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Abstract—We describe the development of a set of embedded 
system building blocks, known as eBlocks. An eBlock network 
can be viewed as a basic form of sensor network that can be 
developed by non-programming engineers, scientists, and others. 
Each eBlock has a defined function, either one of a few pre-
defined combinational or sequential functions, a custom-
programmed function defined by an automated tool, or by user 
with programming skills. A user creates an application simply by 
connecting blocks, and possibly performing simple configuration 
via dials and switches. We have built over 100 physical eBlock 
prototypes, and tested their usability with over 100 non-
programming users to date. We will describe the architecture of 
the blocks, including design tradeoffs we considered and the 
benefit of an exploration tool that we developed to help optimize 
the power and performance of the design. We have also built a 
graphical eBlock simulator that users can utilize to quickly build 
and test systems before deployment, and that we have used in 
experiments with over 300 non-programming users to help us 
define intuitive block functions and interfaces. We will describe 
the simulator architecture, as well as a tool that automatically 
converts a user's eBlock network into a much smaller network of 
programmable blocks with accompanying automatically 
generated programs. 

Keywords-eBlocks; Sensor networks; Embedded Computing 
Systems; User Interfacing 

I.  INTRODUCTION 
We are developing a set of electronic building blocks (eBlocks) to 

enable non-computing-specialists to build basic sensor/actuator 
systems. Presently, people without computer programming skills 
cannot themselves setup sensor/actuator systems (with the exception 
of some limited home automation applications), inhibiting numerous 
useful applications. There exists a large class of applications 
consisting of basic sensor-based systems that simply transform sensor 
data using basic logic and state functions and feed the processed data 
to output or actuator devices, or to PCs or sensor-network compute 
nodes for further processing. For example, one such application is a 
sleepwalking detector, which uses motion sensors and light sensors 
distributed through rooms and hallways to detect motion in the dark, 
causing a buzzer to sound at a nursing station or bedside. Another 
application is detecting the presence of endangered species by 
photographing or recording nocturnal animals when they feed at a 
particular location. A third application monitors a section of farmland 
for the presence of insects and dispenses insecticide accordingly. We 
have encountered several dozen similar “basic” sensor-based 
applications and can easily think of hundreds of potential applications.  

Users of these systems are not computing specialists, but rather 
biologists, hospital workers, secretaries, teachers, and so on. Our goal 
is to enable those users to setup systems to implement the users’ 
particular customized applications, without requiring such users to 
learn a temporal programming language, which requires users to 
create a time-ordered sequence of operations in a textual or graphical 
language, and which others and we have found to be too difficult for 
most non-computing-specialists. Our blocks all have predefined 
functions and thus do not require programming. Users build systems 
simply by connecting blocks together, and configuring dials and 
switches of certain blocks. While not as general a paradigm as 
temporal-language programming, the eBlock approach addresses a 
useful and large class of applications. Existing as well as proposed 
technologies do not meet the needs of non-computing-specialists.  

“Sensor network” technology is an emerging class of systems 
[9][18][27] consisting of tens to thousands of small wired or wireless 
sense and compute nodes with stringent battery, size, and cost 
constraints.  Applications include military surveillance, medical 
monitoring, inventory control, monitoring machines for wear, 
monitoring the structural integrity of buildings and bridges, home 
automation, and environmental monitoring. Sensor-network 
technologies presently require expert programming to tailor to a 
particular application [11][27] – even described as requiring “2.5 
Ph.D.’s” [10]. Recent sensor-network programming methods still 
assume temporal-language programming skills, introducing 
application programmer interfaces specific to common sensing tasks 
[1][28]. Numerous electronic building block and robotic device 
technologies emphasize ease of use, but still require temporal-
language programming [16][19][24][26]. Others technologies are 
targeted towards children and are too simplistic to build useful 
monitor/control sensor-based systems [6][13]. Pre-manufactured 
products are available but are designed for a specialized task [22]. 
These products solve only one problem and not easily customizable. 
X10 based products [30], which communicate over home power lines, 
provide some configuration features on devices or using a PC, but are 
oriented to specific home automation tasks. Some sensor-based 
systems are designed for education of basic logic theory and consist of 
low-level gate components and microprocessors that are unfamiliar to 
users without a computer science background [12][14]. 

In this paper, we highlight eBlocks themselves, and then describe 
the physical eBlock prototypes and the graphical eBlocks 
simulator/synthesis tool that we have developed. 

II. PHYSICAL EBLOCK PROTOTYPES 
The primary goal of the eBlocks project is to build a set of 

electronic blocks that would enable people with little or no 
programming or electronics expertise to create basic sensor-based 



systems simply by connecting blocks. We achieved this by adding 
inexpensive low-power microcontrollers to each block, as shown in 
Figure 1. Previously “dumb” components like a button or an LED 
would then become a tiny compute node with a specified functionality, 
and connecting these components together would create a small 
computer network. Furthermore, we created blocks whose sole 
purpose is to compute a pre-defined combinational or sequential 
function. The manner in which a user chooses and connects blocks 
defines the system’s overall functionality. For example, Figure 2(a) 
illustrates a sleepwalking detector. A user connects a light sensor and 
motion sensor to a logic block. The user configures the logic block, via 
a DIP switch, to perform A’B. When the system detects no light and 
motion, the system transmits a signal to the LED, causing the LED to 
illuminate. Notice that no traditional form of programming is 
involved. By selecting different nodes, we can build another 
application, a daytime doorbell that sounds a buzzer when a visitor 
presses the doorbell only during the day. This type of doorbell may be 
useful to a person who has a small child and doesn’t want the doorbell 
disturbing the child while sleeping at the night. Again, the user simply 
connects the various sensors as shown Figure 2(b), configuring the 
logic block to perform AB. Figure 2(c) presents another application 
designed to record nocturnal animals. Many similar simple 
monitor/control systems exist which deal with human-scale events. 
Figure 2 presents several basic systems, however, increasingly 
complex systems are achievable simply by connecting additional 
eBlocks. In [4][5], we provide a more detailed discussion of the 
motivation for eBlocks as well as describe the types of applications 
that we can construct using eBlocks. 

A. Block Definition 
In defining the set of available eBlocks, a robust library of blocks 

allowing users to create any system conceivable must be balanced 
with the number of blocks available such that the library itself does not 
become overwhelming. We defined the library of blocks by 
considering dozens of applications. We developed 30 sensor-based 
systems, decomposed those systems to determine the types of blocks 
required to build each system. As we created new systems with the 
library of blocks, we refined the blocks or added new blocks.  

In general, there are two types of eBlock systems: integer-based 
systems that operate on number values (temperature, seconds of time, 

decibels, etc.) and Boolean-based systems that operate on yes/no 
values (motion/no motion, light/no light, sound/no sound, etc.).  

We currently focus only on Boolean blocks and in future 
extensions plan to consider integer-based blocks. Boolean eBlocks can 
be broken down into four basic categories: 

• Sensor blocks - monitors the environment and include motion 
sensors, buttons, contact switches, and so on.  

• Output blocks - provides stimuli and include light-emitting 
diodes (LEDs), beepers, and so on.  

• Intermediate blocks - performs basic logic transformations 
(e.g. AND, OR, NOT) or basic state functions (e.g. prolong, 
toggle, trip).  

• Communication blocks - provides wireless point-to-point 
communication.  

Each Boolean eBlock maintains an internal state of yes, no, or 
error. Blocks communicate with one another by sending packets 
consisting of the block’s current state. Blocks transmit packets when a 
sensor’s state changes or upon a timeout (currently defined as 3 
seconds). [5] provides more detail on eBlock compute and 
communicate protocols. 

B. Block Design 
The development of the underlying architecture, computation 

protocols, and communication protocols require balancing competing 
multi-level considerations. The high-level design goals include 
lifetime, latency, responsiveness, and reliability. For example, it is not 
feasible for every block to have a wall power supply, thus blocks must 
have the option of being battery-powered. Blocks must have a 
sufficient lifetime so that users are not constantly changing batteries. 
Latency is an important consideration because high block latency 
compounds into a slow network response to environmental input. For 
example, the sleepwalking detector illustrated in Figure 2 must 
quickly alert users of a sleepwalker, a delayed alert of 5-10 minutes 
defeats the purpose of this system. Responsiveness plays an important 
role in situations when users disconnected blocks from or connected 
blocks into a working network (hot-swapped). If a new sensor is added 
into the network, but the network does not recognize the newly added 
block for ten seconds or so, the user might assume the newly added 
sensor is not working. Conversely, if a block fails or is disconnected 
by a user, the network should detect the failure/disconnect promptly 
and respond accordingly. Lastly, the data transmitted within the 
network must ensure a certain level of reliability. 

Our design goal is to select the right microprocessor to embed 
within each block. We selected the PIC16F628 due to the 
microcontroller’s low power operation, consuming only 20 µA when 
active and 0.20 µA in power-down mode [17]. By powering down the 

 
 
 
 
 
 
 

Figure 1: Internals of a light sensor eBlock.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Connecting eBlocks forms an end-applications without any programming but perhaps slight configuration., (a) Sleepwalk Detector, (b) Daytime 
Doorbell, (c) Endangered Species Monitor. 
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microcontroller between the computation and communication, a block 
is able to last several years on a battery.  

The block communication medium, wired verses wireless, is 
another important design issue. Most sensor networks communicate 
wirelessly and are ad hoc networks in which nodes dynamically self-
configure the network. Nodes may be added to, removed from, or fail 
within the network without changing the functionality mapped to the 
network. In an eBlock network, the manner in which blocks are 
connected defines the functionality of the network. Wired connections 
provide an explicit connection between blocks, such that users can 
easily decipher the network’s corresponding functionality, making 
wired connections actually preferable for system configuration by 
novices. Furthermore, power consumption of a wired connection is 
orders of magnitude lower than a wireless connection, and is lower in 
cost since the need for specialized circuitry or antennas is eliminated. 
Many applications are localized and have no need for every block to 
communicate wirelessly. We realize, however, there are benefits to 
wireless connections in simplifying the physical design of the 
network, and we therefore provide the option for wireless point-to-
point links within an eBlock system by including wireless transmit and 
receive blocks configurable to particular channels. 

The underlying configuration of hardware along with the 
computation and communication protocol heavily impacts each of the 
high-level design goals. We consider parameters such as supply 
voltage, clock frequency, baud rate, packet size, packet transmission 
frequency, and error checking/correcting strategy. Because of the 
sheer number of possible configurations and interdependencies, we 
developed an exploration tool to evaluate design space. The tool 
includes a set of equations, derived primarily from data sheets and 
straightforward electrical equations, relating the design parameters to 
the design metrics of lifetime, latency, responsiveness, and reliability. 
The tool also includes a user-weighted cost function of those metrics. 
The tool exhaustively searches all configurations of design parameter 
values and returns the configuration yielding the lowest cost.  

By carefully defining the architecture, computation protocols, and 
communication protocols, our physical eBlock prototypes can last 
several years on a 9-volt battery. We determined the parts cost in 
moderate volume to be between $1.80 and $3.67, depending on the 
block. A Harvard Business School project involving eBlocks 
estimated off-the-shelf costs of the blocks in moderate volume to be 
between $4 and $12, depending on the block, with costs decreasing 
each year due to technology trends, and lower costs for higher 
volumes [25]. 

C. Physical Prototype Usage 
Building physical prototypes enabled us to observe and test block 

usage and to refine our block designs.  To test usability, we conducted 
experiments with dozens of people [4] building a variety of pre-
defined sensor-based applications of varying difficulty. Such 
applications included a doorbell which only rings during the day, a 
system which sounds an alert when motion is detected at night in any 
of multiple locations around a home, a paging system to alert a 
receptionist of a person waiting in the lobby, and so on.  

A key design criterion we found is that all eBlocks should be self-
explanatory. No special training, including reading a separate set of 
instructions or taking a tutorial, should be required to use the blocks. 
We initially provided users with handouts describing the functionality 
of each block, however these handouts were either ignored or not 
understood by users. We further tried including descriptions on the 
back of each block, but users continued to ignore the descriptions. We 
found that non-engineers often do not read or understand such 
instructions, which is consistent with other studies showing users 
instead preferred exploratory learning [7][21]. Thus, we found the 
need to limit instructions to a 10 word or less description on the front 
of the block, perhaps even captured in the block’s name itself.  For 
example, we initially defined a “tripper” block with two inputs, data 
and reset. The tripper block mimics a classic SR latch, a yes on the 
data line sets the block’s state to yes. The tripper block remains in the 
yes state until a yes is received on the reset line. We found that tripper 
is a technical term not readily understood by non-engineers, and by 
renaming the block to “once yes, stays yes,” a non-technical term 
describing the block’s function, usability greatly increased. 

We placed status/debugging lights consisting of small, colored 
LEDs on the side of each block to indicate the status of the block 
(green means yes, red no, and yellow error). Originally, we intended 
the LEDs as an aid to ourselves in the debugging of blocks – we did 
not expect users to utilize the LEDs extensively. However, users of 
our physical prototypes placed extensive focus on the LEDs while 
developing their systems. Users were able to follow chain of blocks 
and check to see if each block was is in the desired state. If not, users 
were easily able to detect at which point the system no longer 
followed the desired specification and the user could make the 
changes accordingly. The LEDs contributed to the exploratory 
building methodology users preferred. We therefore integrated the 
status/debugging lights in the final design to aid users in deciphering 
how the system was responding to various stimuli. 

Smaller details also played an important role in ensuring usability. 
In order for users to easily connect blocks together, eBlocks utilize an 
inexpensive 2-pin connector, shown in Figure 3. The black wire 
corresponds to ground, and the blue and green wires correspond to 
data. The initial connector did not limit the connections between wires. 
In many instances, users would connect the ground wire to the data 
wire, and vice versa, and could not figure out why a system did not 
function correctly. To alleviate the aforementioned problem, we 
updated the eBlock connectors such that the connectors could only 
snap together in a single configuration, aligning the ground and data 
wires.  

Furthermore, each eBlock contains an on/off switch. Users 
commonly forget to turn on each block within the network and are 
unable to figure out why the network does not respond to stimuli in the 
desired effect. Future implementations will situate the on-off switch in 
a more obvious position. 

 
 
 
 
 
 
 
 

Figure 3: eBlocks connectors. 

 

 

 

 

 

 

 

 

Figure 4: eBlock Simulator. 

 



III. EBLOCK SIMULATOR 
Although the physical prototypes were imperative in the initial 

testing of eBlocks, physical prototypes are expensive and time 
consuming to produce. To reach larger numbers of users, ease data 
collection of usage experiments, and facilitate our evaluation of 
different eBlock interfaces, we developed a graphical eBlock 
simulator, shown in Figure 4. 

A. Simulator Implementation 
The eBlock simulator is a Java-based graphical user interface 

(GUI) for the design entry and simulation of an eBlock system. The 
user is able to drag a block from a catalog of blocks, situated on the 
right edge of the simulator, to the workspace and connect the blocks 
together by drawing lines between circular representations of blocks’ 
input/outputs. Users are able to choose between a “simple mode” and 
“advanced mode.” In order not to bombard novice users, the simple 
mode displays a core subset of blocks from the library. The advanced 
mode provides a greater variety of blocks to build systems that are 
more complex. eBlocks that sense or interact with their environment 
include accompanying visual representation of their environmental 
stimuli/interaction to simulate the corresponding environment. For 
example, the light sensor shown in Figure 4, is accompanied by a 
“day/night” icon. Users click on the icon to alternate between day and 
night, causing the light sensor’s output to change accordingly. 

The gray text box situated in the bottom-left quadrant of the 
simulator, displays context-sensitive help. As users hover their mouse 
cursor over blocks in the simulator, the block’s description and 
interface automatically appears in the text box. Additionally, we 
included an online tutorial in the simulator that demonstrates two 
simple eBlocks systems and shows how to connect blocks together. 
Because users favored the status/debugging lights integrated in the 
physical eBlocks, the simulator also colors blocks’ output ports 
indicating the internal state of each block. 

We implemented the simulator in an object-oriented approach 
such that developers could incorporate new types of blocks with 
minimal effort. We developed a base eBlock class that implements the 
underlying communication protocol and methods by which the GUI 
and partitioner interface with each block. On top of the base eBlock 
class, we define specific subclasses, one for each type of block. The 
subclasses contain a behavioral representation of that block’s 
functionality. In addition, the subclasses describe how the simulator 
draws each block in the GUI. In the base eBlock class, we provide 
methods to draw a standard block and its ports as well as user-
configurable components such as switches  (as illustrated in the 
Combine block in Figure 4) and multi-position switches used in other 
blocks. eBlock subclasses can further define extra components to 
draw, such as the “day/night” icon in the Light Sensor. 

The eBlock simulator is behaviorally correct, however the 
simulator does not capture all low-level timing detail. Communication 
between blocks is done serially using packets and hence globally 
asynchronous. Given the asynchronous nature of our communication 
protocol and the fact that input blocks react to human-scale events, our 

simulation models are able provide the equivalent physical network 
functionality despite the lack of precise timing. 

B. Program Synthesis 
For more advanced users, we provide a tool in the simulator for 

automatically programming programmable eBlocks.  The tool 
automatically converts internal (non sensor or output nodes) blocks in 
an eBlock network into a much smaller network of programmable 
blocks, where possible, that preserve the design’s functionality, and 
the tool automatically generates code for each programmable block. 
The design framework, illustrated in Figure 5, is broken down into 
three steps: specification, partitioning, and code generation. 

1) Specification 
Utilizing the eBlock simulator discussed in the previous section, a 

user can define and test the functionality of a given eBlock system. 

2) Partitioning 
After the specification phase, the design specification enters the 

partitioner. The goal of the partitioning phase is to minimize the total 
number of blocks by replacing pre-defined compute blocks with a 
fewer number of programmable blocks. A programmable block 
contains i input ports and o output ports. Furthermore, a 
programmable compute block is assumed to have slightly higher cost 
than a pre-defined compute block due to the hardware required to 
permit programmability, but less cost than two pre-define compute 
blocks.  

The partitioning phase works in the following manner. First, the 
eBlock system is characterized as a directed acyclic graph G = (V, E) 
where V is the set of nodes (blocks) in the graph and E is the set of 
edges (connections) between the nodes. Sensor and output nodes are 
primary blocks and invalid selections for partitioning. The 
partitioner’s objective is to find a set of subgraphs of G such that:  

• Each subgraph has at most i inputs and o outputs, 
corresponding to the number of inputs and outputs available 
in a programmable block 

• Each subgraph must be replaceable by a programmable block 
that can provide equivalent functionality 

• The number of internal blocks after replacement is 
minimized. 

Utilizing a decomposition heuristic referred to as PareDown, all 
internal blocks of a design are selected as a candidate partition. The 
partitioner removes individual blocks from the partition until the input 
and output constraints are met. This process continues until the 
partitioner finds no new partitions. The choice of which block to 
remove from an invalid candidate partition is based on selection 
strategy we developed that considers the effect block has on the 
candidate partition’s ability to meet the criteria we defined for a valid 
subgraph. For a more detailed description of the decomposition 
heuristic, refer to [15]. The decomposition method achieved optimal, 
or within 15% of an optimal solution, compared to an exhaustive 
search methodology. 

 

 

 

 

 

 

Figure 5: Partitioner Design Framework. 

 
 
 
 
 
 
 
 

Figure 6: Physical prototype based on a logic sentence. 
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3) Code Generation 
After a set of partitions is determined, the framework passes each 

partition to a code generation tool we developed. The code generation 
tool translates the functionality of a given partition into a Java-like 
language, and automatically transforms the new behavior into a syntax 
tree. The newly merged syntax tree specifies the behavior of the 
programmable block that will replace the partition. The simulator’s 
interpreter evaluates the syntax tree in the same manner as a non-
programmable block. Furthermore, since physical eBlocks exists, we 
were able to translate the syntax tree into C code, compile and 
download the generated code, and use the output of the synthesis tool 
chain in real-world systems.  The programmable eBlock prototype 
utilizes a Microchip PIC16F628 microcontroller with 2 Kbytes of 
program memory.  

C. Simulator Usage 
The eBlock simulator proved to be an invaluable tool for testing 

eBlock usability and providing for rapid iterations of eBlock designs. 
For example, most systems do not directly connect a sensor block to 
an output block, but rather require a logical transformation of two or 
more sensor values. The eBlock library provides 2-input and 3-input 
“combine” blocks. In engineering, the combine block’s functionality is 
equivalent to simple Boolean equations. However, the expression of 
Boolean equations by non-computing-specialists is not a simple 
problem. A survey of front-end approaches for searching online public 
access catalogs [8] found users had great difficulty in composing 
Boolean expressions and required the aid of an expert. Web search 
engines also posed problems for users, 7 out of 10 users are 
dissatisfied with Internet search engines and less than 6% of users use 
Boolean search terms “and”, “or”, “+”, and “-” [23]. Users are familiar 
with AND and OR because they are found in natural language (i.e. 
English) but these words take on a different meaning when used in a 
Boolean search [20]. Many times users incorrectly substitute the AND 
logical operator for the OR logical operator. Furthermore, users do not 
understand that the scope of the NOT operator varies, and users often 
ignore parenthesis. While many alternatives for specifying Boolean 
equations exist [2][20][29], they do not translate well to the combine 

block interface. Additionally, eBlocks are limited by power, cost, and 
physical dimensions. Many of these methods require a computer to 
configure the various blocks.  

Utilizing the eBlock simulator, we have implemented six different 
combine block interfaces, ranging from truth tables to sentences. We 
had approximately 200 students build a variety of systems requiring a 
Boolean transformation of sensor data. Such systems include a 
doorbell ringing only during the day (AB), an alarm indicating a 
garage door left open at night (A’B’), and an alert indicating motion 
on the property (A+B). We have found that using color in truth tables 
improves success as well as a combine block having a sentence-like 
structure with some configurable switches, as shown if Figure 6. 
Furthermore, renaming the block from its original name, “logic 
block,” to “combine block,” enables users to better recognize the 
block’s functionality, coinciding with the intuitive notion of needing to 
combine two or more blocks’ outputs together in a certain manner. A 
more detailed description of the logic block interfaces considered, the 
testing methodology, and results is presented in [3]. 

Furthermore, the simulator is able to save and accumulate various 
user-defined systems into a centralized database. We can then later 
evaluate these user-defined systems of various eBlocks and determine 
common user pitfalls. Future work will include further automation. 

IV. EBLOCK USAGE 
Table I summarizes the various usages over the past year of our 

physical eBlock prototypes and our graphical tool. Participants who 
were non-science, non-engineering majors are classified as non-
computing users. Typical majors of these participants include 
business, history, and psychology. Participants classified as beginner 
computing users consisted of students in their first course of 
introductory programming (<10 weeks). Participants classified as 
intermediate computing users are students with 2-3 courses of 
programming. Further, advanced computing users are participants with 
both programming and electronics experience. Lastly, miscellaneous 
users consisted of middle-school or high-school kids, or non-
engineering adults. The hands-on testing has provided invaluable 

TABLE I.           PHYSICAL PROTOTYPE AND SIMULATOR USAGE SUMMARY 

 
 Date Num. of 

Participants Prototype Simulator Description 

Non-computing users 02/09/04 13 ●  Usability of physical block interfaces 
Non-computing users 04/06/04 4 ●  Usability of physical block interfaces 
Non-computing users 05/10/04 41  ● Usability of various logic block interfaces 
Non-computing users 05/20/04 40  ● Usability of various logic block interfaces 
Non-computing users 05/21/04 67  ● Usability of various logic block interfaces 
Non-computing users 06/29/04 10  ● Usability of various logic block interfaces 
Non-computing users 06/30/04 16  ● Usability of various logic block interfaces 
Non-computing users 08/03/04 18  ● Usability of various state based block interfaces 
Non-computing users  08/06/04 8 ● ● Usability of physical, logic, and state block interfaces 
Non-computing users 10/12/04 9  ● Usability of logic and state block interfaces 
Non-computing users 10/19/04 9 ●  Usability of physical block interfaces 
Beginner computing users 05/18/04 21  ● Usability of various logic block interfaces 
Beginner computing users 06/01/04 84  ● Usability of various state based block interfaces 
Beginner computing users 07/08/04 22  ● Usability of various logic block interfaces 
Beginner computing users 08/04/04 14  ● Usability of various state based block interfaces 
Intermediate computing users 06/03/04 50  ● Usability of various logic block interfaces 
Advanced computing users 02/09/04 6 ●  Usability of physical block interfaces 
Advanced computing users 05/27/04 39  ● Usability of various state based block interfaces 
Advanced computing users 10/27/03 21 ●  Usability of physical block interfaces 
Miscellaneous varied 5 ●  Usability of physical, logic, and state block interfaces 

Total Participants:  497    



information regarding user interfacing, usability, and comprehension 
of eBlocks. Through testing, we were able to observe ambiguities and 
common mistakes, we then re-designed problematic areas and tested 
the refined designs as discussed in previous sections. 

TABLE II summarizes students of varying expertise levels 
building a variety of systems involving just sensors and outputs, 
sensors with logic and outputs, sensor with state and outputs, and 
sensors with logic and state and outputs. We saw that more than half 
of all users were able to build the first three types of systems in less 
than 10 minutes. In comparison, advanced students required days to 
weeks to build similar systems without the benefit of eBlocks. In [4], 
we provide a more in-depth description of the experimental 
methodology and results. 

V. CONCLUSIONS AND FUTURE WORK 
The creation of physical prototypes and a graphical tool has been 

essential in developing an effective set of eBlocks that can be used by 
non-computing-specialists to develop basic sensor/actuator 
applications. We highlighted various details of the physical prototypes 
and the graphical tool, and summarized their use in a large variety of 
user experiments. Future work includes developing a set of integer-
based blocks, involving new physical prototypes and extensions to the 
graphical tool. Additional related work includes projects underway 
with companies to apply and refine eBlocks for use by healthcare 
workers and adult caregivers in remotely monitoring at-home elderly 
people with cognitive impairment, and for use in an agricultural 
project enabling automated targeted local application of pesticide in 
response to insect counts in farm fields. 
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TABLE II.           USER SUCCESS RATES BUILDING VARIOUS 
CATEGORIES OF EBLOCK SYSTEM IN 10 MINUTES ACROSS 

DIFFERING SKILL LEVELS 

 
 
 
 
 
 
 

a. Total number of students is higher than TABLE I because individual students may have 
participated in multiple tests 

Categories of eBlock Systems Percentage 
Success 

Number of 
Students 

Sensor-to-output 56% 91 
Sensors-with-logic 54% 281 
Sensors-with-state 66% 168 
Sensors-with-logic-and-state 12% 39 
Overall 55% 579a 


