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Abstract   
The problem of time series classification has attracted great 
interest in the last decade. However current research assumes the 
existence of large amounts of labeled training data. In reality, 
such data may be very difficult or expensive to obtain. For 
example, it may require the time and expertise of cardiologists, 
space launch technicians, or other domain specialists. As in many 
other domains, there are often copious amounts of unlabeled data 
available. For example, the PhysioBank archive contains 
gigabytes of ECG data. In this work we propose a semi-
supervised technique for building time series classifiers. While 
such algorithms are well known in text domains, we will show 
that special considerations must be made to make them both 
efficient and effective for the time series domain. We evaluate our 
work with a comprehensive set of experiments on diverse data 
sources including electrocardiograms, handwritten documents, 
manufacturing, and video datasets. The experimental results 
demonstrate that our approach requires only a handful of labeled 
examples to construct accurate classifiers.  
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1 INTRODUCTION 

Time series data are ubiquitous and are of interest to many 
communities. Such data can be found in virtually all avenues of 
human endeavor including medicine, aerospace, finance, business, 
meteorology, and entertainment [18][26][36][41]. The problem of 
time series classification has been the subject of active research 
for decades [11][12][14][22][24][30]. However current methods 
are limited by the need for large amounts of labeled training data. 
In reality, such data may be very difficult or expensive to collect. 
For example, it may require the time and expertise of 
cardiologists [18], space launch technicians [26], entomologists 
[41], or other domain experts to manually label the data. 
As in many other applications, copious amounts of unlabeled data 
are often readily available. For example, the PhysioBank archive 
[18] contains more than 40 gigabytes of ECG data freely available 
over the web, and hospitals often archive even larger amounts of 
ECG data for legal reasons. Recent advances in sensor technology 
have made it possible to collect enormous amounts of data in real 
time. 
In this work we propose a semi-supervised technique for building 
time series classifiers that takes advantage of the large collections 
of unlabeled data. As we will demonstrate, our approach requires 

only a handful of labeled examples to construct accurate 
classifiers. Furthermore, we are able to leverage off recent 
advances in time series query filtering to use these classifiers very 
efficiently, particularly for streaming problems [41]. 
To enhance the readers’ appreciation of the diversity of domains 
which can benefit from a semi-supervised technique for building 
time series classifiers, we begin by considering some applications 
that we will later address experimentally. 
Indexing of handwritten documents: There has been a recent 

explosion of interest in indexing handwritten documents [28], 
driven in large part by Google and Yahoo’s stated interest of 
making large archives of handwritten text searchable [27]. It has 
recently been shown that simply treating the words as “time 
series” (see Figure 1) is an extremely competitive approach [28] 
for classifying (and thus indexing) handwritten documents. 

 

Figure 1: A) A sample of text written by George Washington. B) 
The word “Alexandria” after having its slant removed. C) A time 
series created by tracing the upper profile of the word (Image 
courtesy of Raghavan Manmatha, used with permission) 
The fundamental problem in creating highly accurate 
handwriting classifiers is that they must be trained on each 
individual’s particular handwriting; a classifier built for George 
Washington will not generalize to Isaac Newton. However the 
cost of obtaining labeled data for each word, for every 
individual is very expensive as measured in human time. A 
semi-supervised approach where a user annotates just a few 
training examples would have great utility [28].  

Heartbeat Classification: As noted earlier, the PhysioBank 
archive [18] contains more than 40 gigabytes of freely available 
medical data, including EEG, gait, and ECG data. Such large 
datasets are potential goldmines for a researcher wishing to 
build a classifier. However, only a tiny subset of this data has 
been annotated. Furthermore, as with handwriting, some level 
of personalization can be useful here. Once again, a semi-
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supervised approach where a cardiologist annotates just a few 
training examples, could be of great utility [41]. 

The rest of this paper is organized as follows. In Section 2 we 
review background material. We introduce our semi-supervised 
time series classification algorithm in Section 3. Section 4 sees a 
comprehensive empirical evaluation. Finally in Section 5 we offer 
some conclusions and directions for future work. 

2 BACKGROUND MATERIAL 

In order to frame our contribution in the proper context, we begin 
with a review of the necessary background material.  

2.1 Value of Unlabeled Data 
The idea of using unlabeled data to help classification may sound 
initially unintuitive. However, several studies in the literature 
have indicated the utility of unlabeled data for classification [13].  
For example, early studies [17][19][34] asserted that unlabeled 
data should be used whenever available. Castelli [8] and Ratsaby 
et. al. [37] showed that “unlabeled data are always asymptotically 
useful for classification”. 
Although unlabeled data alone are generally insufficient to yield 
better-than-random-guess classification, they do contain 
information which can help classification. We can see this with 
the simple contrived example in Figure 2 (the reader may find it 
useful to look at Figure 12 to see why this is a “time series” 
problem). Here we have a dataset of just three labeled instances, 
although eight unlabeled instances (U) also exist. We need to 
classify the instance marked with “?”, which clearly belongs to 
the F (female) class. However this particular image happens to 
show the actor in a pose which is very similar to one of the M 
(male) instances, M1, and is thus misclassified1.  
 

Figure 2: A simple example to motivate semi-supervised 
classification. The instance to be classified (marked with “?”) is 
actually a F (female) but happens to be closer to a M (male) in 
this small dataset of labeled instances 

Note that while F1 happens not to be a close match to the instance 
awaiting classification, it is a close match to the unlabeled 
instance U4. Because it is such a good match to this instance, we 
could simply change the label from U4 to F2, and add it to our 
                                                                 
1 If viewing this graphic on a monochrome printout, it may be helpful to 

note that the male actor has a knee length leotard.  

dataset of labeled instances. In fact, the basic tenet of semi-
supervised learning is that we can do this repeatedly, and thus end 
up with the situation shown in Figure 3.  
 

Figure 3: The small dataset of labeled instances shown in Figure 
2 has been augmented by incorporating the previously unlabeled 
examples. Now the instance to be classified (marked with “?”) is 
closest to F5, and is correctly classified 

It is important to note that the usefulness of unlabeled data 
depends on the critical assumption that the underlying models / 
features / kernels / similarity functions match well with the 
problem at hand [43]. Otherwise the addition of unlabeled data 
may degrade the performance of the classifier [1][7][32][40]. 

2.2 Semi-supervised Learning 
Learning from both labeled and unlabeled data is called semi-
supervised learning (SSL). Because semi-supervised learning 
requires less human effort and generally achieves higher 
accuracy, it is of great interest both in theory and in practice. 
There are many semi-supervised learning methods proposed in the 
literature. Based on their underlying assumptions, they can be 
organized into five classes: SSL with generative models, SSL 
with low density separation, graph-based methods, co-training 
methods, and self-training methods [9][43].  
Generative models are the oldest semi-supervised learning 
methods. They assume that the data are drawn from a mixture 
distribution which can be identified by large amounts of unlabeled 
data. The strength of the generative approach is that knowledge of 
the structure of the data can be naturally incorporated into the 
model. It has been applied to diverse domains including text 
classification [32] and face orientation discrimination [1]. 
However, to our knowledge, there has been no discussion of the 
mixture distribution assumption for time series data in the 
literature. 
Low density separation approaches try to leverage off the 
assumption “the decision boundary should lie in a low density 
region” by pushing the decision boundary away from the 
unlabeled data. The most common approach to achieve this goal 
is to use a margin maximization algorithm such as Transductive 
Support Vector Machines (TSVM). Since finding the exact 
TSVM solution is NP-hard, several approximation algorithms 
have been proposed [4][10][15][16][21]. However, the unique 
structure of time series makes the density measure less 
meaningful. For example, in [23] Keogh et. al. showed that 
“(abnormal time series) do not necessarily live in sparse areas of 
n-dimensional space” and “repeated patterns do not necessarily 
live in dense parts”. 
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Recently graph-based semi-supervised learning methods have 
received a lot of attention. Based on the assumption that “the 
(high-dimensional) data lie (roughly) on a low-dimensional 
manifold”, these methods represent the data by nodes in a graph, 
whose edges are the distances between the nodes. After the graph 
is constructed, several approaches can be used, such as graph 
mincut [5], Tikhonov Regularization [2], Manifold Regularization 
[3], etc.. The key problem of this method is that graph 
construction needs to be hand crafted for each domain, because it 
encodes prior knowledge. In this paper, we are looking for a 
general semi-supervised classification framework for time series, 
so we do not consider graph-based methods. 
The idea of co-training was first proposed by Blum and Mitchell 
[6]. It divides the features of the data into two disjoint sets, with 
each set being sufficient to train a good classifier. Two classifiers 
are trained separately on each feature subset, and the predictions 
of one classifier are used to enlarge the training set of the other. 
For example, in our contrived problem in Figure 2, one classifier 
could use the shape features, and the other classifier could use 
only color features. The underlying assumption of the co-training 
approach is that features of data are independent and can be 
divided. However, time series is known to have very high feature 
correlation [22], which makes the co-training approach infeasible 
for this type of data. 
One of the least studied semi-supervised learning methods is self-
training [43]. In self-training, a classifier is first trained by the 
small amount of labeled data. It then classifies the unlabeled data, 
and adds the most confidently classified examples (along with 
their predicted labels) into the training set. The procedure repeats 
and the classifier is gradually refined. The classifier is actually 
using its own predictions to teach itself. Because of its generality 
and very few assumptions, we use self-training as a starting point 
for our work. 
Note that this review of semi-supervised learning is necessarily 
brief. We refer the interested reader to [9] and [43] for a more 
detailed treatment. 

2.3 Time Series Classification 
Although we believe that this is the first paper to formally address 
semi-supervised classification of time series, a thorough literature 
search and personal experience suggest that people working on 
real world time series problems have already done this informally. 
For example in the context of motion capture indexing, Kovar and 
Gleicher [25] noted that they “…add robustness to the search by 
concentrating on finding these closer motions and then using 
them as new queries in order to find more distant motions”. 
Likewise in our own experience of building insect classifiers [41], 
faced with enormous amounts of sound data which contain 
relatively few labeled examples, we found this a useful technique. 
Below we place these ideas in a more formal footing. 
For concreteness, we begin with a definition of our data type of 
interest, time series. 

Definition 1. Time Series: A time series T = t1,…,tm is an 
ordered set of m real-valued variables. 

Time series data usually come in two formats: as a long time 
series (for example, eight hours recording of a patient’s heartbeat) 
or as a set of short time series (for example, a set of individual 
abnormal heartbeats). Data miners are typically not interested in 
any of the global properties of a time series. For example, if we 
are given eight hours ECG data, we are not interested in 

classifying the whole time series; rather, we are interested in 
deciding whether each subsection is normal or abnormal. 
Therefore if we are given a long time series, we convert it into a 
set of short time series, where each time series in the set is a 
subsequence of the long time series.   

Definition 2. Subsequence: Given a time series T of length m, 
a subsequence Cp of T is a sampling of length w < m of 
contiguous positions from T, that is, Cp = tp,…,tp+w-1 for  1 ≤ p 
≤ m – w + 1. 

The extraction of subsequences from a time series is achieved by 
use of a sliding window. 

Definition 3. Sliding Window: Given a time series T of length 
m, and a user-defined subsequence length of w, all possible 
subsequences can be extracted by sliding a window of size w 
across T and extracting each subsequence Cp.  

The most common distance measure for time series is the 
Euclidean distance.  

Definition 4. Euclidean Distance: Given two time series (or 
time series subsequences) Q and C both of length n, the 
Euclidean distance between them is the square root of the sum 
of the squared differences between each pair of corresponding 
data points:   
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Before calling the distance function, each time series subsequence 
is normalized to have mean zero and a standard deviation of one, 
because it is well understood that in virtually all settings, it is 
meaningless to compare time series with different offsets and 
amplitudes [11][12][22][23][28][41]. 

Definition 5. Time Series Classification: Given a set of 
unlabeled time series, the task of time series classification is 
to map each time series to one of the predefined classes. 

Time series classification has typically been treated like a classic 
discrimination problem, for example, the famous problem of 
distinguishing between “Democrat” and “Republication” in the 
UCI Vote dataset [31]. However we argue that realistic instances 
of the problem are much more like text filtering problems [32] in 
two important ways: 
• It is typically not the case that we have two or more well 

defined classes. Rather we often have a positive class with 
some structure, say Premature Ventricular Event (from 
cardiology [18]) or Stuck Poppet Anomaly (from space 
telemetry launch monitoring [26]), and negative examples that 
have little or no common structure. The reason why negative 
examples have no well-defined structure is because every 
subsequence extracted from a sliding window must be either 
classified as positive or negative. We cannot in general 
assume that subsequences not belonging to the positive class 
look similar to each other. As a consequence, usually there is 
only one (or some small number of) way(s) to be in the 
positive class, while there are an essentially infinite number of 
ways to be in the negative class. 

• Like text filtering, it is typically the case that positive labeled 
examples are rare, but unlabeled data is abundant. For 
example, ECG data is often collected continuously overnight 
when patients are sleeping, which makes real-time annotation 
almost impossible. Usually cardiologists annotate at most the 
first five minutes of the ECG data. 



Based on these two observations, we focus on building binary 
time series classifiers for extremely imbalanced class 
distributions, with only a small number of labeled examples from 
the positive class. 

3 SEMI-SUPERVISED TIME SERIES 
CLASSIFICATION 

In this section, we begin by introducing the one-nearest-neighbor 
classifier. Later we show the special considerations necessary to 
convert it to a semi-supervised framework. 

3.1 One-nearest-neighbor with Euclidean 
Distance Classifier  

The problem of time series classification has attracted great 
interest recently. Although many algorithms have been proposed, 
it has been shown that one-nearest-neighbor with Euclidean 
distance is very difficult to beat [22]. For example, many different 
classification techniques have been tried on the famous Control-
Chart problem [31], see Table 1. However, to our knowledge, 
none of them can beat the simple one-nearest-neighbor with 
Euclidean distance approach. Furthermore, most approaches listed 
in Table 1 are quite complicated and require many parameters to 
be set, whereas one-nearest-neighbor with Euclidean distance is 
parameterless. In addition, Keogh et. al. [22] have conducted an 
extensive set of experiments to show that one-nearest-neighbor 
with many other similarity measures can not beat the simple 
strawman.  

Table 1: The error rates for various classification techniques on 
Control-Chart Dataset 

Approach Error Rate  
One-nearest-neighbor with Euclidean distance [22] 1.3% 
First order logic rules with boosting [38] 3.6% 
Multi layer perceptron neural network [30] 1.9% 
Multiple classifier system [11] 7.2% 
Multi-scale histogram approach [12]  6.0% 

Note that the works in Table 1 do make contributions in telling us 
something about boosting, neural network, or other classification 
methods. In addition, the authors are to be commended for 
experimenting on datasets that are in the public domain. Our point 
is simply that if you want accurate classification of time series, 
one-nearest-neighbor with Euclidean distance is very hard to beat. 
For this reason, we only consider one-nearest-neighbor with 
Euclidean distance in this work. 

3.2 Training the Classifier  
In the previous section, we have shown that one-nearest-neighbor 
with Euclidean distance is very competitive for time series 
classification. Therefore we have adopted it as our base classifier. 
Note that it also needs a large labeled training set to work well. 
Below we show how to apply semi-supervised learning to make it 
feasible for the situation where only a small set of labeled data is 
available. The idea is simple. We let the classifier train itself 
through the following steps:  
Step 1. The classifier is trained on the initial training set, where 

all labeled instances are positive and all unlabeled 
instances are regarded as negative (recall that an instance 
must be either positive or negative, see Section 2.3). 

Note that the size of the training set never changes during 
the training process, but the labeled set is augmented 
gradually. 

Step 2. The classifier is used to classify the unlabeled data in the 
training set. For each unlabeled instance, we find its 
nearest neighbor in the training set. If its nearest 
neighbor is labeled (as positive of course), the instance 
will be classified as positive. Otherwise, its nearest 
neighbor has not been labeled (and thus is negative) and 
we classify the instance as negative.  

Step 3. Among all the unlabeled instances, the one we can most 
confidently classify as positive is the instance which is 
closest to the labeled positive examples. This instance, 
along with its newly acquired positive label, will be 
added into the positive set. With the training set being 
adjusted, we go back to Step 1 to refine the classifier. 
The procedure repeats until some stopping criterion is 
reached (we will discuss the stopping criterion in more 
detail later). 

The intuition of the idea is straightforward. The labeled positive 
examples serve as a model which describes what a positive 
example “looks like”. If an unlabeled instance is very similar to a 
positive example, the probability of it being positive is very high. 
For example, in our contrived problem in Figure 2, the unlabeled 
instance U4 is a very close match to the labeled instance F1. 
Therefore we can label it as F (female) with high confidence. By 
adding such an example into the positive set, we are refining the 
description of the positive class, which in turn will help in 
classifying the unlabeled data. The hope is that the modeling 
process and the classification process can reinforce each other 
iteratively and correctly label as many positive examples as 
possible. 
In Table 2 we formalize this idea. Given a set P of positively 
labeled examples and a set U of unlabeled examples, the 
algorithm iterates the following procedure.  First, use P and U to 
train the one-nearest-neighbor classifier C (note again we regard 
instances in P as positive examples and instances in U as negative 
examples). Second, use classifier C to classify the unlabeled set 
U. Third, select one unlabeled example which is nearest to any 
instance in set P (breaking ties randomly), and add it to P. 

Table 2: Semi-supervised time series classification algorithm 
       Function [P] = Semi_Supervised_Classification(P, U) 
1 
2 
3 
4 
5 
6 
7 

Until (some stopping criterion) 
use P and U to train the one-nearest-neighbor classifier C 
use classifier C to classify unlabeled set U 
select the example that C most confidently labels as positive 
add this example into P 
delete this example from U 

End 

To be concrete, in Figure 4 we demonstrate our algorithm with a 
simple two-class toy problem, where initially only one example is 
known as positive (the solid square in Figure 4). Using our 
approach, we can correctly classify almost all the examples in the 
positive class after seventeen iterations, as shown in Figure 4. In 
contrast, if we simply put the seventeen nearest neighbors of the 
single labeled example to the positive class, we will get very poor 
accuracy. 



 

Figure 4: A) A simple two-class dataset. B) The chaining effect of 
semi-supervised learning: a positive example is labeled which 
helps labeling other positive examples and so on. Eventually all 
positive examples are correctly classified. C) If we simply put the 
seventeen nearest neighbors of the single labeled example to the 
positive class, we would wrongly include many negative 
examples into the positive class 

3.2.1 Stopping Criterion 
As we will show in the empirical evaluation, a self-training 
classifier can achieve high accuracy with only a handful of 
labeled examples. In this section, we will discuss the stopping 
criterion for training the classifier, an issue we have deliberately 
ignored to this point. Ideally we would like the training procedure 
to stop when the performance (accuracy or precision-recall etc.) 
of the classifier begins to deteriorate. However, it is very hard (if 
not impossible) to know the true performance of the classifier, 
because we do not know the ground truth of the data.  
In our case, we are using a distance-based classifier. So the 
distance statistics may give us some hint about how well the 
classifier is doing. To develop our intuition, we perform self-
training classification on several datasets and look at the minimal 
distance between two instances in the labeled positive set. For 
each iteration in the training procedure, we record the precision-
recall breakeven point (explained in greater detail in Section 4) 

and the distance between the closest pair in the labeled positive 
set. Figure 5 shows the results obtained on the ECG dataset (a 
detailed description of the ECG dataset can be found in Section 
4.1). We can see that the minimal nearest neighbor distance 
decreases dramatically in the first few iterations, stabilizes for a 
relatively long time, and drops again. Interestingly, the precision-
recall breakeven point achieved by the classifier has a 
corresponding trend of increasing, stabilizing, and decreasing. 
 

Figure 5: Statistics on ECG dataset 
In hindsight, this phenomenon is not surprising. In the first few 
iterations, the labeled positive set is relatively small. In other 
words, the known positive space is relatively sparse. By adding 
more positive examples into it, the space gets denser, and as a 
result, the minimal nearest neighbor distance decreases gradually. 
At some point, the closest pair of the positive examples is 
incorporated in the labeled set. The minimal nearest neighbor 
distance will be the distance between them. Adding more positive 
examples will not change the minimal distance (this corresponds 
to the stabilizing phase). However if a negative example is being 
labeled as positive, chances are high that we will keep adding 
negative examples because the negative space is much denser 
than the positive space. And the closest pair in the labeled 
positive set will be the pair of two negative examples. Thus we 
will see a drop of the minimal nearest neighbor distance of the 
positive set. Figure 6 illustrates the process on a small sample 
dataset. 
Similar observations were made on other datasets. These indicate 
that, even though the question of when to stop the self-training 
procedure remains unsolved and is an open problem, we can use 
the change in the minimal nearest neighbor distance in the labeled 
positive set as a good heuristic in most cases. 
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Figure 6: A sample dataset shown in two-dimensional space. A) 
Initially the two solid (red) squares are labeled as positive. B) At 
some point the closest pair in the positive set is added into labeled 
positive set. C) A negative instance is being added into labeled 
positive set. D) The closest pair in labeled positive set changes to 
two negative instances 

3.3 Using the Classifier 
By the end of the training, much more data in the training set are 
labeled, and we can use the classifier to classify other datasets. At 
first glance, this is easy. For each instance to be classified, check 
whether its nearest neighbor in the training set is labeled or not, 
and assign it the corresponding class label. However recall that 
the training set is huge (because of the enormous amount of 
negative examples). Comparing each instance in the testing set to 
each example in the training set is untenable in practice.  
To make the classification tractable, we modify the classification 
scheme of the one-nearest-neighbor classifier, using only the 
labeled positive examples in the training set. If an instance to be 
classified is within r distance to any of the labeled positive 
examples, it will be classified as positive. Otherwise it is negative. 
Recently we have successfully applied this scheme to the problem 
of monitoring streaming time series for a set of predefined 
patterns [41]. A natural value for r would be the average distance 
from a positive example to its nearest neighbor. The intuition is 
that if the positive examples we have seen before tended to be 
about  r apart, then a future positive object will probably also be 
within r of one (or more) positive example(s) in the training set. 
Paradoxically, we may be victims of our own success. By greatly 
enlarging the size of the labeled positive set with our semi-
supervised algorithm, it appears that we will greatly increase the 
time taken to classify new instances. Fortunately this is not the 
case. We can leverage off an envelope-based lower-bounding 
technique [41] to speed up the classification procedure. For 

example, in [41] we applied this technique on an ECG dataset and 
the speedup achieved is more than 100 times. Because we are 
focusing on the effectiveness of the semi-supervised learning 
classifier in this paper, we will not discuss the speedup technique 
any more. We refer interested readers to [41] for more details. 

4 EMPIRICAL EVALUATION 

In this section, we test our semi-supervised learning classifier 
with a comprehensive set of experiments on diverse domains. We 
compare the semi-supervised approach to a naive k-nearest-
neighbor approach, where the k nearest neighbors of the labeled 
positive set are classified as positive and others as negative (see 
Figure 4.C for an example). As the reader may already appreciate, 
the setting of k is a non-trivial problem, since the classifier does 
not know in advance how many positive examples there are in the 
testing set. To help the strawman achieve the best performance, 
we allow it to search over all possible values of k and only report 
the best result. 
The performance of the classifier at each iteration is reported 
using precision-recall breakeven point. Since the class distribution 
is highly skewed, accuracy is not a good performance metric. The 
classifier can simply classify everything as negative to ensure 
high accuracy. Note that precision-recall breakeven point is a 
standard information retrieval measure for binary classification 
[20][32]. Precision and recall are defined as: 

sprediction positive of #
sprediction positivecorrect  of #Precision =  

examples positive of #
sprediction positivecorrect  of #Recall =  

The precision-recall breakeven point is the value at which 
precision and recall are equal [20]. It is a single performance 
value over all binary classification tasks and it is insensitive to the 
distribution of the classes. 
For simplicity in the experiments we did not evaluate the stopping 
heuristic described in Section 3.2.1. We just keep training the 
classifier until it achieves its highest precision-recall and allow a 
few more iterations after that. For most of the experiments, we 
use distinct training set and testing set. The Word Spotting dataset 
and Yoga dataset are too small to be split, so for them we train 
and test on the same dataset. However we note that it is still non-
trivial to classify the training set because most data in the training 
set are unlabeled. 

4.1 ECG Dataset 
As noted earlier, heartbeat classification has received a lot of 
attention because of the large amounts of freely available data and 
the potential applications in medical field. Our first experiment is 
on an ECG dataset obtained from the MIT-BIH Arrhythmia 
Database [18]. Each data record in the ECG dataset is a time 
series of the measurements recorded by one electrode during one 
heartbeat. The data has been annotated by cardiologists and a 
label of normal or abnormal is assigned to each data record. Of 
the 2,026 data records in the dataset, 520 were identified as 
abnormal and 1,506 were identified as normal. All the data 
records have been normalized and rescaled to have length 85 
(recent results suggest that we lose nothing by rescaling [35]). We 
randomly split the data, using half for training and half for testing, 
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as summarized in Table 3. Because usually cardiologists are more 
interested in the occurrences of the abnormal heartbeats, here 
abnormal heartbeats are our target (positive class).  

Table 3: Number of positive and negative instances in the training 
set and the testing set for ECG Dataset 

 Training Set Testing Set 
Positive (Abnormal) 208 312
Negative (Normal) 602 904
Total 810 1,216

For the semi-supervised approach, we randomly choose 10 
positive examples in the training set as the initial labeled positive 
set P. In each iteration, the semi-supervised algorithm adds one 
example to the positive set P and uses the adjusted training set to 
classify the testing set. The precision-recall breakeven point 
achieved is recorded. Note that the initial labeled set P has an 
effect on the performance of the classifier (a good initial set P 
may give the classifier a high precision-recall in the beginning 
while a bad initial set P may take the classifier more iterations to 
achieve good performance). To avoid the bias introduced by the 
initial set, we ran the experiments 200 times and report the results 
in Figure 7. The bold line is the average performance over the 200 
runs. The gray lines bounding it from above and below are one 
standard deviation intervals. Note that the precision-recall 
breakeven value increases dramatically in the beginning and 
stabilizes after about ten iterations. On average, the maximal 
precision-recall breakeven value achieved by the semi-supervised 
approach is 94.97%. The shaded area in Figure 7 is where the 
performance of the semi-supervised classifier deteriorates because 
it begins to ingest negative examples. 
 

Figure 7: Classification performance on ECG Dataset 
We then ran another 200 experiments (each time with the same 
initial labeled set P as used in the semi-supervised experiment) 
for the naive k-nearest-neighbor approach (with k = 312). 
However, even with the optimal k value, the k-nearest-neighbor 
approach only achieves an average precision-recall breakeven 
value of 81.29%, which is much lower than that of the semi-
supervised approach. This shows that with the help of the 
unlabeled data, the semi-supervised approach can greatly increase 
the performance of the classifier. 

4.2 Word Spotting Dataset 
In second experiment, we consider classification of handwritten 
documents. We test on the Word Spotting dataset, which was 
created by Rath and Manmatha for word image matching [36]. It 

contains 2,381 word images from 10 handwritten pages. We take 
the images of 50 common words such as “the”, “and”, etc. and 
obtain 905 instances in total. Each word image is represented by a 
four dimensional time series which describes the profile of the 
image. For example, in Figure 1, we have shown the upper profile 
of the word “Alexandria”. For simplicity we only consider the 
first dimension of each image, which is of an average length of 
270. Here we focus on the two-class problem of differentiating 
the word “the” from others. In total, there are 109 images for 
word “the” and 796 images for other words. In this experiment, 
we use the same 905 images both for training and testing, as 
summarized in Table 4. 

Table 4: Number of positive and negative instances in the training 
set and the testing set for Word Spotting Dataset 

 Training Set Testing Set 
Positive (Word “the”) 109 109
Negative (Other words) 796 796
Total 905 905

As before, for the semi-supervised approach, each time we 
randomly choose 10 positive examples in the training set as the 
initial labeled positive set P and record the precision-recall 
breakeven point for each iteration. We repeated the experiment 25 
times and the results are shown in Figure 8. The bold line is the 
average performance over the 25 runs, and the gray lines are one 
standard deviation intervals. We can see that the performance 
increases steadily at the beginning, reaches its maximal value 
86.2% at about fifty iterations, and then begins to decrease (the 
shaded area in Figure 8). We then ran the same 25 experiments 
for the naive k-nearest-neighbor approach (with k = 109). On 
average, the precision-recall breakeven value obtained by the k-
nearest-neighbor approach is only 79.52%. 
 

Figure 8: Classification performance on Word Spotting Dataset 
Handwritten text is an intuitive domain so we spend more time 
analyzing its results. For example, it is instructive to take a closer 
look at what happened during the training procedure. Figure 9 
shows the changes of the rankings of two instances during the 
training process, where Image 19 is a positive example and Image 
585 is a negative example. The ranking of an instance is 
determined by its distance to the labeled positive set – the larger 
the distance, the higher the ranking. So an instance with higher 
ranking has lower probability to eventually be classified as 
positive. In Figure 9, as training begins, Image 19 has a relatively 
high ranking, while Image 595 has a relatively low ranking. This 
represents a bad initial labeled set, where Image 19 happened to 
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be similar to none of the examples in the initial labeled positive 
set, while Image 595 is similar to one or more of them. 
Fortunately, even with a bad start, the semi-supervised learning 
classifier is able to correctly label more positive examples, which 
in turn helps it model the positive examples better. As a result, the 
ranking of Image 19 decreases and the ranking of Image 585 
increases after several iterations. 

 

Figure 9: Ranking changes of two instances in Word Spotting 
dataset during semi-supervised training 

4.3 Gun Dataset 
The gun dataset contains two-dimensional time series extracted 
from video of two actors either aiming a gun or simply pointing at 
a target. The two dimensions correspond to the X and Y 
coordinates of the actors’ right hand. For simplicity we only 
consider the Y-axes here. The dataset contains four classes: 

Class A: Actor 1 with gun 
Class B: Actor 1 without gun (point) 
Class C: Actor 2 with gun 
Class D: Actor 2 without gun (point) 

Here we focus on the two-class problem of differentiating Actor 1 
with gun from others – (A) vs. (B+C+D). In total, there are 57 
instances in Class A, and 190 instances in other classes. Each 
instance has the same length of 150. Again, we randomly split the 
data, using half as the training set and half as the testing set, as 
summarized in Table 5. 

Table 5: Number of positive and negative instances in the training 
set and the testing set for Gun Dataset 

 Training Set Testing Set 
Positive (Class A) 27 30
Negative (Class B,C,D) 95 95
Total 122 125

In this experiment, we start with one labeled positive example and 
train the classifier. We ran the experiment 27 times (once for each 
positive example) and show the results in Figure 10. Starting with 
only one labeled example, the classifier is able to identify other 
positive examples and achieves a maximal precision-recall 
breakeven point of 65.19% on average. One may notice that the 
variance of this experiment is higher than that of the previous 
ones (in Figure 10 the two gray lines are farther away from the 
bold line). This is because we start with a single labeled example, 
which increases the bias of the initial labeled set. 
We ran the same experiments using the k-nearest-neighbor 
classifier (with k = 27), the average precision-recall breakeven 
point achieved is 55.93%. This again shows the superior of our 
semi-supervised approach: it only needs a small number of 
labeled examples (as few as one in this case) to build accurate 
classifier. 

 

Figure 10: Classification performance on Gun Dataset 

4.4 Wafer Dataset 
The wafer dataset is a collection of time series containing a 
sequence of measurements recorded by one vacuum-chamber 
sensor during the etch process of silicon wafers for semiconductor 
fabrication [33]. Each wafer has an assigned classification of 
normal or abnormal. The abnormal wafers are representative of a 
range of problems commonly encountered during semiconductor 
manufacturing. Of the 7,164 time series in wafer dataset, 762 
were identified as abnormal and 6,402 were identified as normal. 
We randomly picked half the dataset as the training set and used 
the other half as the testing set. Table 6 summarizes the contents 
of the training and testing set. As in the ECG experiment, the 
abnormal data are our target. 

Table 6: Number of positive and negative instances in the training 
set and the testing set for Wafer Dataset 

 Training Set Testing Set 
Positive (Abnormal) 381 381
Negative (Normal) 3,201 3,201
Total 3,582 3,582

For the semi-supervised approach, we ran the experiment 50 
times, each time starting with one randomly chosen labeled 
positive example. The average performance is shown as the bold 
line in Figure 11. As we can see, the performance increases 
dramatically during the first few iterations and achieves a 
maximal precision-recall breakeven point of 73.17% on average.  
 

Figure 11: Classification performance on Wafer Dataset 
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We ran the same experiments using the k-nearest neighbor 
classifier (with k = 381), and the average precision-recall 
achieved is only 46.87%. 

4.5 Yoga Dataset 
For our last experiment, we revisit the classification problem in 
Figure 2 on a realistic dataset. The dataset was obtained by 
capturing two actors transiting between yoga poses in front of a 
green screen. It has been shown recently that in many domains it 
can be useful to convert images into pseudo time series. Therefore 
we have converted the motion capture data into time series by a 
well-known technique as in Figure 12. 
 

Figure 12: Shapes can be converted to time series. The distance 
from every point on the profile to the center is measured and 
treated as the Y-axis of a time series 

In total, we have 316 time series with an average length of 426. 
Among them, 156 time series came from the female actor and 150 
time series came from the male actor. We use the same dataset 
both for training and testing, as shown in Table 7. 

Table 7: Number of positive and negative instances in the training 
set and the testing set for Yoga Dataset 

 Training Set Testing Set 
Positive (Female) 156 156
Negative (Male) 150 150
Total 306 306

We ran the experiment 10 times, each time randomly choosing 
one positive example as labeled. The results are shown in Figure 
13. As we can see, the precision-recall breakeven point increases 
steadily with the number of iterations, and gets to a maximum of 
89.04% on average. While the same experiments on the naive k-
nearest-neighbor approach (with k = 156) only achieves an 
average precision-recall of 82.95%. 
 

Figure 13: Classification performance on Yoga Dataset 

5 CONCLUSIONS 

It is well known that building accurate classifiers requires large 
quantities of labeled data and such labeled data is often difficult 
to obtain. To mitigate this discrepancy, we propose a semi-
supervised learning framework to build accurate time series 
classifiers when only a small set of labeled examples is available. 
While there are many semi-supervised algorithms in other 
domains, their underlying assumptions rarely hold for time series 
data. Special considerations have been taken to make the semi-
supervised classification both efficient and effective for the time 
series domain. The experimental results show that the reduction in 
the number of labeled examples needed can be dramatic: our self-
training classifiers require only a handful of labeled examples to 
achieve high precision-recall. This suggests that the self-training 
method of using unlabeled data has a potential for significant 
benefits in time series classification. 
There are many directions in which this work may be extended. 
We intend to perform a thorough investigation on the stopping 
criterion for the training process. In addition, we plan to extend 
our framework to other distance measures which have been 
shown to be effective, for example, Dynamic Time Warping 
(DTW) [35]. Finally, we are conducting a field study of insect 
classification using the semi-supervised approach. 
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