
Automated Generation of Basic Custom Sensor-Based
Embedded Computing Systems Guided by End-User

Optimization Criteria

Susan Lysecky1 and Frank Vahid2

1Department of Electrical and Computer Engineering

University of Arizona
Tucson, AZ 85721

slysecky@ece.arizona.edu

2Department of Computer Science and Engineering
University of California, Riverside

Riverside, CA 92521
vahid@cs.ucr.edu

Also with the Center for Embedded Computer Systems at UC Irvine

Abstract. We describe a set of fixed-function and programmable blocks,
eBlocks, previously developed to provide non-programming, non-electronics
experts the ability to construct and customize basic embedded computing
systems. We present a novel and powerful tool that, combined with these
building blocks, enables end-users to automatically generate an optimized
physical implementation derived from a virtual system function description.
Furthermore, the tool allows the end-user to specify optimization criteria and
constraint libraries that guide the tool in generating a suitable physical
implementation, without requiring the end-user to have prior programming or
electronics experience. We summarize experiments illustrating the ability of the
tool to generate physical implementations corresponding to various end-user
defined goals. The tool enables end-users having little or no electronics or
programming experience to build useful customized basic sensor-based
computing systems from existing low-cost building blocks.

1 Introduction

The cost, size, and power consumption of low-end microprocessors in the past decade
has dropped tremendously as silicon technology continues to follow Moore’s Law.
For example, an 8-bit microprocessor chip may cost less than $1, occupy just a few
millimeters, and consume just microwatts of power. Such reductions enable
integration of microprocessors into domains previously unthinkable, such as RFID
tags, ingestible pills, and pen tips.

Meanwhile, a problem in the design of basic sensor-based embedded computing
systems is that end-users cannot setup basic custom embedded systems without the
assistance of engineers. An end-user is an individual developing a sensor-based
computing system who likely does not have programming or electronics expertise,

such as a homeowner, teacher, scientist, etc. For example, a homeowner may wish to
setup a custom system to indicate that a garage door is open at night, that a child is
sleepwalking, or that an ageing parent has yet to get out of bed late in the morning. A
scientist may wish to setup an experiment that activates a video camera when an
animal approaches a feeding hole, or activates a fan when a temperature exceeds a
threshold. Countless other examples exist. Despite the fact that such systems could be
built from computing and sensing components whose total cost is only a few dollars,
end-users cannot build such systems without knowledge of electronics and
programming. Just connecting a button to an LED (light-emitting diode) would
require knowledge of voltages, grounding principles, power supplies, etc. Making
such a connection wireless requires further knowledge of communications,
microcontroller programming, wireless devices, etc. Hiring engineers to build the
system immediately exceeds reasonable costs. Off-the-shelf solutions for specific
applications are hard to find, costly due to low volumes, and difficult to customize.

Our previous work addressed this problem through development of basic blocks,
called eBlocks, that enable end-users with no electronics or programming experience
to define customized sensor-based systems merely by connecting blocks and
performing minor configuration of those blocks [5]. The blocks incorporate small
inexpensive microprocessors into previously passive devices like buttons, motion
sensors, and beepers. Each device has a fixed function, and can be easily connected to
other devices merely by snapping together standard plugs, with the devices
communicating using predefined basic networking protocols. Figure 1 illustrates
several applications built using eBlocks. A sleepwalking detection application is
shown in Figure 1(a), which consists of motion and light sensor outputs combined
using a logic block (configured to compute motion and no light), whose output
connects to a wireless transmit block. The wireless transmit block is matched with a
wireless receiver block (through setting of switches to identical positions), which
ultimately activates a beeper block when motion at night is detected. Figure 1(b)
illustrates a second example, a presentation timer, which turns on a green light for 20
minutes, followed by a yellow light for 5 minutes, and lastly a red light indicating
time has expired. The design splits a button press to two prolonger blocks, one that

Figure 1. Example sensor based applications built with fixed-function blocks, (a) Sleepwalking
Detector, (b) Presentation Timer.

(a)

(b)

NOT

LED
(green)

LED
(yellow)

LED
(red)

Button Splitter

Yes
Prolonger

Yes
Prolonger

Splitter

Splitter

20 min

25 min

Combine

When A is AND
OR

B is yes
no

yes
no

then the output is yes

Light
Sensor

Wireless
Tx

Wireless
Rx

Parent’s Room In
 h

al
lw

ay

LED

Motion
Sensor

Combine

When A is AND
OR

B isyes
no

yes
no

then the output is yes

prolongs the button press for 20 minutes, another for 25 minutes. Additional logic
turns on the appropriate lights depending on whether both, one, or neither prolonger
block is outputting a true value.

eBlocks represent one of several new research approaches that utilize physical
(“tangible”) objects to enable end-users to program electronic devices [12]. Other
examples include Media Cubes [1], Electronic Blocks [20], and Tangible
Programming Bricks [16]. Commercial X10-based devices [18] communicate through
household power lines and are complementary to our approach.

This paper describes our recent efforts to develop computer-based tools that an
end-user could use to optimize an eBlock system or to map a virtual eBlock system to
a limited set of physical blocks. While the work in this paper describes a tool to help
end-users to build eBlock systems, related work that we have done [15] describes a
tool to help end-users to tune low-level eBlock parameters, such as microprocessor
clock frequency and communication baud rate, in order to achieve goals like
maximizing battery lifetime and/or minimizing system latency.

2 eBlocks Overview

The key idea of eBlocks is to enable end-users to build useful customized sensor-
based systems merely by connecting blocks, like buttons, motion sensors, logic,
beepers, etc. eBlocks’ key feature is that they encapsulate previously passive
components by an ultra-lightweight compute wrapper. The following sections briefly
describe two types of eBlocks, fixed function blocks and programmable blocks. A
section also describes the eBlocks simulator, a multifaceted graphical environment
that can simulate system functionality, configure programmable blocks, and provide
the interface for the technology mapping and optimization tool introduced in this
paper. Further details on eBlocks are discussed in [6].

2.1 Fixed-Function Blocks

Fixed-function eBlocks have a specific predefined function. Two types of fixed-
function eBlocks are Boolean and integer. Boolean blocks send “yes” or “no” packets,
while integer blocks send integer packets. While this paper focuses on Boolean
blocks, the methods generally apply to integer blocks, and our future work will
address such application. Four categories of Boolean blocks exist: sensor, compute,
communication, and output blocks.

Sensor blocks sense events, such as motion, light, sound, button presses, or
temperature. When a sensor detects the presence of an event (i.e. a light sensor detects
light), the sensor generates a yes output, and otherwise generates a no output.

Compute blocks perform logic or state computations on inputs and generate new
outputs. A 2-input “Combine” block (a.k.a. “Logic”) computes a 2-input logic
function configured by the end-user (e.g., AB, or A’+B). A 3-input Combine block is
also available. An inverter block inverts a yes input to no output, or a no input to yes
output. A “Yes Prolonger” block prolongs a yes input over the block’s output for an

end-user-configured duration. A “Toggle” block switches between yes and no outputs
on successive yes inputs. A “Pulse Generator” block generates yes and no output
pulses for an end-user-configured duration. A “Once-Yes Stays-Yes” (a.k.a.
“Tripper”) block trips to a yes output state when the main input receives a yes, and
stays in that state until a yes appears on a reset input.

Communication blocks include wireless transmit and wireless receive blocks,
which must be configured to implement a point-to-point channel by setting the
corresponding switches on each block to the same channel value. A splitter block
splits a single input into multiple identical outputs.

Output blocks beep, turn on LEDs, control electric relays, or provide data to a PC
for logging or other processing. A yes input activates output blocks. For example, a
beeper block beeps when its input is yes, and is silent when its input is no. Figure 2
shows our initial physical prototype versions of eBlocks. Each physical block contains
a PIC microcontroller for local computation and inter-block communication. The
connections among blocks (along with any configurations of each block) define a
system’s functionality. A unidirectional, packet-based protocol provides the basis for
block communication. Each block includes hardware specific to the block’s task (e.g.,
sensors, resistors, voltage regulators, etc.). An end-user connects blocks using wired
connectors or can replace a wire by a wireless connection by utilizing wireless
transmit and receiver blocks. We have built over 100 prototype physical blocks,
successfully used in controlled experiments by over 500 people of various skills
levels, mostly end-users with no programming background [5].

2.2 eBlock Simulator

The eBlock simulator, shown in Figure 3, is a Java-based graphical user interface
(GUI) for eBlock system entry and simulation and is available online at [6]. End-users
can connect, test, and optimize various eBlock systems before interacting with
physical blocks. End-users drag a block from a catalog on the right edge of the
simulator to the workspace on the left and connect the blocks by drawing lines
between the blocks’ input and outputs. The user can choose between a “simple mode”

Figure 2. Garage Door Open At Night Dector is built by snapping various fixed function
eBlocks together.

Contact
Switch

Light
Sensor

Wireless
Tx

Combine

LED

Wireless
Rx

To connect blocks snap
connectors together

in which commonly-blocks appear in the catalog, and an “advanced mode” containing
more blocks. eBlocks that sense or interact with their environment include
accompanying visual representation to simulate the corresponding environment. For
example, a “day/night” icon accompanies the light sensor. End-users can alternate the
icon between day and night by clicking on the icon, causing the light sensor’s output
to change accordingly. The gray text box situated in the bottom-left of the simulator
displays context-sensitive help such as a block’s description and interface when the
mouse cursor hovers over the corresponding block.

2.3 Programmable Blocks

In contrast to fixed-function blocks, a programmable block can be programmed to
implement arbitrary behavior. Our current programmable block has two inputs and
two outputs, as shown in Figure 4. An expert user could write C code that describes
the block’s behavior, and our tools would then combine that with the eBlock protocol
code into a binary, which the user could then download using our serial cable
interface.

However, most end-users will not have C-coding expertise. We thus provide a
tool for automatically converting internal (non-sensor, non-output blocks) fixed-
function blocks into a smaller network of programmable blocks that preserves the
system’s functionality, automatically generating code for each programmable block.
In this context, a programmable block is a means for slightly more advanced users to
reduce the block count and hence cost of their systems.

Figure 3. Capture and synthesis tool illustrating the cafeteria food alert system.

Palette of available
eBlocks

eBlock system specified
by the end-user

Simulator/eBlock usage
guide

Clear workspace button

Run tutorial button

3 Technology Mapping

3.1 Problem Description

A problem with using physical fixed-function blocks is that an end-user may only
have a subset of possible blocks readily available, and/or may have limited numbers
of particular blocks. For example, an end-user may have three types of blocks
available – 2-input logic, tripper, and prolonger blocks – of which many instances of
each exist. Defining the desired application behavior using just those blocks would be
a significant challenge even for an expert end-user. Instead, we provide for the end-
user a way to capture the desired behavior in the graphical simulator using any
combination of standard fixed-function blocks. The end-user also lists the types and
numbers of available physical fixed-function blocks, forming what is essentially a
constrained block library. We then define an automation tool that creates a new block
network with the same functionality as the desired network, but only using blocks
from the constrained library. Sensor and output blocks have specialized circuitry
(e.g., light sensors, LEDs, beepers), so the physical counterparts for those blocks must
be available – i.e., we cannot build a light sensor out of motion sensors. The mapping
problem thus only involves inner blocks, namely compute and communication blocks.

The above-described problem is essentially a technology-mapping problem,
common in chip design, with some differences from traditional problems. Technology
mapping is a central part of the chip design process. Chip designers describe a desired
circuit’s behavior using easy-to-work-with components, such AND, OR, and NOT
logic gates, with any number of inputs on each gate. However, a chip’s underlying

Figure 4. Programmable blocks: (a) An original system using fixed-function blocks, (b)
programming a programmable block to replace the inner fixed-function blocks, (c) the new

system using the programmable block.

(a)

(c)

Programmable
Block Buttons LEDs

Outputs
Inputs

PC Interface

(b)

Combine
Splitter

Toggle

Buttons

LEDs

technology may support only 2-input and 3-input NAND gates, requiring that generic
AND/OR/NOT circuits be mapped to a circuit consisting only of such NAND gates.
Modern technologies consist of far more complex mappings of generic circuits to
technology-specific components. Efficient technology mapping has been intensely
researched for decades [2,3,4,8,9]. Our technology-mapping problem has some
differences from previous technology-mapping problems. In the domain of field
programmable gate arrays (FPGAs), technology mapping translates a digital circuit to
a physical implementation on lookup tables (LUTs) [7]. A LUT is capable of
specifying any logic function with a given number of inputs (defined by the size of
the physical LUTs within the FPGA). Because LUTs are general programmable
structures, the mapping methods correspond more to the problem of converting to
programmable blocks than to that of fixed-function blocks. In application-specific
integrated circuit (ASIC) design, technology-mapping implements a hardware circuit
using a library of physical cells with fixed functions [7]. However, the final ASIC
implementation can use an essentially unlimited number of any physical cells within
the library. In contrast, our problem has a fixed numbers of each block, and
furthermore does not necessarily have a balanced set of blocks. Nevertheless, our
solution approach borrows from existing ASIC techniques.

3.2 Transformation Rule Base

A straightforward but non-optimal ASIC technology mapping method converts every
technology independent circuit element into a technology-dependent universal gate
element. In circuits, a NAND gate or a NOR gate represents a universal gate. In our
problem, we found that we could implement nearly every block using some network
of 2-input logic and splitter blocks. Defining a universal mapping heuristic that would
replace each unmapped block in a network by an equivalent network consisting of the
universal blocks is one possible method to perform technology mapping.

A better optimizing ASIC technology-mapping method involves graph-covering
methods [13]. A library is built of mappings from technology independent sub-circuits
to technology dependent sub-circuits, and then directed acyclic graph covering
methods cover the unmapped circuit. The methods are built on similar graph methods
used for instruction coverage generation in compilers. While such methods could be
applied to our problem, we found that the state-based functions associated with our
fixed-function blocks might introduce significant complexity into the graph cover
heuristics. In fact, such traditional methods typically focus on the combinational part
of the circuit, whereas state-based (sequential) blocks are a key part of our problem.

Another ASIC technology mapping method involves rule-based technology
mapping [10,11]. Those techniques perform local optimizations on a circuit based on
a set of transformation rules. We used this method as the basis for our first solution to
the problem, which we call the transformation rule method. We developed a
transformation rule base as follows. For each standard fixed-function block, we
manually built alternative implementations of that block (the source block) using
other various subsets of standard fixed-function blocks (target blocks). For example,
for a 2-input logic block, we defined a transformation for implementing that block
using a 3-input logic block, as shown in Figure 5(a) (Config. shows the truth table

entries for the block). Figure 5(b) shows a transformation of a tripper block into an
equivalent set of blocks involving a logic block and a splitter block, with the required
logic configuration shown. Figure 5(c) shows multiple transformation rules for a
inverter block. The invert block can be replaced utilizing either a 2-input logic block
or a 3-input logic block, configured to implement the invert on the first input.

We point out that we could have treated logic blocks using logic synthesis
methods, wherein we would convert every sub-network of logic blocks (2- and 3-
input logic blocks and invert blocks) into a Boolean expression, optimize the
expression, and then map the expression into logic blocks in the library using
traditional circuit technology mapping. However, as this is a first work, we preferred a
transformation rule approach for consistency with the other blocks, resulting in a
simpler tool but a less optimized mapped network. Nevertheless, incorporating logic
synthesis methods is an area of future improvement.

4 Optimization

4.1 Problem Description

Given a network of fixed-function blocks, there may exist more blocks than
necessary, arising from two situations. First, an end-user may have created a network
of fixed-function blocks that is easy to comprehend, but has more blocks than
necessary. Alternatively, technology mapping may have inserted two adjacent sub-
networks with perimeter blocks that could be merged into fewer blocks. We thus
developed a method to reduce block count while preserving network behavior.

We considered different methods for reducing blocks. A model-based method
would utilize a formal understanding of the underlying finite-state machine (FSM) (or
combinational) behavior of each block. This method would compose the FSMs into a
single network-level FSM, eliminate equivalent and redundant states, and remap the
reduced FSM to physical blocks. This approach appeared overly complex and
possessed the problem that the reduced FSM might not be mappable to existing
physical blocks. Another method builds on peephole optimization, an optimization
method commonly found in compilers. This method inspects a local area of code to
identify and modify inefficient code [17]. We can similarly inspect sections of the

Figure 5. Sample block equivalencies used in the technology mapping equivalncy library.

Config. :c0 c0 c1 c1 c2 c2 c3

Logic3
a

out b

Config. : c0 c1 c2 c3

Logic2
a
b out

(a)

Block
equivalency

Tripper
in
rst

(b)

Logic3
in
rst Splitter

out

Config. : 01001100

Block
equivalency

Invert in out

(c) Config. : 0011

Logic2
in out

Config. : 00110010

Logic3
in

out

Block
equivalency 1

Block
equivalency 2

block network to optimize inefficient or redundant sections. The peephole
optimization method enables us to preserve the pre-defined block structure because
we are operating on the block level and eliminates the need for additional mapping.

4.2 Peephole Optimizations

We analyzed a variety of networks and identified commonly occurring inefficient
block combinations. We added optimization templates to the library that reflect these
inefficient block combinations, along with a corresponding optimized block network.
The optimizer traverses the network specification searching for subsystems matching
any of the corresponding optimization templates and replaces the inefficient block
combination by the optimized block network defined by the template.

Figure 6 illustrates several optimization templates defined within the optimization
library. Figure 6(a) illustrates inverters located at the input or output of logic blocks
that an end-user could have merged into the logic block. The optimizer eliminates the
inverters and updates the logic block configuration accordingly. The optimization
shown in Figure 6(b) merges chained prolonger blocks into a minimum number of
prolonger blocks. If the combined yes time of the chained prolonger blocks is less
than the maximum yes time of a single prolonger block, the optimizer can merge the
chained prolonger blocks into a single prolonger block. If the combined yes time of
the chained prolonger blocks exceeds the maximum yes time of a single prolonger
block, then the minimum number of prolonger block are used. Figure 6(c) analyzes
the number of unused inputs on chained splitters and attempts to combine splitters.
Each peephole optimization is treated independent of others peephole optimizations as
well as independent of the technology mapping transformations.

5 Programmable Block Operations

Technology mapping transformation rules and peephole optimizations discussed in
previous sections pertain to fixed function blocks. Inclusion of programmable blocks

Figure 6. Sample peephole optimization used in the optimization library.

(a)

(c)

(b)

Yes Prolongera Yes Prolonger out
Configuration: Y1time Configuration: Y2time

Configuration: Y1time + Y2time

Yes Prolonger out a

If: Y1time + Y2time <=YMax

Configuration: c0 c1 c2 c3
Logic2 Invert

b outa

Configuration: c2’ c3’ c0’ c1’

Logic2 a
b out

Invert

Splitter

outSplitter

a

c
d

b

outSplitter
a

c
d

b

presents further opportunity for technology mapping and optimization. For example,
if a fixed function block does not exist in the physical library, a programmable block
can by configured to replace the missing fixed function block. Furthermore, multiple
fixed-function blocks can be replaced by a single programmable block to reduce block
count and/or cost of the system.

Several options exist to deal with the existence of programmable blocks. One
option is to develop a separate partitioning algorithm, utilized in a secondary stage,
which aims to assign multiple fixed-function blocks to programmable blocks. A
simpler method is to define low-level technology mapping transformation rules and
peephole optimizations specific to programmable blocks, and to incorporate those
rules and optimizations into the main technology mapping and optimization heuristic
(discussed in Section 6). The second method follows closely what we have done with
fixed-function blocks, thus we defined several programmable block operations and
incorporated them into the appropriate libraries.

6 Technology Mapping and Optimization Methodology

Figure 7 illustrates the overall technology mapping and optimization design
methodology intended to aid end-users in generating an optimized physical sensor-
based system based on end-user defined criteria. Two parties are responsible for the
input specification, the node designer and the end user. The node designer is an expert
who has an understanding of the underlying details of the various eBlocks and
provides the pertinent block information prior to the release of the mapping and
optimization tool. The end-user may have no expertise in programming or electronics
but wants to construct a customized sensor-based system. The end-user provides input
specific to their situation and the application being created.

Figure 7. Technology mapping and optimization environment.

Physical/Virtual Block
Weights

Optimization Library Block Count/Cost

eBlock Simulator

System
Specification

Technology Mapping
Library

 b
b

d
b

db

… …
1 0

yes no

A’ B
A’ B’

A B’
A B

x 7

x 2

x 3

x 10

x 3

$1.20

$1.50

$2.25

$2.00

$1.00

 Physical Fixed Function
Virtual Fixed Function
Physical Programmable
Virtual Programmable

Objective -
Minimize Cost
Minimize Block Count

1
10
2
10

logic2:
{
 1 logic3 c3c3c2c2c1c1c0c0 in1 in2 -1
out1
}

logic3:
{
 1 splitter in1 6 7 -1 -1
 2 splitter in2 4 5 -1 -1
 3 splitter in3 4 5 -1 -1
 4 logic2 c3c2c1c0 2 3 6
 5 logic2 c7c6c5c4 2 3 7
 6 logic2 0010 1 4 8
 7 logic2 1000 1 5 8

...

6.1 Node Designer Input

The node designer defines the technology mapping transformations discussed in
Section 3 by creating a text-based technology-mapping library read in by the tool.
Furthermore, the node designer defines various peephole optimizations discussed in
Section 4 utilized by the tool. The optimization library is currently a C file that
contains various functions to perform each of the peephole optimizations,
alternatively these optimizations could be defined in a text file as the technology
mapping transformation which is then translated by the technology mapping and
optimization tool. These files are provided by the node designer and are independent
of the various sensor-based systems constructed by the end-user.

6.2 End-User Input

The end-user needs to specify which fixed-function and programmable blocks are
physically available, the functionality of the specific application being built, and the
optimization goals.

The end-user first defines the “Block Count/Cost” input, i.e., how many of each
type of block is physically available and the cost of each eBlock (regardless of
whether they are physically available). The input specification can be done in a
graphical environment in which an end-user can manually enter a number in a text
box next to the graphical depiction of the block of interest or click on up/down arrows
until the appropriate value is displayed (shown in Figure 8 under the “Block
Count/Cost” heading). The end-user can similarly define block cost.

The end-user’s next task is to define the “Physical/Virtual Block Weights” input.
We define physical blocks as blocks that are physically available in the end-user’s
block set; virtual blocks do not exist in the block set, meaning they would have to be
purchased to create the physical system. The end-user specifies four weights:

 WP_FF = physical fixed function block weight
 WV_FF = virtual fixed function block weight

 WP_PROG = physical programmable block weight
 WV_PROG = virtual programmable block weight

These values are used within a cost equation to evaluate whether a given system
configuration yields an improvement (further discussed in Section 6.3). By simply
assigning various weights, with lower weights indicating preferred block types, an
end-user can direct the technology mapping and optimization to use preferred block
types when possible. For example, an end-user who is uncomfortable with
programmable blocks and wants to only utilize fixed function blocks, whether virtual
or physical, can set the blocks weights to WP_FF = 1, WV_FF = 1, WP_PROG = 10, and
WV_PROG = 10. Selection of a programmable block by the tool yields ten times the cost
of a fixed function block, guiding the tool to favor fixed-function blocks.
Alternatively, an end-user who wants to utilize blocks already existing in their
physical block set, whether fixed or programmable, can set the block weights to WP_FF
= 1, WV_FF = 25, WP_PROG = 1, and WV_PROG = 25. Again, virtual blocks yield higher
cost, thus the tool is biased to select physically available blocks before utilizing any

virtual blocks. The end-user can adjust the four block weights to reflect a variety of
situations and to guide the technology mapping and optimization tool in creating an
appropriate physical sensor based system.

Within the “Physical/Virtual Block Weight” input, the end-user must also choose
the optimization criteria – either to minimize the number of blocks utilized or to
minimize the monetary cost of the resulting system. The end-user selects the
optimization goal by selecting the corresponding radio button.

The last task required of the end-user is to create the eBlock system, thus defining
the desired system functionality. The end-user creates the eBlock system within the
block simulator (Section 2.2) by dragging and connecting blocks in the workspace.

6.3 Design Space Exploration

Once all inputs to the technology mapping and optimization tool are defined, our tool
uses simulated annealing to explore the design space and generate the finalized sensor
based system. The simulated annealing algorithm [14] is a popular optimization
approach modeled after annealing in metallurgy, wherein a material is continuously
heated and cooled to increase the material’s strength. The algorithm randomly
searches the design space by generating random changes, and accepts a change if an
objective function value is decreased. Alternatively, a change that increases the
objective function value can also be accepted based on a probability linked to a global
“temperature” value. Early in the algorithm, changes that increase the objective
function cost are more likely to be accepted, to avoid being trapped in a local
minimum early on. As the algorithm continues to run, these higher cost changes are
less likely to be accepted, thus settling into a minimum cost solution. The rate of
decline in which higher cost solutions are accepted is based on a definable cooling
schedule. The longer the algorithm runs, the higher a chance of a good solution, thus
the key is to define a cooling schedule that balances the solution quality and runtime.
We chose simulated annealing due to the heuristic’s generality – we can simply define
a set of possible changes consisting of the various transformations and optimizations
discussed in previous sections, and let the tool search the solution space. While
computationally expensive, the power of modern computers coupled with the
relatively small sizes of eBlock systems make the use of annealing effective.

 Figure 8. Using a graphical interface, the end-user specifies, (a) the block count/cost library
and, (b) the physical/virtual block weights.

 Physical/Virtual Block Weights Block Count/Cost

1

 yes
A’A’
AA

x 7

x 2

x 3

x 10

x 3

$1.20

$1.50

$2.25

$2.00

$1.00

Physical Fixed Function
Virtual Fixed Function
Physical Programmable
Virtual Programmable

Optimization Objective :
 Minimize Cost
 Minimize Block Count

1
10
2
10

End-user

Depending on the end-user defined optimization criteria, we use one of two
weighted cost functions to determine the system cost. If minimizing block count is the
objective, the following cost equation is utilized:

() ()
() ()blocksleprogrammabvirtualofWblocksleprogrammabphysicalofW

blocksfunctionfixedvirtualofWblocksfunctionfixedphysicalofW

PROGVPROGP

FFVFFP

#*#*

#*#*costblock

__

__

+

++=

If minimizing total system cost is the objective, the following cost equation is utilized:

()

()

()

()∑

∑

∑

∑

+

+

+=

i
iiPROGV

i
iiPROGP

i
iiFFV

i
iiFFP

blockleprogrammabvirtualofblockofpriceW

blockleprogrammabphysicalofblockofpriceW

blockfucntionfixedvirtualofblockofpriceW

blockfucntionfixedphysicalofblockofpriceW

#**

#**

#**

#**cost system

_

_

_

_

The end-user, as described in Section 5.2, assigns the various block weights. The
technology mapping and optimization tool utilizes simulated annealing and performs
random changes consisting of an optimization or a transformation from a randomly
chosen single technology mapping transformation rule (Section 3), a peephole
optimization (Section 4), or a programmable block operation (Section 5).

7 Technology Mapping and Optimization Results

Utilizing the technology mapping and optimization methodology previously
discussed, we now consider several eBlock systems and provide the corresponding
physical eBlock system implementation determined by the technology mapping and
optimization tool taking into consideration user-specified block availability and
preferences. We considered six different scenarios in which end-users have varying
types and quantities of physical eBlocks already available, as well as differing
preferences as to the types of eBlocks the end-user wants to utilize to build the desired
eBlock system. Section 7.1 looks at scenarios where the optimization criterion
selected is block size reduction and Section 7.2 looks at scenarios where the
optimization criterion selected is system cost reduction.

For each scenario, we considered sixteen eBlock system specifications, ranging
from a “Night Light Controller” consisting of two internal blocks to a “Digital
Hourglass Timer” consisting of over 50 internal blocks. The “Technology Mapping”
library and “Optimization” library input files specified by the node developer are
consistent across each scenario considered. The “Block Cost” input contains the
monetary cost of each block type, derived from [19], are also consistent across each
scenario considered. Each scenario defines the “Block Counts” input specifying the
number and type of physical blocks already available to the end-user, i.e., the eBlocks
that end-user currently has on hand. Each scenario further defines the
“Physical/Virtual Block Weight” input specifying the end-user’s preference towards

available physical blocks or virtual blocks the end-user wants to utilize in constructing
the final eBlock system implementation.

7.1 Minimizing Block Count

We first consider a scenario, referred to as Scenario 1, in which an end-user may have
just stumbled upon eBlocks online and wants to try to build various systems using the
eBlock simulator and has no physical eBlocks available. Block Set A, listed in Table
2, reflects that the end-user has no physically available blocks. Furthermore, the
Block Set corresponds to the “Block Count” input of the technology mapping and
optimization tool. To realize the eBlock system specified within the eBlock simulator,
the end-user is willing to purchase fixed function blocks but is weary of utilizing
programmable blocks. Thus, the end-user can specify this preference by adjusting the
“Physical/Virtual Block Weights” input, setting the fixed function block weights to 10
and programmable block weights to 100, as listed in Table 1. Having no physical
eBlocks (as specified by Block Set A) and a desire to utilize only fixed function block
(as specified by the block weights listed in Table 1), we then utilized the technology
mapping and optimization tool to implement each of the sixteen eBlock systems.
Figure 9 illustrates a breakdown of block types for each system, indicating the number
of physical fixed function, physical programmable, virtual fixed function, and virtual
programmable blocks each eBlock system is composed of. Only a subset of systems is
illustrated in Figure 9 due to space limitations. In Scenario 1, programmable blocks
are penalized, thus all sixteen final eBlock systems consist solely of fixed function
blocks with solutions yielding and average of 12.9 inner blocks.

Table 1. Breakdown of physical block counts and weights for each sceanrio.

Table 2. Breakdown of physical block counts for each block set, all input and output blocks are
assumed to contain unlimited corresponding physical block counterparts.

 Block Count
Assignment WP_FF WV_FF, WP_PROG WV_PROG

Scenario 1 & 7 Block Set A 10 10 100 100
Scenario 2 & 8 Block Set A 10 10 10 10
Scenario 3 & 9 Block Set B 1 10 1 100
Scenario 4 & 10 Block Set B 1 10 1 10
Scenario 5 & 11 Block Set C 1 10 1 100
Scenario 6 & 12 Block Set C 1 10 1 10

Physical Block Count

Block Set

2-
Inp

ut
Lo

gic

3-
Inp

ut
Lo

gic

Inv
er

ter

To
gg

le

Pr
olo

ng
er

Tr
ipp

er

Pu
lse

Ge

ne
ra

tor

W
ire

les
s

Tr
an

sm
itte

r
W

ire
les

s
Re

ce
ive

r

Sp
litt

er

Pr
og

_2
_2

Pr
og

_4
_4

Pr
og

_6
_6

Block Set A 0 0 0 0 0 0 0 0 0 0 0 0 0
Block Set B 10 2 2 10 2 2 2 10 10 10 0 0 0
Block Set C 10 2 2 10 2 2 2 10 10 10 2 2 2

In the second scenario (Scenario 2), the end-user again has no physical blocks
available, but the end-user in this scenario is willing to purchase fixed function and
programmable blocks. Again, as the end-user has no available blocks, Block Set A is
utilized to specify the “Block Count” input. Furthermore, as the end-user does not
have a preference towards fixed function or programmable blocks, all block types are
equally weighted in the “Physical/Virtual Block Weight” input. Figure 9 illustrates a
breakdown of block types for a subset of the sixteen eBlock systems considered.
Overall, five solutions can take advantage of programmable blocks, resulting in
solutions that on average require 10.5 inner blocks. By allowing programmable
blocks, the final eBlocks systems can be implemented using on average 2.4 fewer
inner blocks compared to a system composed of solely fixed function blocks
(Scenario 1).

In the next two scenarios considered (Scenario 3 and 4), an end-user has access to
some physical fixed-function blocks, perhaps having purchased a initial set eBlocks
consisting of only fixed function blocks, with the number and type of physical blocks
available listed in Block Set B. In addition, the end-user in Scenario 3 is willing to
purchase fixed function blocks if needed but is apprehensive to purchase
programmable blocks. Block weights are set to so physical blocks have lower
weights, virtual fixed-function blocks are weighted slightly higher, and virtual
programmable blocks are heavily weighted, as listed in Table 1. In Scenario 4, an
end-user is willing to purchase fixed function and programmable blocks. Virtual
blocks have slightly higher weights, but the block weights make no distinction
between fixed-function and programmable blocks. In Scenarios 3 and 4, a limited
number of physical fixed function blocks exist, thus the tool will bias solutions to
utilize physically available blocks before choosing virtual blocks as shown in Figure
9. Scenario 3 further penalizes usage of virtual programmable blocks, thus no
solutions include virtual programmable blocks. On average, solutions require 16.44
inner blocks but only require end-users to acquire an additional 3.44 inner blocks.
While Scenario 3’s final inner block count is higher than in Scenarios 1 and 2,
existing blocks are utilized minimizing the number of additional blocks required.
Scenario 4 yields solutions with an average inner block count of 13.7, of which an

0

10

20

30

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Scenario

To
tal

 N
um

be
r o

f e
Bl

oc
ks

Physical FF Blocks Physical Prog Blocks Virtual FF Blocks Virtual Prog Blocks

Figure 9. Resulting number of physical fixed function (FF) blocks, physical programmable

(Prog) blocks, virtual fixed function blocks, and virtual programmable blocks for several
scenarios and systems.

Cafeteria Food Alert Podium Timer Alarm Clock Flood Detection AVERAGE

average of 2.3 additional blocks are required. Again, this occurs because the
programmable blocks are utilized, enabling reduction of fixed-function blocks.

In Scenarios 5 and 6, an end-user has a slightly larger set of physical fixed
function and programmable blocks available as listed in Block Set C. The end-user in
Scenario 5 is willing to purchase fixed function blocks, thus the end-user sets WV_FF
to 10 while WV_PROG is set to 100. Lastly, in Scenario 6, an end-user is willing to
purchase fixed function and programmable blocks. While higher than the physical
block weights, both virtual block weights (WV_FF and WV_PROG) are equally weighted.
In scenario 5 and 6, a larger physical block library exists, including both fixed
function and programmable blocks. Figure 9 shows Scenario 5 yields a further
reduction of inner blocks of 14.1, and 2.3 additional blocks because an expanded
physical block set is available and specifically because physical programmable blocks
are available. Scenario 6 results in further decrease resulting in an inner block count
of 12.9 and an additional block count of 2.9 because virtual programmable blocks are
not penalized.

7.2 Minimizing Total System Cost

In this section, we consider the same scenarios previously discussed but aim to
minimizing the total system cost. Because the end-user is interested in cost reduction,
the tool must consider the price of blocks utilized in the final solution. In block count
reduction utilizing a 2-input logic block and 3-input logic block made no difference
because both had a block count of 1. However, in the system price reduction a 2-input
logic block is a better choice at $7.42 than the 3-input logic block at $9.05.

Figure 10 provides a breakdown of system cost based on the block classification -
physical fixed-function, physical programmable, virtual fixed-function, or virtual
programmable. Figure 11 indicates the cost of blocks not currently available within
the physical set that an end-user needs to purchase to implement the physical system
indicated by the tool. Scenarios 7 and 8 again consider block libraries in which no
physical blocks are available, thus the tool tries to find the lowest cost system
implementation. Although Scenario 8 does not penalize use of programmable blocks,

0

25

50

75

100

125

7 8 9 101112 7 8 9 101112 7 8 9 101112 7 8 9 101112 7 8 9 101112 7 8 9 101112

Scenario

Sy
st

em
 C

os
t (

$)

Physical FF Blocks Physical Prog Blocks Virtual FF Blocks Virtual Prog Blocks

Figure 10. Cost of physical fixed function (FF) blocks, physical programmable (Prog) blocks,
virtual fixed function blocks, and virtual programmable blocks.

Alarm Clock Flood Detection Motion On
Property

AVERAGE Podium Timer Garage Door
Open At Night

there was no cost benefit in utilizing programmable blocks. Both Scenarios 7 and 8
resulted, on average, in an inner block cost of $71.29. Scenarios 9 and 10 include a
library of fixed function blocks, where the end-user assigns larger weights to virtual
blocks with virtual programmable block receiving an even higher weight. Again, there
was no cost benefit in utilizing programmable blocks with both scenarios resulting in
a total system cost of $71.20, and a cost of $14.80 for virtual blocks. Scenarios 11 and
12 included a library of both fixed function and programmable blocks thus resulting
in inner block costs of $58.62 and $64.13 and an additional block cost of $9.31 and
$14.12 respectively.

Overall, our technology mapping and optimization enables end-users to
successfully design a system with existing blocks or with minimal additional blocks
required. Additionally, our optimization tool is effective in reducing the size of end-
user designed systems and reducing system cost. On average, our tool is extremely
fast, requiring only 6 second per application, executing on a 2.8 GHz Xeon computer.
When the end-user selected system cost reduction as the optimization criteria, the tool
yielded a 23% reduction of system cost compared to the original implementation.
When the end-user selected block count minimization as the optimization criteria, on
average the tool yielded system implementations requiring six virtual blocks.

8 Conclusions and Future Work

We described a technology mapping and optimization tool to aid end-users in
transforming a virtual eBlock system into an optimized physical block system. The
tool requires no programming or electronics experience on the end-user’s part, yet
provides end-users with the ability to guide the tool in producing a system optimized
for size or cost based on a constrained block library. The tool presented in paper is
part of a larger framework. We plan to continue to add more blocks to the eBlock set
as well as to expand the tools to support customization of the communication protocol
and block parameters. The blocks, combined with the tool, help end-users setup useful
basic sensor-based embedded computing systems to monitor and control the end-
users’ environments.

0

25

50

75

100

125

7 8 9 101112 7 8 9 101112 7 8 9 101112 7 8 9 101112 7 8 9 101112 7 8 9 101112

Scenario

B
uy

in
g

C
os

t (
$)

Figure 11. Additional inner block cost required to implement the corresponding system

Alarm Clock Flood Detection Motion On
Property

AVERAGE Podium Timer Garage Door
Open At Night

9 Acknowledgments

This work is supported in part by the National Science Foundation under grant CCR-
0311026. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

10 References

1. Blackwell, A., R. Hague. AutoHAN: An Architecture for Programming the Home. IEEE
Symposia on Human-Centric Computing Languages and Environments, 2001.

2. Chen, K., J. Cong, Y. Ding, A. Kahng, P. Trajmar. DAG-Map: graph-based FPGA
technology mapping for delay optimization. IEEE Design & Test of Computers, Volume
9, Issue 3, Sept. 1992.

3. Cong, J., Y. Ding. On area/depth trade-off in LUT-based FPGA technology mapping.
IEEE TVLSI, Volume 2, Issue 2, June 1994.

4. Cong, J., Y. Ding. FlowMap: an optimal technology mapping algorithm for delay
optimization in lookup-table based FPGA designs. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Volume 13, Issue 1, January 1994.

5. Cotterell, S., F. Vahid. A Logic Block Enabling Logic Configuration by Non-Experts in
Sensor Networks. Conference on Human Factors in Computing Systems, April 2005.

6. eBlocks: Embedded Systems Building Blocks. http://www.cs.ucr.edu/~eblock
7. Francis, R. Technology Mapping for Lookup-Table Based Field-Programmable Gate

Arrays. PhD Thesis, Department of Electrical Engineering, Univ. of Toronto, 1993.
8. Francis, R., J. Rose, Z. Vranesic. Technology mapping of lookup table-based FPGAs for

performance. ICCAD, 1991.
9. Francis, R., J. Rose, K. Chung. Chortle: a technology mapping program for lookup table-

based field programmable gate arrays. DAC, 1990.
10. Gregory, D., K. Bartlett, A. de Geus, G. Hachtel. Socrates: A System for Automatically

Synthesizing and Optimizing Combinational Logic. DAC, 1986.
11. Joyner, W. H., L.H. Trevillyan, D. Brand, T. A. Nix, S. C. Gundersen. Technology

Adaptation in Logic Synthesis. DAC, 1986.
12. Kelleher, C., R. Pausch. Lowering the Barriers to Programming: A taxonomy of

programming environments and languages for novice programmers. ACM Computing
Surveys (CSUR), Vol. 37 Issue. 2, 2005.

13. Keutzer, K. DAGON: technology binding and local optimization by DAG matching. DAC,
1987.

14. Kirkpatrick, S., C. Gerlatt, M. Vecchi. Optimization by Simulated Annealing, Science 220,
671-680, 1983.

15. Lysecky, S., F. Vahid. Automated Application-Specific Tuning of Parameterized Sensor-
Based Embedded System Building Blocks. UbiComp, 2006.

16. McNerney, T. Tangible Programming Bricks: An Approach to Making Programming
Accessible to Everyone. S.M. Thesis, MIT Media Lab, 2000.

17. Morgan, R. Building an Optimizing Compiler Butterworth-Heinemann, 1998.
18. Smarthome, http://www.smarthome.com, 2006.
19. Vahid, F., S. Cotterell, S. Bakshi. eBlocks: Embedded Systems Building Blocks. Harvard

Business School Business Plan Contest, 2004.
20. Wyeth, P. and H. Purchase. Tangible Programming Elements for Young Children.

Extended Abstract CHI, 2002.

