
Automated Application-Specific Tuning of
Parameterized Sensor-Based Embedded System Building

Blocks

Susan Lysecky1 and Frank Vahid2

1Department of Electrical and Computer Engineering

University of Arizona
Tucson, AZ 85721

slysecky@ece.arizona.edu

2Department of Computer Science and Engineering
University of California, Riverside

Riverside, CA 92521
vahid@cs.ucr.edu

Also with the Center for Embedded Computer Systems at UC Irvine

Abstract. We previously developed building blocks to enable end-users to
construct customized sensor-based embedded systems to help monitor and
control a users' environment. Because design objectives, like battery lifetime,
reliability, and responsiveness, vary across applications, these building blocks
have software-configurable parameters that control features like operating
voltage, frequency, and communication baud rate. The parameters enable the
same blocks to be used in diverse applications, in turn enabling mass-produced
and hence low-cost blocks. However, tuning block parameters to an application
is hard. We thus present an automated approach, wherein an end-user simply
defines objectives using an intuitive graphical method, and our tool
automatically tunes the parameter values to those objectives. The automated
tuning improved satisfaction of design objectives, compared to a default
general-purpose block configuration, by 40% on average, and by as much as
80%. The tuning required only 10-20 minutes of end-user time for each
application.

1 Introduction

Silicon technology continues to becomes cheaper, smaller, and consume less power,
following Moore’s Law. This trend has not only enabled new complex computing
applications such as military surveillance, health monitoring, and industrial equipment
monitoring using what is commonly referred to as sensor networks [16], but opens up
numerous possibilities for lower complexity applications within the embedded system
domain. Such applications in the home might include a system to monitor if any
windows are left open at night, an indicator to alert a homeowner that mail is present
in the mail box, or an alarm that detects if a child is sleepwalking at night. In the
office, employees may monitor which conference rooms are available, track

temperatures at various locations within the building, or wirelessly alert a receptionist
away from his/her desk. Furthermore, scientists may setup a system to activate a
video camera at night when motion is detected near an animal watering hole, or to
monitor weather conditions over several weeks. Numerous possible examples exist
that span varied domains, professions, and age groups. In this paper, an end-user is an
individual developing a sensor-based computing application, such as a homeowner,
teacher, scientist, etc., who does not have programming or electronics expertise.

With so many application possibilities, why aren’t these sensor-based systems
more prevalent? The reason is that creating customized embedded systems today
requires expertise in electronics and programming. For example, a homeowner may
want to create a seemingly simple system to detect if the garage door is left open at
night. He would first need to figure out how to detect nighttime and would thus need a
light sensor. However, searching for “light sensor” in popular parts catalogs [4,9,15]
will not yield the desired results. Instead, the homeowner would need a light
dependent resistor or photoresistor, along with a handful of resistors, an opamp,
and/or transistors, depending on the specific implementation. Figuring out how to
connect these components will require reading a datasheets and schematics. Next, he
would need a power supply, and must consider voltage levels, grounding principles,
and electric current issues. The homeowner would also need to determine what type
of sensor to use to detect if the garage door is open, to implement wireless
communication (the homeowner probably doesn’t want a wire running from the
garage to an upstairs bedroom or kitchen), to program microprocessors to send
packets to conserve power, and so on. The seemingly simple garage-open-at-night
system actually requires much expertise to build. Alternatively, an engineer could be
hired to build a custom system, but the cost is seldom justifiable. Off-the-shelf
systems [8,18] provide another option, but highly specific systems tend to be
expensive due to low volume. Also, if the desired functionality is not found (e.g., a a
system for two garage doors), customizing the system can be difficult or impossible.

We aim to enable end-users with no engineering or programming experience to
build customized sensor-based systems. Our approach is to incorporate a tiny cheap
microprocessor with previously passive devices. We incorporate a microprocessor
with buttons, beepers, LEDs (light emitting diodes), motion sensors, light sensors,
sound sensors, etc., along with additional hardware, such that those devices can
simply be connected with other devices using simple plugs. Interfacing to hardware
and communication between blocks is already incorporated within each individual
block. We refer to such devices as eBlocks – electronic blocks – which we developed
in previous work [2,5]. eBlocks eliminate the electronics and programming
experience previously required to build sensor-based systems. The user-created block
connectivity determines the functionality of the system, as shown in Figure 1.
Furthermore, because the same blocks can be used in a variety of applications, high
volume manufacturing results in low block costs of a few dollars or less.

The variety of application possibilities results in a variety of application
objectives. For example, one application may require high responsiveness and
reliability, whereas another application may require long battery lifetime. One way to
support the variety of objectives is to include software-configurable parameters in
each eBlock. Thus, the same eBlock may operate at any of several voltage levels and
frequencies, may communicate using any of several baud rates, may utilize any of

several error detection/correction schemes, and so on, depending on the configuration
settings in software. An end-user could then tune a block’s parameter values to
optimize for particular design objectives. Existing sensor-based block platforms
contain many such parameters [3,7,20]. Some parameters correspond to hardware
settings, others to low-level software settings (such as low-layer network settings,
sleep-mode settings, etc.). Other parameters may involve higher-level software
settings, such as algorithmic-level choices impacting compression schemes or data
aggregation methods. In this paper, we focus on the hardware and low-level software
parameters, as those parameters most directly enable mass-produced blocks.

However, tuning a block’s parameter values to an application’s design objectives
is hard, beyond the expertise of most end-users. A block’s parameter space may
consist of billions of possible configurations, and those parameters are heavily
interdependent. Yet careful tuning of those parameters can have a large impact on
design objectives. Adlakha et al [1] showed the impact and relationship of the
parameters of a block’s shutdown scheme, network routing algorithms, and data
compression schemes. Yuan and Qu [21] showed the relationship and impact of the
parameters of processor type, encryption/decryption algorithms, and dynamic voltage
scaling. Tilak et al [19] studied the impact of the parameters of sensor capability,
number of sensors deployed, and deployment strategy (grid, random, and biased
deployment) on design metrics of accuracy, latency, energy, throughput, and
scalability. Heinzelman et al [6] showed the energy impacts of the parameters of
different communication protocols, transmit/receive circuitry, message size, distance
between blocks, and number of intermediate blocks. Martin et al [14] considers the
effects of number of sensors and sampling rate on the accuracy and power
consumption. Shih et al [17] examined the impact of different protocols and
algorithms on energy consumption, including use of dynamic voltage scaling and
sleep states. Some research on block synthesis [13] has appeared, emphasizing the

Figure 1: Sample applications built with eBlocks, (a) vineyard weather tracker and (b)
endangered species monitor.

(a)

(b)

Wireless
Tx

Temp.
Sensor

Wireless
Rx Logger

Wireless
Rx Logger

 …

Temperature sensor and wireless transmitter
pair placed throughout the vineyard

Wireless receiver and data logger pair record
temperature readings

Light
Sensor

Wireless
Tx Wireless

Rx

Motion
Sensor

eBlock to
Camera
Interface Combine

When A is AND
OR

B is yes
no

yes
no

then the output is yes

Motion and light sensor detect nocturnal animals
at watering hole

When wireless receiver receive a “yes”
signal, camera records for 10 minutes

Yes Prolonger

1 2 3 4 5 6 7 8 9

different but possibly complementary problem of mapping an application’s behavioral
description onto a fixed or custom designed network of blocks.

Many of these previously researched parameters can be incorporated into a block
as software-configurable parameters. Most previous works have only studied the
parameters and then indicated the need for careful tuning. In this paper, we present a
first approach to automating the support of such tuning. Essentially, our approach
represents employment of established synthesis methodology to a problem until now
investigated primarily as a networking problem. We refined the synthesis methods,
especially that of objective function definition, to the problem. The contribution of the
work is in enabling end-users, without engineering experience, to straightforwardly
define design objectives, through our introduction of an intuitive graphical objective
function definition approach for use by end-users, and our development of fast
methods to automatically tune parameters according to those functions. The net result
is that these block-based embedded computing systems can better satisfy end-user
requirements on battery lifetime, reliability, and responsiveness.

We have also developed complementary computer-based tools that automatically
generate an optimized physical implementation of an eBlock system derived from a
virtual system function description [12]. End-users are able to specify optimization
criteria and constraint libraries that guide the tool in generating a suitable physical
implementation, without requiring the end-user to have prior programming or
electronics experience. In contrast, this paper considers the resulting physical
implementation and automatically tunes software parameters to meet high-level goals
such as lifetime or reliability.

Section 2 of this paper provides an overview of our approach. Sections 3, 4 and 5
describe our approach’s steps of block characterization, application characterization,
and exploration/feedback. Section 6 highlights results of experiments using our
prototype tool implementing the approach.

2 Approach Overview

Figure 2 provides an overview of our proposed approach for tuning a parameterized
block to an application’s design objectives. A block designer provides a block
configuration tool, including pre-characterization of the block parameters, as a
support tool to the end-user, along with other support tools like programming and
debug environments (such as the TinyOS and NesC environments provided with a
particular sensor block type [7]). An end-user characterizes application design
objectives to the tool by modifying the default objectives, and then asks the tool to
tune parameters to the objectives. The tool applies an exploration heuristic and finds
parameter values best satisfying the objectives. Based on the values, the end-user may
choose to modify the objectives – in case not all objectives could be met, the end-user
may wish to modify the objectives – resulting in an iterative use of the tool. Once the
end-user is satisfied, the tool outputs a set of parameter values (known as a
configuration) for the blocks. The block support tools download those parameter
values into the blocks, along with block programs and possible data, and those values
configure the block’s hardware and software components upon startup/reset of the

block in a deployed network. Presently, all blocks would have the same configuration,
but future directions may support different configurations for different blocks.

We now describe the approach’s parts in more detail, and indicate how we
addressed each part in our prototype tool. We developed the tool with eBlocks in
mind, but the approach can be applied and/or generalized for other block types.

3 Block Characterization by the Block Designer

A block designer must characterize the block for the block-tuning tool. Such
characterization consists of creating three items: computation/communication
parameter definitions, equations relating parameter configurations to design metrics,

Figure 2: Block tuning tool overview. A block designer performs block characterization once.

An end-user performs application characterization by customizing objective functions,
optionally refines the block characterization by reducing possible parameter values, and then
executes the parameter space exploration heuristic. The tool provides feedback on objective
function achievement, based on which the end-user may choose to refine objective functions
and re-iterate. Once done, the tool incorporates the chosen parameter values into the block’s

startup/reset software.

Block Characterization

Design Metric
Objective Functions

Overall Objective
Function

Computation/
communication parameter

definitions

Equations relating
parameter configurations
to design metric values

Parameter range
interdependency tables

Configuration space exploration

Application
Characterization

 Block tuning tool

Feedback

Parameter value
reductions

 Input specified by block designer

Input specified by end-user

End-user

Utilize Block tuning tool to
specify high-level system

goals (i.e. lifetime)

Define system functionality

End-user

Light
Sensor

Wireless
Tx

Wireless Rx

Motion
Sensor

eBlock to
Camera

Interface
Combine

When A is AND
OR

B is yes
no

yes
no

then the output is yes
Yes Prolonger

 1 2 3 4 5 6 7 8

Each block in the deployed
system contains the new

block configuration

Light
Sensor

Wirele
ss Tx

Wireles
s Rx

Motion
Sensor

eBlock
to

Camera Combine

When A AN
D

B is ye
s

yes
no

then the output Yes

 1 2 3 4 5

eBlock tuning tool
determines best block

configuration based on end-
user input

Voltage 0x12

Frequency 0xA2

Baud Rate 0xC3

… …

and a parameter interdependency description. Note that these items are created by a
block designer, who is an engineering expert, and not by end users.

3.1 Computation/Communication Parameter Definitions

The block designer must define the list of block parameters and the possible values
for each parameter. The physical block we used supported the following parameters:

 Microcontroller Supply Voltage (V) = {3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,
4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5}

 Microcontroller Clock Frequency (Hz) = {32k, 100k, 200k, 300k, 400k, 455k,
480k, 500k, 640k, 800k, 1M, 1.6M, 2M, 2.45M, 3M, 3.6M, 4M, 5.3M, 6M, 7.4M,
8M, 8.192M, 9M, 9.216M, 9.8304M, 10M, 10.4M, 11.06M, 12M, 13.5M, 14.74M,
16M, 16.384M, 16.6666MHz, 17.73M, 18M, 18.432M, 19.6608M, 20M}

 Communication Baud Rate (bps) = {1200, 2400, 4800, 9600, 14.4K, 28.8K}
 Data Packet Transmission Size = {4 bits, 1B, 2B, 4B}
 Data Timeout = {0.2s, 0.3s, 0.4s, 0.5s, 0.6s, 0.7s, 0.8s, 0.9s, 1s, 1.25s, 1.50s, 1.75s,

2s, 2.5s, 3s, 3.5s, 4s, 4.5s, 5s, 6s, 7s, 8s, 9s, 10s, 20s, 30s, 40s, 50s, 1m, 2m, 3m,
4m, 5m, 6m, 7m, 8m, 9m, 10m, 15m, 20m, 25m, 30m}

 Alive Timeout = {0.1s, 0.2s, 0.3s, 0.4s, 0.5s, 0.6s, 0.7s, 0.8s, 0.9s, 1s, 1.25s, 1.50s,
1.75s, 2s, 2.5s, 3s, 3.5s, 4s, 4.5s, 5s, 6s, 7s, 8s, 9s, 10s, 20s, 30s, 40s, 50s, 1m, 2m,
3m, 4m, 5m, 6m, 7m, 8m, 9m, 10m, 15m, 20m, 25m}

 Error Check/Correct (ECC) Strategy = {none, crc, parity, checksum1, checksum2,
hamming1, hamming2}

The supply voltage, clock frequency, and baud rate possible values came from the
databook of the physical block’s microcontroller, in this case a PIC device, and were
all software configurable in the physical block.

The data packet size, data timeout, alive timeout, and error check/correct
strategies were all user-specified settings in the basic support software of the physical
block. Data packet size is the number of bits in a data packet – in our block, the
choice impacted the range of integers transmittable. Data timeout is the maximum
time between successive data packets – shorter timeouts result in faster
responsiveness as blocks are added/removed to/from a network. Alive timeout is the
maximum time between short (and hence low power) “I’m alive” messages used by
the blocks to indicate that the block is still functioning, again impacting
responsiveness. The error checking/correcting (ECC) strategies are extra bits placed
in data packets to detect or forward-error-correct incorrectly received bits. The parity
strategy uses sends a single parity bit for every 8-bit data packet. The crc strategy
transmits an extra packet containing the remainder of the data packets and a CRC-3
generating polynomial. The checksum1 strategy transmits an extra packet consisting
of the corresponding sum of the data packets. The checksum2 ECC strategy negates
the extra packet before transmission. The hamming1 ECC strategy considers the data
as a matrix and generates row and column parity error checking packets. The
hamming2 strategy embeds parity bits within the packets at every power of two-bit
location (bit 1, 2, 4, etc.). All these methods are standard methods.

A set of values, one for each parameter, defines a block configuration. We
presently require the block designer to explicitly list possible values for a parameter.
A similar method would allow a block designer to specify the value range along with
the step size between successive values for a parameter. However, a block designer
must be careful to avoid introducing unnecessarily-fine granularity to a parameter’s
values, as such granularity increases the configuration space to be explored by the
tool, and may increase the number of interdependency tables (discussed in the next
section). For the same reasons, we require that the block designer explicitly quantize a
parameter’s possible values, rather than merely specifying the parameter’s range.

3.2 Parameter Range Interdependency Tables

Not every parameter configuration is valid. For example, a particular voltage setting
may limit the range of possible clock frequencies. Likewise, a particular frequency
may limit the range of possible baud rates. A block designer indicates such
interdependencies using tables. For a given parameter, the block designer may
optionally create a table providing, for any parameter value, lower and upper bounds
for any other parameter. The exploration tool will use these tables to exclude invalid
configurations from consideration.

3.3 Equations Relating Parameter Configurations to Design
Metric Values

The block configuration tool must map a given parameter configuration to specific
values for each design metric supported by the tool. Our tool presently supports the
design metrics of lifetime, reliability, block latency, connect responsiveness, and
disconnect responsiveness, defined in Section 4.1. We derived equations from
datasheet information, textbooks, and previous findings, and thus we do not claim
those equations as a contribution of this work. Highly accurate equations can become
rather complex if all parameter values are carefully considered. While verifying and
improving the accuracy of those equations is an important direction of investigation,
that direction is largely orthogonal to the development of our overall methodology.

3.4 Parameter Value Reductions

A block designer performs the three above-described block characterization subtasks
only once, and then incorporates the characterizations into the tool. A fourth, optional,
block characterization subtask may be performed by an end-user to reduce the number
of possible configurations and hence speedup the exploration step. In this fourth task,
the end-user reduces the number of possible values for a given parameter, either by
restricting the parameter’s range, or by reducing the granularity of steps between
successive parameters. Our present tool allows the end-user to manually exclude

particular parameter values from consideration. However, the tool does not allow the
end-user to add new values, because such new values would require new range
interdependency tables, and because the equations mapping configurations to design
metric values might not be valid for new values outside the range defined by the block
designer. If an end-user deletes all but one possible value for a parameter (the tool
requires that at least one value remain for each parameter), that parameter ceases to
act as a parameter during exploration, being fixed at the chosen value.

4 Application Characterization by the End User

The previous section discussed block characterization, a job performed once by a
block designer, and incorporated into the block configuration tool. Different end-users
will then use this tool to tune the block to different applications. The end-user must
characterize the application for the tool so that the tool can tune to that application.
Thus, application characterization will be performed many times.

Application characterization consists of specifying the design metric objective
functions and specifying the overall objective function. Our tool provides default
functions targeted to general-purpose block use, so the end-user can merely customize
particular functions that should deviate from the defaults.

4.1 Design Metric Objective Function

A design metric objective function maps a design metric’s raw value to a normalized
value between 0 and 1 representing the “goodness” of the value, with 1 being the
worst and 0 being best. An end-user specifies a design metric objective function for
each design metric by defining the range of the X-axis and then by drawing a plot that

Figure 3: End-user specifies the “goodness” of a lifetime value by assigning normalize values
between 0 (best) and 1 (worst) to various lifetimes. (a) End-user determines a lifetime of 0

years is inadequate, sets goodness to 1, (b) lifetime of 2 years is adequate, sets goodness to 0.1,
(c) intermediate goodness are automatically determined by the tool, (d) lifetime of 3.5 meets

system requirements, sets goodness to 0, (e) intermediate goodness determined by tool.

End-user

F
lif

et
im

e

Lifetime (years)

1

0.5

0 1 2

2.
5 3 0

3.
5

1.
5

0.
5

F
lif

et
im

e

Lifetime (years)

1

0.5

0 1 2
2.

5 3 0

3.
5

1.
5

0.
5

F
lif

et
im

e

Lifetime (years)

1

0.5

0 1 2
2.

5 3 0

3.
5

1.
5

0.
5

F
lif

et
im

e

Lifetime (years)

1

0.5

0 1 2
2.

5 3 0

3.
5

1.
5

0.
5

F
lif

et
im

e

Lifetime (years)

1

0.5

0 1 2

2.
5 3 0

3.
5

1.
5

0.
5

(a) (b) (c) (d) (e)

maps each X-axis value to a value between 0 and 1, as shown in Figure 3. Our present
tool captures the function as a table rather than plot, but the concept is the same. The
end-user currently captures “goodness” as a piecewise linear function, however, the
end-user can ideally specify “goodness” in any format desired (e.g. linear, quadratic,
exponential) limited only by the formats supported by the capture methodology.

Our tool presently supports capture of the following design metric objective
functions:

 Lifetime – the number of days a block can run powered by the block’s battery.
 Reliability – the mean time in days between undetected corrupt data packets.
 Block Latency – the time in seconds for a single block to process an input event and

generate new output.
 Connect Response – the time for newly connected blocks to receive good input and

behave properly.
 Disconnect Response – the time for newly disconnected blocks to behave as

disconnected.
Initially, in developing eBlocks, the above design metrics were most relevant.
However, more design metrics are certainly possible. An end-user developing systems
intended to monitor a battlefield for troop movements would likely be interested a
design metric describing security. Alternatively, an end-user developing systems
intended to process video or audio data would likely be interested in a design metric
describing throughput of the system. The end-user determines which designs metric
are important for their particular application and chooses which design metrics they
want to consider in determining a block configuration.

Figure 4 illustrates example definitions of objective functions for these design
metrics. The functions correspond to the default functions that our tool provides,
intended for a general application. For example, the function for lifetime indicates that
a lifetime of 0 years is the worst possible and of 2 years is nearly the best possible,
with linear improvement in between. Lifetime improvements from 2 years to 3.5 years
are only slightly better than 2 years, and improvements beyond 3.5 years are not
important according to the function. As another example, the function for mean time
between corrupted packets indicates goodness improvement from 0 days to 1 day,

Figure 4: Default design metric objective functions for general purpose block usage.

F
li

fe
tim

e
1

Lifetime (years)

0.
5 1 2

2.
5 30

1.
5

3.
5

0.5

0

F
re

li
ab

il
it

y

1

Mean time between
corrupted packets (days)

0.
5 1 2

2.
5 30

1.
5

3.
5

0.5

0

F
la

te
nc

y

1

Block latency (sec)

0.5

0

0

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

F
co

nn
ec

t

1

Disconnect response (min)

0.5

0

300 1 2 3 4 5 10 15 20 25

 F
di

sc
on

ne
ct
 1

Connect response (min)

0.5

0

0 1 2 3 4 5 10 15 20 25

with reduced improvement beyond 1 day. The function for block latency says that 0
second latency is the best, quickly degrading up to 0.06 seconds. Latencies beyond
0.06 seconds are very bad. Although all the functions shown are piecewise linear, the
functions can also be non-linear.

Providing the ability to custom define each design metric’s objective function is
an important part of our approach. We observed that traditionally-used standard
functions, such as those based on mean-square error, penalty, or barrier functions
[11], do not readily capture the end-user’s true intent – Figure 6, discussed later,
illustrates this point.

Notice that the end-user need not know how those metrics are related to a block’s
parameters, and in fact need not even be aware of what block parameters exist. The
end-user merely customizes the design metric objective functions.

4.2 Overall Objective Function

The end-user also configures an overall objective function, which captures the relative
importance of the individual design metrics in a function that maps the individual
metric values to a single value. We currently define the default overall objective
function as a weighted sum of the individual design metric normalized values:

Foverall = (A * Flifetime) + (B * Freliability) + (C * Flatency) + (D * Fconnect_resp.) +

(E * Fdisconnect_resp.)

The end-user customizes the values of the constants A, B, C, D and E to indicate the
relative importance of the metrics, as shown in Figure 5. A more-advanced end-user
can instead use a spreadsheet-like entry method to redefine the overall objective
function as any linear or non-linear function of the design metric function values.

Figure 5: End-users utilize a web-based interface to specify the relative importance of each
design metric. Individual weights are assigned by setting the corresponding slide switch to the

desired position. Each design metric weight is then combined into an overall objective
function.

End-user

Lifetime

Reliability

Latency

Connect Responsiveness

Foverall = 100 * Flifetime + 50 * Freliability + 25 * Flatency + 25 * Fconnect_resp + 25 * Fdisconnect_resp

Disconnect Responsiveness

1000 50

1000 50

1000 50

1000 50

1000 50

A key feature of our approach is the separation of defining design metric
objective functions, and weighing those functions’ importance in an overall objective
function. This separation enables an end-user to focus first on what metric values are
good or bad – e.g., a lifetime below 6 months is bad for one application, below 2
years for another application – and then separately to focus on the relative importance
of those metrics – e.g., lifetime may be twice as important as latency in one
application, but one third as important for another application. Hence, the
orthogonality of the definition of metric values as good or bad, and of the relative
importance of metrics, is supported by our approach.

5 Configuration Space Exploration and Feedback

Configuration space exploration searches the space of valid parameter values for a
configuration that minimizes the value of the overall objective function. For each
possible configuration, the exploration tool applies the block designer specified
design metric evaluation equations to obtain raw values for each design metric, which
the tool then inputs to the end-user specified design metric objective functions to
obtain normalized values, and which the tool finally combines into a single value
using the end-user specified overall objective function.

One search method is exhaustive search, which enumerates all possible parameter
value configurations and chooses the configuration yielding the minimized objective
function value. For the parameter ranges and values defined earlier in the paper, the
search space (after pruning invalid configurations caused by parameter
interdependencies) consists of over 100 million configurations. Searching that space
exhaustively is feasible, requiring 3-4 minutes on a 3 GHz Pentium processor.
However, for blocks with more parameters or more values, exhaustive search may be
infeasible. We thus investigated faster methods.

As our parameter search problem resembles an integer linear program, we
considered integer linear program solution methods (optimal or heuristic), but a
problem is that such an approach limits the objective functions to linear functions.
Instead, an end-user might desire a non-linear function, to greatly penalize values over
a certain amount for squaring, for example.

We also considered greedy or constructive approaches that used some knowledge
of the problem structure to efficiently traverse the search space. However, we sought
to keep the exploration tool independent of the particular block parameters and
objective functions. Greedy or constructive heuristics that don’t consider problem
structure may perform poorly. However, the block-designer-specified equations and
parameter interdependency descriptions can improve the design of such heuristics.
We leave this direction for future investigation.

Ultimately, we chose to use an iterative improvement approach, namely the
simulated annealing heuristic [10]. The heuristic has the advantage of being
independent of block parameters and objective functions. Furthermore, the heuristic
provides a simple means for an end-user to tradeoff exploration time with
optimization amount. The end-user can indicate allowable runtime, from which the
tool can derive an appropriate annealing cooling schedule. We presently utilize a

cooling schedule that executes for just a few seconds on a 3 GHz Pentium, while
yielding near-optimal solutions. The time complexity of the simulated annealing
heuristic is in general not known, depending heavily on the cooling schedule and
problem features. Yet in practice, a specific cooling schedule yields roughly similar
runtimes for the same general problem, as occurred in our case.

For the chosen best configuration, the tool provides feedback to the end-user in
two forms. One form is the value of the overall objective function and the relative
contribution of each design metric objective function value to the overall value end-
user specified design metric objective function, for each design metric. Based on this
information, the end-user may actually choose to refine his/her design metric or
overall objective function definitions, iterating several times until finding a
satisfactory configuration.

The block configuration tool converts the final configuration into software that
appropriately fixes the sensor block parameters to the configuration’s values. The tool
achieves such fixing primarily by setting constant values for global variables uses by
the microcontroller’s startup/reset code. Many of those global variables actually
correspond to special microcontroller or peripheral built-in registers, such a
microcontroller registers that select clock frequency or baud rate, and a register in a
digital voltage regular that controls supply voltage to the microcontroller. Other
variables are used by software routines to choose among data structures and/or
functions, such as for the error check/correct routine.

6 Experiments

We implemented our approach in a prototype tool, consisting of 8,000 lines of Java
code, and interfacing with Excel spreadsheets to support equation capture and plot
displays. We considered four different applications, all but the “Vineyard” example
being derived from actual projects involving the physical blocks. Those applications’
design metric objective functions appear in Figure 6.

The Educational Science Kit application utilizes eBlocks to introduce middle-
school students to simple engineering concepts. Students combine and configure
blocks to create customized sensor-based embedded systems in their classrooms. For
the purposes of this paper, the students are not the end-users – rather, the end-user is
the person putting eBlocks into the kit for student use. Acting as that end-user, we
defined the design metric objective functions shown in Figure 6(a). The reliability
function (mean time between corrupted packets) differs from its general case version
in Figure 4, as reliability is less important because the systems being built in
classrooms don’t monitor or control important situations. In contrast, the block
latency and connect response functions both demand higher performance than for the
general case, as the students basic usage of the blocks will involve repeated
adding/deleting of blocks, and students might be confused by long latencies or slow
response. For the overall objective function, we weighed lifetime with 0.1
(unimportant), reliability with 0.5, throughput with 0.5, connect response with 1, and
disconnect response with 1 (important).

The Vineyard Weather Tracker application is a long-life application deployed in
a vineyard to track temperature, rainfall, and average hours of sunlight. Compared to
the general case of Figure 4, Figure 6(b) shows that longer latency is acceptable
because the items being monitored are not rapidly changing, and that slower
disconnect and connect responses are also acceptable as blocks won’t be
disconnected/connected frequently. For the overall objective function, we weighed
lifetime with 1 (important), reliability with 0.5, latency with 0.5, disconnect response
with 0.1, and connect response with 0.1 (unimportant).

The Mosquito Control application reads data from a mosquito trap and meters out
insecticide accordingly. Figure 6(c) shows that lifetime beyond 6 months is not
necessary because the mosquito season lasts only 6 months, after which all blocks will
be reclaimed and stored, with all batteries replaced the following season. We weighed

Figure 6: End-user defined design metric objective functions for four different applications.

Vineyard Weather
Tracker

Mosquito Control Endangered
Species Monitor

Educational
Science Kit

F l
ife

tim
e

1

Lifetime (years)

0.5

0

0.
5 1 2

2.
5 30

1.
5

3.
5

F l
ife

tim
e

1

Lifetime (years)

0.5

0

0.
5 1 2

2.
5 30

1.
5

3.
5

F l
ife

tim
e

1

Lifetime (years)

0.5

0

0.
5 1 2

2.
5 30

1.
5

3.
5

F l
ife

tim
e

1

Lifetime (years)

0.5

0

0.
5 1 2

2.
5 30

1.
5

3.
5

F r
el

ia
bi

lit
y

1

Mean time between
corrupted packets (days)

0.5

0

0.
5 1 2

2.
5 30

1.
5

3.
5

1

F r
el

ia
bi

lit
y

Mean time between
corrupted packets (days)

0.5

0

0.
5 1 2

2.
5 30

1.
5

3.
5

F r
el

ia
bi

lit
y

1

Mean time between
corrupted packets (days)

0.5

0
0.

5 1 2
2.

5 30

1.
5

3.
5

 F r
el

ia
bi

lit
y

1

Mean time between
corrupted packets (days)

0.5

0

0.
5 1 2

2.
5 30

1.
5

3.
5

F l
at

en
cy

1

Block latency (sec)

0.5

0

0
0.

02
0.

04
0.

06
0.

08
0.

10
0.

12
0.

14

F l
at

en
cy

1

Block latency (sec)

0.5

0
0

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Block latency (sec)

F l
at

en
cy

1

0.5

0

0
0.

02
0.

04
0.

06
0.

08
0.

10
0.

12
0.

14

F l
at

en
cy

1

Block latency (sec)

0.5

0

0
0.

02
0.

04
0.

06
0.

08
0.

10
0.

12
0.

14

 F d
is

co
nn

ec
t 1

Disconnect response
(min)

0.5

0

300 1 2 3 4 5 10 15 20 25

F d
is

co
nn

ec
t 1

Disconnect response
(min)

0.5

0

300 1 2 3 4 5 10 15 20 25

F d
is

co
nn

ec
t 1

Disconnect response
(min)

0.5

0

300 1 2 3 4 5 10 15 20 25

 F d
is

co
nn

ec
t 1

Disconnect response
(min)

0.5

0

300 1 2 3 4 5 10 15 20 25

 F d
is

co
nn

ec
t

1

Connect response
(min)

0.5

0

0 1 2 3 4 5 10 15 20 25

F d
is

co
nn

ec
t

1

Connect response
(min)

0.5

0

0 1 2 3 4 5 10 15 20 25

 F d
is

co
nn

ec
t

1

Connect response
(min)

0.5

0

0 1 2 3 4 5 10 15 20 25

F d
is

co
nn

ec
t

1

Connect response
(min)

0.5

0

0 1 2 3 4 5 10 15 20 25

lifetime with 0.5, reliability with 1, latency with 0.5, and disconnect/connect
responses with 0.2. The weights indicate that reliability is most important, as
improper output of insecticide should be avoided.

The Endangered Species Monitoring system detects motion near a feeding site
and video-records the site for a specified duration, for later analysis by environmental
scientists estimating the population of endangered species. Figure 6(d) shows that the
key difference from the general case is that lifetime less than 1.5 years is
unacceptable, as the feeding site is in a remote location that is hard to access, and thus
batteries should not have to be replaced frequently. We assigned lifetime a weight of
1, reliability 0.8, latency 0.8, and disconnect/connect responses weights of 0.1 each.

Using our tools, characterized each applications requires only 10 minutes.
For each application, we executed our automated tuning tool, for both the end-

user application characterizations in Figure 6, and the general case of Figure 4. To
verify that the tool was effectively finding good configurations, we also executed
exploration using exhaustive search. The tool’s execution time averaged 10 seconds
per application, while exhaustive search averaged over 3.5 minutes, both
methodologies running on the same 3 GHz Pentium computer. Figure 7 summarizes

0.00

0.05

0.10

0.15

0.20

0.25

Opt SA Opt. SA Opt SA Opt SA Opt SA

Application Domains

F_
ov

er
al

l

Figure 7: Normalized overall objective function results comparing the various application
configurations obtained utilizing exhaustive search (Opt) verses simulated annealing (SA):
General (Gen), Educational Science Kit (Edu), Vineyard Weather Tracker (Vin), Mosquito

Control (Msq), and Endangered Species Monitor (Edg).

Table 1: Configurations achieved by heuristic exploration for various applications. Numbers
in parentheses indicate values obtained by exhaustive search, where those values differed from

heuristically-obtained values.

 Applications

 General
Vineyard Weather

Tracker
Educational
Science Kit

Mosquito Control
Endangered

Species Monitoring
Voltage (V) 3.1 (3) 4.8 (3.0) 3.5 (3.0) 3.1 (3.0) 3.1 (3.0)
Frequency (MHz) 2.45 11.06 (9) 2 (1.6) 2 (0.64) 3 (2.45)
Baudrate 9600 14400 4800 9600 9600
Data Packet (bytes) 4 (2) 1 2 1 2 (4)
Data Timeout (sec) 1.25 (1) 0.2 20 1.75 (0.9) 7
Alive Timeout(sec) 0.3 0.1 2.5 (5) 0.1 0.7 (0.3)
ECC Strategy crc none hamming1 none hamming2

Gen Edu Vin Msq Edg

lifetime
 reliability
 latency
 connect
 disconnect

results, showing that the tool’s simulated annealing heuristic found near optimal
results for all the applications. The figure also shows the relative contribution of each
design metric objective function to the overall objective function, showing similar
achievements between heuristic and exhaustive exploration. Table 1 shows the
specific configurations found by the heuristic and exhaustive exploration methods.
The differing values obtained by the two methods show that different parameter
configurations can yield similar overall objective function values.

Figure 8 shows the more important results that compare the use of the general
block configuration to the configuration obtained through our tuning approach (using
the heuristic exploration). The results show that the general block configuration works
well for the latter two applications (Mosquito Control, and Endangered Species
Monitor). However, the general configuration does not work well for the first two
applications (Educational Science Kit, and Vineyard Weather Tracker) – tuning
significantly improves the overall objective function value for those applications.

Figure 9 summarizes the percent improvement of overall objective function
values for the tuned blocks compared to the generally configured blocks.

Figure 8: Percent improvement in overall objective function utilizing customized block
configuration verses general block configuration across various applications: Educational

Science Kit (Edu), Vineyard Weather Tracker (Vin), Mosquito Control (Msq), and
Endangered Species Monitor (Edg).

Figure 9: Normalized overall objective function results comparing the general configuration
(Gen) verses the application specific configuration across various applications: Educational

Science Kit (Edu), Vineyard Weather Tracker (Vin), Mosquito Control (Msq), and Endangered
Species Monitor (Edg).

0%

20%

40%

60%

80%

100%

Edu Vin Msq Edg Average

Application Domain

Pe
rc

en
t

Im
pr

ov
em

en
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Gen Edu Gen Vin Gen Msq Gen Edg

Application Domain

N
or

m
al

iz
ed

 F
_o

ve
ra

ll lifetime
 reliability
 latency
 connect
 disconnect

Figure 10 illustrates the type of feedback provided by the block-tuning tool to the
end-user. Figure 10(a) provides the overall objective function value achieved by
exploration, along with the relative contribution of each design metric to that value.
Further, Figure 10(b) shows the configuration’s raw values and their mapping to
normalized values for each design metric. Note that the overall objective function
value is not just a sum of the normalized design metric values, because of weights
assigned by the end-user in the overall objective function. Based on the feedback, the
end-user may decide to refine a particular design metric objective function, perhaps
deciding that tolerating poorer performance on one metric (e.g., connect response) is
acceptable in the hopes of improving another metric (e.g., lifetime). Alternatively, the
end-user might modify the weights in the overall objective function.

Notice that the end-user need not have any awareness of what parameters exist on
the block (e.g., voltage, baud rate), nor of the values of those parameters for a
particular configuration (e.g., 3 V, 2400 baud). The tuning approach instead presents
the end-user with an abstraction that only deals with objective functions. Such
abstraction enabled the end-user to perform all necessary tuning steps, including
application characterization, exploration, and feedback analysis, in just 10 minutes.

7 Conclusions

We presented an approach that enables end-users to automatically tune parameterized
building blocks to meet end-user defined application goals such as battery lifetime,
reliability, responsiveness, and latency. The block tuning approach consisted of the
key steps of block characterization by the block design, and then application
characterization, exploration, and feedback involving the end user. Our approach

Figure 10: Goal of the tool is to minimize the overall objective function value. Tool provides
feedback of the tool to the end-user after exploration illustrating the configuration’s (a) overall

objective function value achieved along with the relative contribution of each design metric
and (b) the raw values and their mapping to normalized values for each design metric.

1

Reliability

Latency

Disconnect Resp.

Connect Resp.

0.1

0.2

0

(a)

 F
li

fe
ti

m
e

1

0.
5 1 2

2.
5 30

1.
5

3.
5

0.5

0

Lifetime (years)

 F
re

li
ab

ili
ty
 1

Mean time between
corrupted packets (days)

0.
5 1 2

2.
5 30

1.
5

3.
5

0.5

0

 F
la

te
nc

y

1

0.5

0

 F
di

sc
on

ne
ct

0.5

0

F
co

nn
ec

t

1

0.5

0

(b)

Block latency (sec)

0
0.

02
0.

04
0.

06
0.

08
0.

10
0.

12
0.

14

Connect response (min)

0 1 2 3 4 5 10 15 20 25

Disconnect response (min)

300 1 2 3 4 5 10 2015 25

1.0

Lifetime

GOAL

0.3

0.4

provides an abstraction of the block to the end-user such that the end-user need only
deal with characterizing the application through definition of intuitive graphical
objective functions, requiring on the order of 10 minutes for a given application. The
objective function definition approach separates definition of individual design metric
objective values from definition of the relative importance among those metrics.
Furthermore, experiments show that our tool can tune blocks in just a few seconds to
near-optimal values, and that the tuned blocks exhibit greatly superior performance
for two of the four applications we examined, compared to a block configured for
general-purpose use. Our work represents use of established synthesis methodology,
with some refinement, to a problem considered primarily in the networking domain.
The work’s contribution is in enabling end-users with domain experience, but without
engineering experience, to effectively utilize mass-produced computing blocks
intended to monitor and control the user’s environment.

Future work will involve expanding the parameters and design metrics supported
by the tool, requiring careful attention to design of accurate evaluation equations.
Another direction involves allowing an end-user to characterize the network structure
and environment, in which case the tuning tool might determine different
configurations for different blocks in the network. Future directions involve higher-
level parameters relating to algorithmic and high-layer networking choices.

8 Acknowledgments

This work is supported in part by the National Science Foundation under grant CCR-
0311026. Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

9 References

1. Adlakha, S., S. Ganeriwal, C. Schurger, M. Srivastava. Density, Accuracy, Latency and
Lifetime Tradeoffs in Wireless Sensor Networks – A Multidimensional Design
Perspective. Embedded Network Sensor Systems, 2003.

2. Cotterell, S., F. Vahid. Usability of State Based Boolean eBlocks. International
Conference on Human-Computer Interaction (HCII), July 2005.

3. Cotterell, S., F. Vahid, W. Najjar, H. Hsieh. First Results with eBlocks: Embedded
Systems Building Blocks. CODES+ISSS Merged Conference, October 2003.

4. Digikey, http://www.digikey.com, 2006.
5. eBlocks: Embedded Systems Building Blocks. http://www.cs.ucr.edu/~eblock
6. Heinzelman, W., A. Chandrakasan, H. Balakrishnan. Energy-Efficient Communication

Protocols for Wireless Microsensor Networks. Hawaii International Conference on System
Sciences, 2000.

7. Hill, J., D. Culler. MICA: A Wireless Platform For Deeply Embedded Networks. IEEE
Micro, Vol. 22. No. 6, November/December 2002.

8. Home Heartbeat, http;//www.homeheartbeat.com, 2006.
9. Jameco, http://www.jameco.com, 2006.

10. Kirkpatrick, S., C. Gerlatt, M. Vecchi. Optimization by Simulated Annealing, Science 220,
671-680, 1983.

11. Lopez-Vallejo, M., J. Grajal, J. Lopez. Constraint-driven System Partitioning. Design
Automation and Test in Europe, 2000.

12. Lysecky, S., F. Vahid. Automated Generation of Basic Custom Sensor-Based Embedded
Computing Systems Guided by End-User Optimization Criteria. UbiComp, 2006.

13. Mannion, R., H. Hsieh, S. Cotterell, F. Vahid. System Synthesis for Networks of
Programmable Blocks. Design Automation and Test in Europe, 2005.

14. Martin, T., M. Jones, J. Edmison, R. Shenoy. Towards a design framework for wearable
electronic textiles. IEEE International Symposium on Wearable Computers, 2003.

15. Mouser, http://www.mouser.com, 2006.
16. National Research Council. Embedded, Everywhere: A Research Agenda for Networked

Systems of Embedded Computers. National Academies Press, 2001.
17. Shih, E. S. Cho, N. Ickes, R. Min, A. Sinha, A. Wang, A. Chandrakasan. Physical Layer

Driven Protocol and Algorithm Design for Energy-Efficient Wireless Sensor Networks.
International Conference on Mobile Computing and Networking (MobiCom), 2001.

18. Smart Home, http://www.smarthome.com, 2006.
19. Tilak, S., N. Abu-Ghazaleh, W. Heinzelman. Infrastructure Tradeoffs for Sensor

Networks. Int. Workshop on Wireless Sensor Networks and Applications, 2002.
20. Warneke, B., M. Last, B. Liebowitz, and K. Pister. Smart Dust: Communicating with a

Cubic-Millimeter Computer. Computer Magazine, pg. 44-51, January 2001.
21. Yuan, L., G. Qu. Design Space Exploration for Energy-Efficient Secure Sensor Network.

Conf. on Application-Specific Systems, Architectures, and Processors, 2002.

