceedings of the Eighth Annual Conference on
Computational Learning Theory, pp. 412-417, 1995.

[38] Rodríguez, J. J., Alonso, C. J., & Boström, H. (2000). Learning
First Order Logic Time Series Classifiers: Rules and Boosting.
In Proceedings of 4th European Conference on Principles of
Data Mining and Knowledge Discovery (PKDD2000), pp. 299-
308, 2000.

[39] Rosenberg C. & Hebert M. (2002). Training object detection
models with weakly labeled data. BMVC 2002. In the electronic
proceedings of the 13th British Machine Vision Conference,
United Kingdom, 2002.

[40] Shahshahani, B. & Landgrebe, D. (1994). Effect of unlabeled
samples in reducing the small sample size problem and
mitigating the Hughes phenomenon. IEEE Transactions on
Geoscience and Remote Sensing, vol. 32, no. 5, pp. 1087-1095,
1994.

[41] Wei, L., Keogh, E., Van Herle, H., & Mafra-Neto, A. (2005).
Atomic Wedgie: Efficient Query Filtering for Streaming Time
Series. In proceedings of the 5th IEEE International Conference
on Data Mining (ICDM 2005), pp. 490-497, 2005.

[42] Wei, L. (2006). http://www.cs.ucr.edu/~wli/selfTraining/
[43] Zhu, X. (2005). Semi-supervised learning literature survey.

Technical report, no. 1530, Computer Sciences, University of
Wisconsin-Madison, 2005.

