IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 3, SEPTEMBER 1995 459

as determined by its configuration. In creating the circuit graph, we
had to consider the CLB modes, e.g., we created two separate nodes
from one CLB if the CLB was in the “FG” mode which allows
one CLB to act as two different logic blocks. We analyzed the LCA
XC3090PG175 which has 320 CLB’s and 144 I/O blocks.

The experimental results determined using partitioning benchmark
data (Partitioning93) [6] are shown in Table I. In the table, “Data”
are data names, and data starting with character “c” indicate combi-
national circuits. Data starting with character “s” indicate sequential
circuits. “CLB” and “I/O” indicate the numbers of CLB’s and VO
blocks used. “Edge” and “Node” are the numbers of edges and nodes
of the circuit graph. “Orig. reg.” indicates the number of registers
in the original circuit. In addition, columns “A” and “B” show
the maximum delay (and the minimum clock frequency, if it is a
sequential circuit) of the initial circuit and of the circuit obtained
after applying the presented algorithm respectively. Furthermore,
“Inserted reg.” indicates the number of registers newly inserted by
our algorithm, and “A/B” indicates the ratio between columns “A”
and “B,” which is called the performance improvement ratio. Finally,
“Delay” indicates the clock response delay caused by the proposed
algorithm, while “CPU” shows the execution time of the algorithm.
All registers in the I/O blocks were originally not used, and the
algorithm was allowed to use them as well as the unused registers
in CLB’s.

In the case of the Xilinx LCA, if a register is inserted, it is necessary
to route the clock signal from the clock input pin to the register. In
the above analysis, we invoked the routing tool again after register
insertion, but did not reroute any nets except to add the appropriate
clock nets if routing succeeded. The initial routing data was given
to the routing tool as a guide. Furthermore, no added clock nets
were critical paths. Thus our assumption for the presented algorithm,
i.e., the original placement and routing results are unchanged, was
satisfied in practice. For two circuits “c3540xc3” and “s953xc3”,
unfortunately, the algorithm succeeded but rerouting failed, i.e., some
unrouted nets remained. This fact is indicated by the “NG” notation
in column “B” in Table L

The average performance improvement ratios were 4.33 for the
combination circuits, and 1.25 for the sequential circuits. This fact
indicates that the proposed algorithm effectively inserts registers into
the rather long critical paths common in combination circuits.

VI. CONCLUSION

We have presented a new register insertion algorithm for syn-
chronous circuits realized as LUT-based FPGA’s. It offers consider-
able user support by improving circuit performance without changing
the initial placement and routing results. According to experimental
results gained with benchmark data, the performance of almost
all circuits, including both combination and sequential circuits, is
improved by the presented algorithm. For a few circuits, our algorithm
succeeded, but actual register insertion failed. Failure, however, was
due to the constraint of the Xilinx FPGA used, not the algorithm
itself. In other words, if the FPGA had a mechanism that controlled
the closure of the register located at the output of each LUT without
changing the original configuration [7], the proposed algorithm would
improve the performance of all circuits. The execution speed of the
algorithm is fast so it can be applied to large scale FPGA’s. ie.,
multichip FPGA systems.

If register insertion fails, it is useful to apply retiming before
invoking the presented algorithm in order to change the initial register

locations. However, the constraints of the location and number of
registers in the FPGA should be considered if retiming is applied.
This is one of our future tasks.

REFERENCES

[1] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-
Programmable Gate Arrays. Norwell, MA: Kluwer, 1992.

[2] C. E. Leiserson, F. M. Rose, and J. B. Saxe, “Optimizing synchronous
circuitry by retiming,” in Proc. 3rd Caltech Conf. VLSI, Mar. 1983, pp.
87-116.

(3] H. Nakada, K. Yamada, A. Tsutsui, and N. Ohta, “A design method
for realizing real-time circuits on multiple-FPGA systems,” in More
FPGA’s, W. R. Moore and W. Luk, Eds. Oxford, UK: Abingdon,
1993.

[4] N. Park and A. C. Parker, “Sehwa: A software package for synthesis of

pipelines from behavioral specifications,” IEEE Trans. Computer-Aided

Design, vol. 7, pp. 356-370, Mar. 1988.

“The field programmable gate array data book,” Xilinx Inc., 1992.

R. KuZnar, F. Brglez, and K. Kozminski, “Cost minimization of parti-

tions into multiple devices,” in Proc. 30th DAC, June 1993, pp. 315-320.

[7] N. Ohta et al. “PROTEUS: Programmable hardware for telecommuni-
cation systems,” in Proc. ICCD’94, Oct. 1994, pp. 178-183.

AR
O

Incremental Hardware Estimation During
Hardware/Software Functional Partitioning

'Frank Vahid and Daniel D. Gajski

Abstract—To aid in the functional partitioning of a system into interact-
ing hardware and software components, fast yet accurate estimations of
hardware size are necessary. We introduce a technique for obtaining such
estimates in two orders of magnitude less time than previous approaches
without sacrificing substantial accuracy, by incrementally updating a
design model for a changed partition rather than re-estimating entirely.

Index Terms— Constant-time complexity, estimation, hardware size,
hardware-software co-d interactive design, sys-
tem design, system partitioning.

tol A

mcr

1. INTRODUCTION

The designer of an embedded system is often faced with the
challenge of partitioning the system functionality for implementation
among hardware and software components, such as among ASIC’s
and processors. New approaches for such partitioning start with a
simulatable specification of system functionality, and then explore
numerous possible partitions of that specification’s functions among
the hardware and software components [1]. We therefore need a
method to determine, among other things, the hardware size of a
set of functions, to see if that set will meet constraints.

Manuscript received April 19, 1994; revised September 19, 1994. This work
was supported by the National Science Foundation under Grant MIP-8922851
and by the Semiconductor Research Corporation under Grant 92-DJ-146.

F. Vahid is with the Department of Computer Science, University of
California, Riverside, CA 92521 USA.

D. D. Gajski is with the Department of Information and Computer Science,
University of California, Irvine, CA 92717 USA.

IEEE Log Number 9413466.

1063-8210/95804.00 © 1995 IEEE

460 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 3, SEPTEMBER 1995

procedure1() procedure2()
'.?“(:: Soyth B
} < en = M
AZ=8+D; A FaD;
else
A:=C+E;
end if;
(a)
c D E C F D E
add
A A
(b) (c)

Fig. 1. Example of incremental change resulting from object move: (a)
functional objects, (b) partial datapath for Procedurel, and (c) partial datapath
for both procedures.

There are several possible methods. The most accurate would be
to synthesize a design for the set of functions, but such an approach
requires too much time if we wish to examine more than a few
possible partitions, as is usually the case. To overcome this limitation,
several research efforts incorporate a hardware size estimator [2]-[5].
In essence, those estimators roughly synthesize a design for the
given functions, while omitting the time-consuming synthesis tasks
such as logic optimization, so they require only a few seconds to
obtain a fairly accurate estimate. Such estimators based on a design
model have the advantage of obtaining accurate estimates in just a
few seconds. At times, though, we wish to examine hundreds or
thousands of partitions using an iterative-improvement partitioning
heuristic such as simulated annealing, thus requiring faster estimators.
Approaches that use iterative-improvement heuristics have until now
used abstract-weight-based estimators, in which an abstract weight
is assigned to each function, and then a hardware “cost” for a given
partition is obtained quickly just by adding all the weights of functions
in hardware [6]-[8]. Alternatively, they assume an already scheduled
input and estimate hardware size as the size of required functional
units [9]. These approaches have the advantage of obtaining very
rapid estimations.

In developing our system that partitions an unscheduled specifica-
tion among hardware and software components, we desired to use an
estimator based on a design-model in order to obtain accuracy, but we
also wanted to use iterative-improvement algorithms to explore many
possibilities. Since previous estimation methods had not addressed
both goals, we needed to develop a new method. Toward this end,
we observed that iterative-improvement algorithms make only a few
changes between iterations, so the change between one partition’s
design and the next one is incremental. For example, Fig. 1(a) shows
two functions and Fig. 1(b) shows a partial datapath for one of those
functions. When we add the other function, the datapath only requires
one additional multiplexer, as shown in Fig. 1(c).

We took advantage of this incremental change by developing
a data structure (representing an incrementally modifiable design
model) and an algorithm that can quickly provide the basic design
parameters needed by a hardware-size estimator. As we shall see, we
were able to do this by assuming that the granularity at which we
partition the specification is at the procedural level (sometimes called
the process or task level), as is the case in many new functional
partitioning techniques [7], [8], [10]-[15]. Our contribution is the

DP Inputs
‘. *
mux Fu2
" logic 1 [storage | | storage |
|
FU1 J
|ahto-rog I i
cv
mux
DP _]

y DP outputs
Fig. 2. CU/DP area model.

development of this incremental hardware-size estimation method,
consisting of a new data structure and algorithm, that achieves the
advantages of both classes of previous approaches, namely accuracy
and speed.

This paper is organized as follows. In Section II, we describe
the design-model that we use for hardware-size estimation, a model
adopted from previous design-based estimators. In Section III, we
describe a new data structure that captures not only the design model,
but also the contribution of each function to the design. In Section
IV, we detail an algorithm for updating, in constant time, this data
structure when a function is moved. In Section V, we summarize our
results that show the speed of our method.

II. ESTIMATION DESIGN MODEL

The design model we use to obtain hardware-size estimates for a
set of functions is a control-unit/datapath (CU/DP) model [2], [16],
as shown in Fig. 2. The size for the model can be computed as the
sum of the following: functional-unit and storage-unit size (including
registers, register files and memories), multiplexer size, state-register
size, control-logic size, and wiring size. Each is a function of one or
more of the following basic design parameters:

1) states number of possible controller states,

2) sizelist a list of datapath units, where each unit has an
associated size,

3) srcslist alist of datapath units, where the number of sources
(i.e., outputs of other units or datapath inputs) that must at some
time be input to each unit is specified,

4) ctrl the number of control lines between the controller and
the datapath,

5) active list a list of all control lines, where the number of
states for which a control line must be asserted is associated
with each control line,

6) units the number of units in the datapath, regardless of their
types,

7) wires the number of wires in the datapath.

For example, the functional-unit and storage-unit size may be a
function of all size_list values, the multiplexer size may be a function
of srcs_list, the state-register size may be a function of states, the
control-logic size may be a function of states, ctrl, and active list,
and the wiring size may be a function of units, size_list, and wires.
The details of these functions are beyond the scope of this paper;
any function that uses the above design parameters could be used
in conjunction with our method, and more than one form of each

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 3, SEPTEMBER 1995 461

function may exist to support estimation for various technologies.
To avoid going into specific details of those functions, in this article
we assume that a function HwS7ze exists, which uses the above
parameters and which returns a hardware size with the appropriate
units for the particular hardware technology, such as square microns,
transistors, gates, or combinational logic blocks.

III. INCREMENTALLY UPDATABLE DATA STRUCTURE

We now describe the data structure that allows us to represent a
roughly synthesized design using the above model, while at the same
time allowing us to incrementally modify that design in constant time
when a functional object is added or deleted. We assume that the
specification consists of a single process with hundreds or thousands
of sequential statements, including loops, branches, and procedure
calls. We later describe a simple extension for multiple processes.
We shall hereon refer to the specification pieces to be distributed
among hardware and software components as functional objects.

A. Preprocessed Information

Our first task is create a hardware design that implements the entire
set of functional objects, and to determine the contribution that each
functional object makes to that design (in order to support incremental
change). Since this information can be obtained before creating a
partition, we call it preprocessed information.

To obtain the hardware design, we must allocate a set of functional
units (FU’s) and storage units (SU’s), bind operations and data values
to FU’s and SU’s, and schedule operations into control steps (not
necessarily in the given order). The heuristics that we use to do these
tasks should match the heuristics that will be used to synthesize
the final hardware, in order to obtain the highest accuracy; if the
algorithms are not known, then we can use default heuristics instead.

To determine the contribution of each functional object to the
design, we first consider the datapath. We create a list of FU’s for
each functional object. For example, if a functional object uses two
adder units, then we append two adder units to that object’s FU list.
‘We create a similar list of SU’s for each functional object. Turning to
multiplexers, we note that the size of a multiplexer in front of an FU,
SU, or datapath output is determined by how many possible sources
(i.e., SU or FU outputs, or datapath inputs) may need to be input
to that FU, SU, or datapath output. Thus for each functional object,
we associate a list of sources contributed by that object to each FU,
SU, and datapath output. Turning our attention to the control unit, we
record the number of possible states for each functional object, and
the number of states that each FU, SU, and datapath output is active.

At this point, an assumption that we wish to make explicit is that
a functional object represents a coarse-grained computation, such as
a process, procedure, or a large basic block, as also assumed in many
new functional partitioning techniques (see Section I). The larger the
number of statements in each object, the more accurate the estima-
tions will be, since inter-object synthesis optimizations would then
play a smaller role in the overall design. The reason is that we assume
that the tasks of scheduling, allocation and binding for two functional
objects will be roughly the same whether we consider each object
independently or together, because in our approach, we perform those
tasks on each functional object independently. On the other hand,
lower levels of granularity, such as small basic blocks, would result
in less accurate estimates since current synthesis techniques (such as
path-based scheduling and percolation scheduling) optimize across
basic block boundaries.

Fig. 3 shows the preprocessed information created for each proce-
dure of the example in Fig. 1(a). Note that this example is trivially
small, but that it sufficiently demonstrates our technique.

Functional Active
object States Destination Sources states
C
A 3
SOOI UK.\ SN S
A
comparatorl 1
Procedurel | 5 oo feeens Do
C
adderl D 2
____________________ E]
storagel | comparatorl | 1
A adderl | 1 |
F
Procedure2 2 adderl D 1
B 0’ 1

Fig. 3. Preprocessed information for functional objects O.

More formally, the data structure of preprocessed information, or
PP, is a four-tuple (O, DPI, DPO, U). DPI is a set of datapath
inputs {dpt1, dpiz,---}, and DPO is a set of datapath outputs
{dpo1, dpoa,---}. U is a set of available functional and storage units
{1, uz,---}. Each unit u; is a pair = (size, ctrl), where size is a
natural number representing the size of the unit (in transistors, gates,
or whatever type is assumed by the estimation functions), and c#rl is a
natural number representing the number of control lines on that unit.

O is a set of functional objects {01, 02, -, o }. Each functional
object o; is a pair (states, dsts). states is a natural number rep-
resenting the number of possible control states for the functional
object. dsts is a set of destinations, {dst1, dsts,---}, written to by
the object. A destination dst; is a three-tuple (id, srcs, active).
The destination identifier id is the particular FU, SU, or DP-output
that dst represents, so id € DPO|JU. active is a natural number
representing the number of states for which the destination is active

- for this object. srcs is a set of sources, {srcy, srce,- -}, that the

object assigns to this destination. Each src; is either a datapath input
or a unit, so sre; € DPIYU.

B. Design Information

Given the preprocessed information PP, we can focus on creating
a design for the subset of functional objects that have been mapped to
hardware. We need to assemble the datapath and controller. Specifi-
cally, the datapath FU’s required to implement the hardware objects
are determined as the union of the FU’s needed by each object. For
example, if one object requires units #/ and #2, and another requires
units #] and u3, then the datapath FU’s will be ul, 2, and u3. The
datapath SU’s are determined similarly. The multiplexer sizes are de-
termined for each destination by taking the union of the sources con-
tributed to that destination by each object. The number of states in the
controller is simply the sum of the number of states of the functional
objects (remember that this is the number of possible states, rather
than a measure of the start-to-finish performance), and the number
of states that each datapath control line is active is the sum of those
contributed by each object. We store the information in a table. For
example, Fig. 4 shows this information for the case when Procedurel
from Fig. 1(a) is the only functional object mapped to hardware.

462 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 3, SEPTEMBER 1995

Contrib. Component Control Active
Destination Sources fct. objs. required 1ze lines states
A ¢ ucel 8-bit 2x1
addert P ! -bit mux | 200 1 3
comparator1 A el | g bt 300
D durel -bit compare 0 1
C Procedurel 8-bit 2x1
addert D Procedure] -bit 2x1 mux | 200 1 2
8-bit adder 400 0 2
E P, 1
storagel comparatorl | Py 1-bit register 75 1 1
wires sres_list units size_list el active_list
Hwsize (wires, srcs_list, units, size_list, ctrl, active_list, states)
Hwsize (8, seslist, S, szl 3, actvelis, 5) (romPP)

Fig. 4. Hardware design information for procedurel.

From the above discussion, we see that values for the basic param-
eters for the hardware size functions have been determined, so the
size can now be computed by calling HwSize, as shown in Fig. 4.

We will now define our data structure that maintains the
design information in an incrementally updatable manner.
The design information data structure D is a five-tuple
(usize, units, ctrl, wires,dsts). The first four items are natural
numbers. usize represents the total size of all the FU’s, SU’s, and
multiplexers. units represents the total number of all FU’s, SU’s,
and multiplexers. ctrl represents the total number of control lines
between the controller and the datapath. wires represents the number
of wires in the datapath.

The fifth item, dsts, is a set of all destinations in the de-
sign, {dsti, dsty,---}. Bach destination dst; is a three-tuple
(id, src_cons, active). The identifier id indicates the unit or DP
output that this destination represents, so id € DPOJU. active is
a natural number that indicates the total number of states that this
destination is active. src_cons is a set {src.coni, src_cona,---},
where each src_con; is a pair (src, con). src is a source, from the
preprocessed information PP, that must be input to the destination
dst;. con is a set of functional objects (i.e., con C PP.0), where each
functional object requires a path from the source to the destination.
In other words, the objects are the contributors of the source to the
destination.

Relative to the number n of functional objects, the complexity
of building PP and D is O(n). For the industry examples that we
have examined, n has ranged from 15 to 120. The complexity is
usually dominated by the scheduling algorithm, whose complexity
may range from O[c?® log(c)] to O(c®), where there are ¢ nodes in
the functional object’s dataflow graph.

IV. CONSTANT-TIME UPDATE ALGORITHM

We now turn our attention to the movement of functional objects
between the hardware and software components, or more specifically,
to the addition or deletion of a functional object to or from hardware.
We define an algorithm to update the design information D for an
addition of a functional object o to hardware. The algorithm uses a
procedure SeekDesignDst which returns the design destination that
refers to the same unit as the given object destination. A procedure
NewDesignDst creates a new design destination for the given object
destination. Procedures Size and Ctrl return the size and number of
control lines, respectively, for the given object destination’s unit,
returning O if the destination corresponds to a datapath output. A
procedure SeekSrc_con returns the design’s source/contributors item
that corresponds to the given source. A procedure NewSrc_con

creates a new source/contributors item for the given source. A
procedure GerMuxSize determines the size of the multiplexor(s)
needed in front of a particular destination for the given sources. The
size is dependent on the number of sources and on whether there are
one or two inputs on the destination (e.g., an adder has two inputs
so no multiplexer is needed for two sources, whereas an incrementer
with two sources does need a multiplexer since it has only one input).
If there is more than one input on the destination, we assume the
sources are uniformly distributed among those inputs.

Algorithm 4.1 UpdateDesigninfoForObjectAdd(D, o):

for each dst, € o.dsts loop
—Add destination to design if it doesn’t yet exist
dsty = SeekDesignDst(D, dst,.id)
if dsty = NULL then
dstqy = NewDesignDst(dst,)
D.dsts = D.dsts|Jdsta
D.usize = D.usize + Size(dst,)
D.ctrl = D.ctrl + Ctrl(dst,)
if dsto.id € FU | SU then
D.units = D.units + 1
end if
end if
—Update mux sources and sizes
muzsize bef = GetMuxSize(src_cons, dst,.id)
for each src € dst,.srcs loop
src_con = SeekSrc_con(dstq.src_cons, src)
if src_con = NULL then
src.con = NewSrc_con(src)
dstq.src_cons = dstg.srccons | src_con
D.wires = D.wires +1
end if
src_con.contribs = src_con.contribs|Jo
end loop
muzsize_aft = GetMuxSize(src_cons, dst,.id)
D.usize = D.usize — muzsize bef + muzsize_aft
if muxsizebef = 0 and muzsize_aft > 0 then
D.units = D.units + 1
end if
—Update control line active states for this dst
dstg.active = dstq.active + dst,.active
end loop
—Update controller states
D.states = D.states + o.states
return

The algorithm performs the following for each destination written in
o. First, it adds that destination to the design if it doesn’t already exist.
Such an addition requires updating the number and size of DP units,
and the number of control lines between the CU and DP. Second, it
unions the sources of that destination with the corresponding design
destination’s sources. If such a union adds sources, then we must
update the number of DP wires and the size of the destination’s
multiplexer. If previously no multiplexer was needed, but after adding
a source a multiplexer is needed, then the number of DP units is
incremented. Third, the algorithm increases the number of states for
which the destination must be asserted by the number of states for
which o asserts that destination. After repeating the above three steps
for all destinations, the algorithm updates the number of possible
controller states by the number of states for o. The algorithm for
deleting a functional object is complementary to that for adding an
object; we have omitted it for brevity.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 3, SEPTEMBER 1995 463

Contrib. Component Control Active
Destination Sources fct. objs. required 1ze lines states
A ¢ cedorel | g it 2x1 200 1 4
-bit
adderl Procedurel, it 2 mex
Procedure2
A Procedurel
comparatorl 8-bit compare | 300 0 1
D Procedurel
¢ durel 8-bit 2x1 200 1
adderl D Procedurel | 012X X
8-bit 2x1 mux | 200 1 2
E el | g vitadder | 400 | 0 2
F Procedure2 |)
storagel p 1 | Procedurel | 1-bit register 75 1 1
B 0’ Procedure2 - 1

oo LR,

wires sres_list units size_list ctrl active_list
Hwsize (wires, srcs_list, units, size_list, ctrl, active_list, states)
(from PP)

Hwsize (10, srcs_list, 6, size_list, 4, active_list, 7)

Fig. 5. Hardware design information after procedure2 is added.

Fig. 5 illustrates several changes we make to the design informa-
tion when adding Procedure?2 to the hardware. First, we create a new
destination B. Second, we increase the adder’s active states from 3
to 4. Third, we associate a new source with the adder, resulting in
the need for another multiplexer. We then update the parameters to
the HwSize function accordingly.

The algorithm executes in constant time, if we assume that the
number of destinations per object is roughly constant for a given
example. This assumption holds unless each functional object ac-
cesses every data item and external port. However, since functional
objects (such as procedures) serve to modularize a specification, such
a situation is highly unlikely. Instead, each object will likely access
a small (constant) number of data items and ports.

Multiple processes can be handled with a straightforward exten-
sion. Since we assume each process will use its own controller and
datapath, then we simply keep separate design information for each
process, and we then add the sizes of all CU/DP’s in hardware.
The additional processes therefore do not affect the constant-time
characteristics of the estimation. We could also handle partitioning
among multiple hardware components (such-as among ASIC’s or
among blocks on an ASIC) simply by maintaining separate design
information for each ASIC.

V. RESULTS

We have implemented a design-based incremental hardware-size
estimator using the previously described data structure and algorithm,
and have incorporated it into a functional partitioning tool. The input
is a VHDL behavioral description, and the output a refined description
containing partition detail. The implementation consists of approxi-
mately 16 000 lines of C code. The functional partitioning tool has
been released to over 20 companies as part of the SpecSyn system-
design environment, and has been used in an industry design (a
fuzzy-logic controller) involving five ASIC’s, and tested on numerous
other industry examples including an interactive TV processor and
a missile-detection system. The tool is presently being applied to
several industry examples in various companies.

The speed of our incremental estimation data structure and algo-
rithm on several examples is illustrated in Fig. 6. Examples include
a microwave-transmitter controller (mwt), a telephone answering
machine (ans), the DRACO peripheral interface (draco), and an
Ethernet coprocessor (ether). To provide a notion for the size of
each example, we indicate the number of functional objects to be

axample :b‘f:éls 'e::’ ;vm :x".‘":\Y" :?.A's’l%: wn?umh ost time ::ﬁmo speadup
mwt 28 603 3.2 639 9231 007 45 1”17 426
ans 61 [726 | 635 19564 | 14918 006 117.4 | sees2 | 500
draco 15 302 126 1855 6241 006 "y 5565 501
ether 64 967 260 24251 42095 004 963 | 72783 758

Fig. 6. Results show the method’s speed and constant-time computation.

partitioned, the number of specification lines, and the final size of
one hardware ASIC (in gates) after partitioning, as estimated by our
HwSize function. Incidentally, the first three examples consisted of
one process, while the Ethernet coprocessor example contained 14
processes. For each example, we first measured the time to build
the preprocessed information. We then applied the group migration
heuristic [17], using the cost function specified in [10]. Shown in
the table are the number of moves that the heuristic examined,
and the CPU time (in seconds on a Sparcl) required to update the
estimation information and obtain a new hardware size estimate for
each move. Note that the time-per-move is roughly the same across
all four examples, demonstrating that computation is indeed done in
constant time. More importantly, note the extremely fast time-per-
move shown. The last two columns demonstrate the increased speed
compared with a previous design-based estimator [16]. That estimator
requires roughly 3 s for a given partition, which is the same magnitude
of time required by several other design-based estimators [2], [3].
Multiplying by the number of moves yields a predicted estimation
time; note the unacceptably long times for the large number of
moves examined. The last column shows the speedup of our estimator
over those previous ones, ranging from 426 to 755; such speedup is
obtained while using the same design model.

We also conducted experiments to determine the effect of per-
forming scheduling and allocation on each behavior individually,
rather than considering all behaviors at the same time as in previous,
slower design-based estimators. For the ether and ans examples,
we inlined all subroutines; for the mwr example, such inlining
generated an enormous output due to the many nested levels of
subroutine calls, so we instead considered a subset of the specification
consisting of four subroutines. We then applied the same scheduling
and allocation tool to those inlined versions. Results of estimating
all-hardware implementations are summarized in Fig. 7; since we
are considering all behaviors, the numbers are likely the worst
case. Note that the number of states States, the number of control
lines Ctrl, and the functional unit and multiplexor component areas
Comparea are quite close, and the total sizes computed by the
Huwsize function have an average error of only 7%. We also
compared these estimates with what would have been obtained using
previous weight-based techniques: we performed scheduling and
allocation for each behavior, computed the size of each behavior, and
then summed those sizes over the entire design. Note that the weight-
based estimates are extremely inaccurate, with an average error of
80%. Those estimates greatly underestimate the control and routing
area, while overestimating the total component area. Weight-based
techniques assume that the behaviors combine in a linear manner,
but the behaviors in fact share many components, and the PLA and
routing sizes grow nonlinearly (hence, there is no simple factor by
which we can multiply the weights to improve the accuracy over all
cases).

It is difficult to compare our estimates with implementation values.
The reason is that there are many possible implementations for a
given set of functions that trade off speed and size, so choosing the
implementation to compare with is hard. A second difficulty is that
because we are dealing with large, industry examples, obtaining a

464 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 3, NO. 3, SEPTEMBER 1995

Weight based Incremental design-based Standard design-based
Example Total States Ctrl Comparea Total States Cul Comparea Total
ether 30029 208 218 15060 176680 | 220 232 19186 198445
mwt 7562 54 4 3465 11260 54 49 3665 12090
ans 14895 124 122 8061 64813 | 106 104 7035 62088

Fig. 7. Comparison with weight-based and standard estimates.

real implementation takes many months. A third difficulty lies in
the fact that there are many possible HwSize functions that can
be used in conjunction with our design parameters. Nonetheless, we
compared our size estimations for part of the answering machine
example with an implementation. The implementation was developed
by a designer who hand-designed the datapath and hand-specified the
controlling state-machine; the state-machine was then implemented
with the KISS synthesis tool. We estimated 7804 gates, while the
implementation consisted of 5372 gates. A second rough comparison
can be made with an industry design of a fuzzy-logic controller. We
estimated 129 000 gates, whereas the actual implementation consisted
of five 20 000 gate FPGA’s. We hope to obtain more comparisons
as the tool is used in more designs.

VI. CONCLUSIONS

We have introduced a method to rapidly estimate hardware size
during functional partitioning. The method includes a data structure
representing a design model, and an algorithm that incrementally
updates that data structure during functional partitioning, thus yield-
ing rapidly computed design parameters that can be input to any
number of hardware estimation functions. The method is the first to
achieve both advantages of being based on a design model, and of
computing estimates in constant time; previous approaches achieved
one advantage or the other, but not both. The method therefore
enhances the usefulness of hardware as well as hardware/software
functional partitioning tools in real design environments. The general
method of developing an incrementally updatable design model for
estimation purposes may be applicable to many other estimation prob-
lems, such as estimation of hardware or software power consumption,
hardware or software execution time, and bus bitrates. Thus, the
method may become increasingly significant as design effort shifts
toward system-level design exploration.

ACKNOWLEDGMENT’

The authors would like to thank S. Narayan for his development
of the estimation tools on which this work is based.

REFERENCES

[1} W. Wolf, “Hardware-software co-design of embedded systems,” Proc.
IEEE, vol. 82, pp. 967-989, 1994,

[2] E.Lagnese and D. Thomas, “Architectural partitioning for system level
synthesis of integrated circuits,” JEEE Trans. Computer-Aided Design,
pp. 847-860, July 1991.

[3] K. Kucukcakar and A. Parker, “CHOP: A constraint-driven system-level
partitioner,” in Proc. Design Automat. Conf., 1991, pp. 514-519.

[4] S. Antoniazzi, A. Balboni, W. Fornaciari, and D. Sciuto, “A
methodology for control-dominated systems codesign,” in Int. Workshop
Hardware-Software Co-Design, 1994, pp. 2-9.

[5] X. Xiong, E. Barros, and W. Rosentiel, “A method for partitioning
UNITY language in hardware and software,” in Proc. Europ. Design
Automat. Conf. (EuroDAC), 1994.

[6] R.Ernst, J. Henkel, and T. Benner, “Hardware-software cosynthesis for
microcontrollers,” IEEE Design Test Comput., pp. 64-75, Dec. 1994.

{71 R. Gupta and G. DeMicheli, “Hardware-software cosynthesis for digital
systems,” IEEE Design Test Comput., pp. 29-41, Oct. 1993.

[8] A. Kalavade and E. Lee, “A global criticality/local phase driven algo-
rithm for the constrained hardware/software partitioning problem,” in
Int. Workshop Hardware-Software Co-Design, 1994, pp. 42-48.

[9] Y. Chen, Y. Hsu, and C. King, “MULTIPAR: Behavioral partition

for synthesizing multiprocessor architectures,” IEEE Trans. Very Large

Scale Integr. Syst., vol. 2, pp. 21-32, Mar. 1994,

F. Vahid and D. Gajski, “Specification partitioning for system design,”

in Proc. Design Automat. Conf., 1992, pp. 219-224.

D. Thomas, J. Adams, and H. Schmit, “A model and methodology

for hardware/software codesign,” IEEE Design Test Comput., pp. 6-15,

1993.

P. Gupta, C. Chen, J. DeSouza-Batista, and A. Parker, “Experience with

image compression chip design using unified system construction tools,”

in Proc. Design Automat. Conf., 1994, pp. 250-256.

T. Ismail, M. Abid, and A. Jerraya, “COSMOS: A codesign approach

for communicating systems,” in Int. Workshop on Hardware-Software

Co-Design,, 1994, pp. 17-24.

[14] J. D’Ambrosio and X. Hu, “Configuration-level hardware/software par-

titioning for real-time embedded systems,” in Int. Workshop Hardware-

Software Co-Design, 1994, pp. 34-41.

P. Eles, Z. Peng, and A. Doboli, “VHDL system-level specification and

partitioning in a hardware/software co-synthesis environment,” in Int.

Workshop on Hardware-Software Co-Design, 1992, pp. 49-55.

D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification and Design

of Embedded Systems. Englewood Cliffs, NJ: Prentice—Hall, 1994.

[10]
[11]

[12]

[13]

[15]

[16]

Efficient Semicustom Micropipeline Design

Alessandro De Gloria and Mauro Olivieri

Abstract—We present the analytical model and the electrical character-
ization of a controllable delay component for a micropipeline architecture
suitable for being designed with a semicustom design approach. An
interesting feature of the component is that it is lockable, i.e., it can
be controlled in an on/off fashion, permitting synchronous operation for
testing purposes by means of an opportune architecture model.

I. INTRODUCTION

The micropipeline approach [10] improves conventional pipeline
features by introducing a self-timed synchronization mechanism,
based on the interchange of signals among the stages of the pipeline.
Thus it allows signal locality in the control path of a circuit by
avoiding the use of a centralized clock.

Micropipelines are not yet mature to be a standard industrial design
technique, due to the mechanism used to avoid the global clock.
Micropipelines adopt a scheme based on the bundled-data convention,
using ad hoc bundling delays for each stage of the pipe. This leads to
circuits in which the topology of the final layout takes an important
role for guaranteeing correct operation.

The industrial exploitation of micropipelines is even more difficult
if we consider the testing phase. Research on asynchronous testing
is presently at an early stage [7]-[9]. To overcome this limitation,

Manuscript received April 22, 1994; revised November 30, 1994 and March
1, 1995.

The authors are with the Department of Biophysical and Electronic Engi-
neering (DIBE), Genova 16145, Italy.

IEEE Log Number 9413467.

1063-8210/95$04.00 © 1995 [EEE

