
eBlocks – An Enabling Technology for Basic Sensor
Based Systems

Susan Cotterell, Ryan Mannion, Frank Vahid¥, Harry Hsieh
Department of Computer Science and Engineering

University of California, Riverside
Riverside, California, USA

{susanc, rmannion, vahid, harry}@cs.ucr.edu; http://www.cs.ucr.edu/eblocks
¥ Also with the Center for Embedded Computer Systems at UC Irvine

Abstract—We describe the development of a set of embedded
system building blocks, known as eBlocks. An eBlock network
can be viewed as a basic form of sensor network that can be
developed by non-programming engineers, scientists, and others.
Each eBlock has a defined function, either one of a few pre-
defined combinational or sequential functions, a custom-
programmed function defined by an automated tool, or by user
with programming skills. A user creates an application simply by
connecting blocks, and possibly performing simple configuration
via dials and switches. We have built over 100 physical eBlock
prototypes, and tested their usability with over 100 non-
programming users to date. We will describe the architecture of
the blocks, including design tradeoffs we considered and the
benefit of an exploration tool that we developed to help optimize
the power and performance of the design. We have also built a
graphical eBlock simulator that users can utilize to quickly build
and test systems before deployment, and that we have used in
experiments with over 300 non-programming users to help us
define intuitive block functions and interfaces. We will describe
the simulator architecture, as well as a tool that automatically
converts a user's eBlock network into a much smaller network of
programmable blocks with accompanying automatically
generated programs.

Keywords-eBlocks; Sensor networks; Embedded Computing
Systems; User Interfacing

I. INTRODUCTION
We are developing a set of electronic building blocks (eBlocks) to

enable non-computing-specialists to build basic sensor/actuator
systems. Presently, people without computer programming skills
cannot themselves setup sensor/actuator systems (with the exception
of some limited home automation applications), inhibiting numerous
useful applications. There exists a large class of applications
consisting of basic sensor-based systems that simply transform sensor
data using basic logic and state functions and feed the processed data
to output or actuator devices, or to PCs or sensor-network compute
nodes for further processing. For example, one such application is a
sleepwalking detector, which uses motion sensors and light sensors
distributed through rooms and hallways to detect motion in the dark,
causing a buzzer to sound at a nursing station or bedside. Another
application is detecting the presence of endangered species by
photographing or recording nocturnal animals when they feed at a
particular location. A third application monitors a section of farmland
for the presence of insects and dispenses insecticide accordingly. We
have encountered several dozen similar “basic” sensor-based
applications and can easily think of hundreds of potential applications.

Users of these systems are not computing specialists, but rather
biologists, hospital workers, secretaries, teachers, and so on. Our goal
is to enable those users to setup systems to implement the users’
particular customized applications, without requiring such users to
learn a temporal programming language, which requires users to
create a time-ordered sequence of operations in a textual or graphical
language, and which others and we have found to be too difficult for
most non-computing-specialists. Our blocks all have predefined
functions and thus do not require programming. Users build systems
simply by connecting blocks together, and configuring dials and
switches of certain blocks. While not as general a paradigm as
temporal-language programming, the eBlock approach addresses a
useful and large class of applications. Existing as well as proposed
technologies do not meet the needs of non-computing-specialists.

“Sensor network” technology is an emerging class of systems
[9][18][27] consisting of tens to thousands of small wired or wireless
sense and compute nodes with stringent battery, size, and cost
constraints. Applications include military surveillance, medical
monitoring, inventory control, monitoring machines for wear,
monitoring the structural integrity of buildings and bridges, home
automation, and environmental monitoring. Sensor-network
technologies presently require expert programming to tailor to a
particular application [11][27] – even described as requiring “2.5
Ph.D.’s” [10]. Recent sensor-network programming methods still
assume temporal-language programming skills, introducing
application programmer interfaces specific to common sensing tasks
[1][28]. Numerous electronic building block and robotic device
technologies emphasize ease of use, but still require temporal-
language programming [16][19][24][26]. Others technologies are
targeted towards children and are too simplistic to build useful
monitor/control sensor-based systems [6][13]. Pre-manufactured
products are available but are designed for a specialized task [22].
These products solve only one problem and not easily customizable.
X10 based products [30], which communicate over home power lines,
provide some configuration features on devices or using a PC, but are
oriented to specific home automation tasks. Some sensor-based
systems are designed for education of basic logic theory and consist of
low-level gate components and microprocessors that are unfamiliar to
users without a computer science background [12][14].

In this paper, we highlight eBlocks themselves, and then describe
the physical eBlock prototypes and the graphical eBlocks
simulator/synthesis tool that we have developed.

II. PHYSICAL EBLOCK PROTOTYPES
The primary goal of the eBlocks project is to build a set of

electronic blocks that would enable people with little or no
programming or electronics expertise to create basic sensor-based

systems simply by connecting blocks. We achieved this by adding
inexpensive low-power microcontrollers to each block, as shown in
Figure 1. Previously “dumb” components like a button or an LED
would then become a tiny compute node with a specified functionality,
and connecting these components together would create a small
computer network. Furthermore, we created blocks whose sole
purpose is to compute a pre-defined combinational or sequential
function. The manner in which a user chooses and connects blocks
defines the system’s overall functionality. For example, Figure 2(a)
illustrates a sleepwalking detector. A user connects a light sensor and
motion sensor to a logic block. The user configures the logic block, via
a DIP switch, to perform A’B. When the system detects no light and
motion, the system transmits a signal to the LED, causing the LED to
illuminate. Notice that no traditional form of programming is
involved. By selecting different nodes, we can build another
application, a daytime doorbell that sounds a buzzer when a visitor
presses the doorbell only during the day. This type of doorbell may be
useful to a person who has a small child and doesn’t want the doorbell
disturbing the child while sleeping at the night. Again, the user simply
connects the various sensors as shown Figure 2(b), configuring the
logic block to perform AB. Figure 2(c) presents another application
designed to record nocturnal animals. Many similar simple
monitor/control systems exist which deal with human-scale events.
Figure 2 presents several basic systems, however, increasingly
complex systems are achievable simply by connecting additional
eBlocks. In [4][5], we provide a more detailed discussion of the
motivation for eBlocks as well as describe the types of applications
that we can construct using eBlocks.

A. Block Definition
In defining the set of available eBlocks, a robust library of blocks

allowing users to create any system conceivable must be balanced
with the number of blocks available such that the library itself does not
become overwhelming. We defined the library of blocks by
considering dozens of applications. We developed 30 sensor-based
systems, decomposed those systems to determine the types of blocks
required to build each system. As we created new systems with the
library of blocks, we refined the blocks or added new blocks.

In general, there are two types of eBlock systems: integer-based
systems that operate on number values (temperature, seconds of time,

decibels, etc.) and Boolean-based systems that operate on yes/no
values (motion/no motion, light/no light, sound/no sound, etc.).

We currently focus only on Boolean blocks and in future
extensions plan to consider integer-based blocks. Boolean eBlocks can
be broken down into four basic categories:

• Sensor blocks - monitors the environment and include motion
sensors, buttons, contact switches, and so on.

• Output blocks - provides stimuli and include light-emitting
diodes (LEDs), beepers, and so on.

• Intermediate blocks - performs basic logic transformations
(e.g. AND, OR, NOT) or basic state functions (e.g. prolong,
toggle, trip).

• Communication blocks - provides wireless point-to-point
communication.

Each Boolean eBlock maintains an internal state of yes, no, or
error. Blocks communicate with one another by sending packets
consisting of the block’s current state. Blocks transmit packets when a
sensor’s state changes or upon a timeout (currently defined as 3
seconds). [5] provides more detail on eBlock compute and
communicate protocols.

B. Block Design
The development of the underlying architecture, computation

protocols, and communication protocols require balancing competing
multi-level considerations. The high-level design goals include
lifetime, latency, responsiveness, and reliability. For example, it is not
feasible for every block to have a wall power supply, thus blocks must
have the option of being battery-powered. Blocks must have a
sufficient lifetime so that users are not constantly changing batteries.
Latency is an important consideration because high block latency
compounds into a slow network response to environmental input. For
example, the sleepwalking detector illustrated in Figure 2 must
quickly alert users of a sleepwalker, a delayed alert of 5-10 minutes
defeats the purpose of this system. Responsiveness plays an important
role in situations when users disconnected blocks from or connected
blocks into a working network (hot-swapped). If a new sensor is added
into the network, but the network does not recognize the newly added
block for ten seconds or so, the user might assume the newly added
sensor is not working. Conversely, if a block fails or is disconnected
by a user, the network should detect the failure/disconnect promptly
and respond accordingly. Lastly, the data transmitted within the
network must ensure a certain level of reliability.

Our design goal is to select the right microprocessor to embed
within each block. We selected the PIC16F628 due to the
microcontroller’s low power operation, consuming only 20 µA when
active and 0.20 µA in power-down mode [17]. By powering down the

Figure 1: Internals of a light sensor eBlock.

Figure 2: Connecting eBlocks forms an end-applications without any programming but perhaps slight configuration., (a) Sleepwalk Detector, (b) Daytime
Doorbell, (c) Endangered Species Monitor.

PIC
microcontroller

(a) (b) (c)

Light
Sensor

Motion
Sensor

B

A
eBlock to
Camera
Interface

2-Input
Logic

AB’

minutes
Yes Prolonger

1 2 3 4 5 6 7 8 9

2-Input
Logic

Wireless
Transmitter

AB’

Wireless
Receiver

Parent’s Room

LED

In hallway

Motion
Sensor

A

B

Light
Sensor

Button

Light
Sensor

B

A

Buzzer2-Input
Logic
AB

microcontroller between the computation and communication, a block
is able to last several years on a battery.

The block communication medium, wired verses wireless, is
another important design issue. Most sensor networks communicate
wirelessly and are ad hoc networks in which nodes dynamically self-
configure the network. Nodes may be added to, removed from, or fail
within the network without changing the functionality mapped to the
network. In an eBlock network, the manner in which blocks are
connected defines the functionality of the network. Wired connections
provide an explicit connection between blocks, such that users can
easily decipher the network’s corresponding functionality, making
wired connections actually preferable for system configuration by
novices. Furthermore, power consumption of a wired connection is
orders of magnitude lower than a wireless connection, and is lower in
cost since the need for specialized circuitry or antennas is eliminated.
Many applications are localized and have no need for every block to
communicate wirelessly. We realize, however, there are benefits to
wireless connections in simplifying the physical design of the
network, and we therefore provide the option for wireless point-to-
point links within an eBlock system by including wireless transmit and
receive blocks configurable to particular channels.

The underlying configuration of hardware along with the
computation and communication protocol heavily impacts each of the
high-level design goals. We consider parameters such as supply
voltage, clock frequency, baud rate, packet size, packet transmission
frequency, and error checking/correcting strategy. Because of the
sheer number of possible configurations and interdependencies, we
developed an exploration tool to evaluate design space. The tool
includes a set of equations, derived primarily from data sheets and
straightforward electrical equations, relating the design parameters to
the design metrics of lifetime, latency, responsiveness, and reliability.
The tool also includes a user-weighted cost function of those metrics.
The tool exhaustively searches all configurations of design parameter
values and returns the configuration yielding the lowest cost.

By carefully defining the architecture, computation protocols, and
communication protocols, our physical eBlock prototypes can last
several years on a 9-volt battery. We determined the parts cost in
moderate volume to be between $1.80 and $3.67, depending on the
block. A Harvard Business School project involving eBlocks
estimated off-the-shelf costs of the blocks in moderate volume to be
between $4 and $12, depending on the block, with costs decreasing
each year due to technology trends, and lower costs for higher
volumes [25].

C. Physical Prototype Usage
Building physical prototypes enabled us to observe and test block

usage and to refine our block designs. To test usability, we conducted
experiments with dozens of people [4] building a variety of pre-
defined sensor-based applications of varying difficulty. Such
applications included a doorbell which only rings during the day, a
system which sounds an alert when motion is detected at night in any
of multiple locations around a home, a paging system to alert a
receptionist of a person waiting in the lobby, and so on.

A key design criterion we found is that all eBlocks should be self-
explanatory. No special training, including reading a separate set of
instructions or taking a tutorial, should be required to use the blocks.
We initially provided users with handouts describing the functionality
of each block, however these handouts were either ignored or not
understood by users. We further tried including descriptions on the
back of each block, but users continued to ignore the descriptions. We
found that non-engineers often do not read or understand such
instructions, which is consistent with other studies showing users
instead preferred exploratory learning [7][21]. Thus, we found the
need to limit instructions to a 10 word or less description on the front
of the block, perhaps even captured in the block’s name itself. For
example, we initially defined a “tripper” block with two inputs, data
and reset. The tripper block mimics a classic SR latch, a yes on the
data line sets the block’s state to yes. The tripper block remains in the
yes state until a yes is received on the reset line. We found that tripper
is a technical term not readily understood by non-engineers, and by
renaming the block to “once yes, stays yes,” a non-technical term
describing the block’s function, usability greatly increased.

We placed status/debugging lights consisting of small, colored
LEDs on the side of each block to indicate the status of the block
(green means yes, red no, and yellow error). Originally, we intended
the LEDs as an aid to ourselves in the debugging of blocks – we did
not expect users to utilize the LEDs extensively. However, users of
our physical prototypes placed extensive focus on the LEDs while
developing their systems. Users were able to follow chain of blocks
and check to see if each block was is in the desired state. If not, users
were easily able to detect at which point the system no longer
followed the desired specification and the user could make the
changes accordingly. The LEDs contributed to the exploratory
building methodology users preferred. We therefore integrated the
status/debugging lights in the final design to aid users in deciphering
how the system was responding to various stimuli.

Smaller details also played an important role in ensuring usability.
In order for users to easily connect blocks together, eBlocks utilize an
inexpensive 2-pin connector, shown in Figure 3. The black wire
corresponds to ground, and the blue and green wires correspond to
data. The initial connector did not limit the connections between wires.
In many instances, users would connect the ground wire to the data
wire, and vice versa, and could not figure out why a system did not
function correctly. To alleviate the aforementioned problem, we
updated the eBlock connectors such that the connectors could only
snap together in a single configuration, aligning the ground and data
wires.

Furthermore, each eBlock contains an on/off switch. Users
commonly forget to turn on each block within the network and are
unable to figure out why the network does not respond to stimuli in the
desired effect. Future implementations will situate the on-off switch in
a more obvious position.

Figure 3: eBlocks connectors.

Figure 4: eBlock Simulator.

III. EBLOCK SIMULATOR
Although the physical prototypes were imperative in the initial

testing of eBlocks, physical prototypes are expensive and time
consuming to produce. To reach larger numbers of users, ease data
collection of usage experiments, and facilitate our evaluation of
different eBlock interfaces, we developed a graphical eBlock
simulator, shown in Figure 4.

A. Simulator Implementation
The eBlock simulator is a Java-based graphical user interface

(GUI) for the design entry and simulation of an eBlock system. The
user is able to drag a block from a catalog of blocks, situated on the
right edge of the simulator, to the workspace and connect the blocks
together by drawing lines between circular representations of blocks’
input/outputs. Users are able to choose between a “simple mode” and
“advanced mode.” In order not to bombard novice users, the simple
mode displays a core subset of blocks from the library. The advanced
mode provides a greater variety of blocks to build systems that are
more complex. eBlocks that sense or interact with their environment
include accompanying visual representation of their environmental
stimuli/interaction to simulate the corresponding environment. For
example, the light sensor shown in Figure 4, is accompanied by a
“day/night” icon. Users click on the icon to alternate between day and
night, causing the light sensor’s output to change accordingly.

The gray text box situated in the bottom-left quadrant of the
simulator, displays context-sensitive help. As users hover their mouse
cursor over blocks in the simulator, the block’s description and
interface automatically appears in the text box. Additionally, we
included an online tutorial in the simulator that demonstrates two
simple eBlocks systems and shows how to connect blocks together.
Because users favored the status/debugging lights integrated in the
physical eBlocks, the simulator also colors blocks’ output ports
indicating the internal state of each block.

We implemented the simulator in an object-oriented approach
such that developers could incorporate new types of blocks with
minimal effort. We developed a base eBlock class that implements the
underlying communication protocol and methods by which the GUI
and partitioner interface with each block. On top of the base eBlock
class, we define specific subclasses, one for each type of block. The
subclasses contain a behavioral representation of that block’s
functionality. In addition, the subclasses describe how the simulator
draws each block in the GUI. In the base eBlock class, we provide
methods to draw a standard block and its ports as well as user-
configurable components such as switches (as illustrated in the
Combine block in Figure 4) and multi-position switches used in other
blocks. eBlock subclasses can further define extra components to
draw, such as the “day/night” icon in the Light Sensor.

The eBlock simulator is behaviorally correct, however the
simulator does not capture all low-level timing detail. Communication
between blocks is done serially using packets and hence globally
asynchronous. Given the asynchronous nature of our communication
protocol and the fact that input blocks react to human-scale events, our

simulation models are able provide the equivalent physical network
functionality despite the lack of precise timing.

B. Program Synthesis
For more advanced users, we provide a tool in the simulator for

automatically programming programmable eBlocks. The tool
automatically converts internal (non sensor or output nodes) blocks in
an eBlock network into a much smaller network of programmable
blocks, where possible, that preserve the design’s functionality, and
the tool automatically generates code for each programmable block.
The design framework, illustrated in Figure 5, is broken down into
three steps: specification, partitioning, and code generation.

1) Specification
Utilizing the eBlock simulator discussed in the previous section, a

user can define and test the functionality of a given eBlock system.

2) Partitioning
After the specification phase, the design specification enters the

partitioner. The goal of the partitioning phase is to minimize the total
number of blocks by replacing pre-defined compute blocks with a
fewer number of programmable blocks. A programmable block
contains i input ports and o output ports. Furthermore, a
programmable compute block is assumed to have slightly higher cost
than a pre-defined compute block due to the hardware required to
permit programmability, but less cost than two pre-define compute
blocks.

The partitioning phase works in the following manner. First, the
eBlock system is characterized as a directed acyclic graph G = (V, E)
where V is the set of nodes (blocks) in the graph and E is the set of
edges (connections) between the nodes. Sensor and output nodes are
primary blocks and invalid selections for partitioning. The
partitioner’s objective is to find a set of subgraphs of G such that:

• Each subgraph has at most i inputs and o outputs,
corresponding to the number of inputs and outputs available
in a programmable block

• Each subgraph must be replaceable by a programmable block
that can provide equivalent functionality

• The number of internal blocks after replacement is
minimized.

Utilizing a decomposition heuristic referred to as PareDown, all
internal blocks of a design are selected as a candidate partition. The
partitioner removes individual blocks from the partition until the input
and output constraints are met. This process continues until the
partitioner finds no new partitions. The choice of which block to
remove from an invalid candidate partition is based on selection
strategy we developed that considers the effect block has on the
candidate partition’s ability to meet the criteria we defined for a valid
subgraph. For a more detailed description of the decomposition
heuristic, refer to [15]. The decomposition method achieved optimal,
or within 15% of an optimal solution, compared to an exhaustive
search methodology.

Figure 5: Partitioner Design Framework.

Figure 6: Physical prototype based on a logic sentence.

Design Entry/
Simulation

Interpreter

GUI

Synthesis

Partitioning Code Generation

3) Code Generation
After a set of partitions is determined, the framework passes each

partition to a code generation tool we developed. The code generation
tool translates the functionality of a given partition into a Java-like
language, and automatically transforms the new behavior into a syntax
tree. The newly merged syntax tree specifies the behavior of the
programmable block that will replace the partition. The simulator’s
interpreter evaluates the syntax tree in the same manner as a non-
programmable block. Furthermore, since physical eBlocks exists, we
were able to translate the syntax tree into C code, compile and
download the generated code, and use the output of the synthesis tool
chain in real-world systems. The programmable eBlock prototype
utilizes a Microchip PIC16F628 microcontroller with 2 Kbytes of
program memory.

C. Simulator Usage
The eBlock simulator proved to be an invaluable tool for testing

eBlock usability and providing for rapid iterations of eBlock designs.
For example, most systems do not directly connect a sensor block to
an output block, but rather require a logical transformation of two or
more sensor values. The eBlock library provides 2-input and 3-input
“combine” blocks. In engineering, the combine block’s functionality is
equivalent to simple Boolean equations. However, the expression of
Boolean equations by non-computing-specialists is not a simple
problem. A survey of front-end approaches for searching online public
access catalogs [8] found users had great difficulty in composing
Boolean expressions and required the aid of an expert. Web search
engines also posed problems for users, 7 out of 10 users are
dissatisfied with Internet search engines and less than 6% of users use
Boolean search terms “and”, “or”, “+”, and “-” [23]. Users are familiar
with AND and OR because they are found in natural language (i.e.
English) but these words take on a different meaning when used in a
Boolean search [20]. Many times users incorrectly substitute the AND
logical operator for the OR logical operator. Furthermore, users do not
understand that the scope of the NOT operator varies, and users often
ignore parenthesis. While many alternatives for specifying Boolean
equations exist [2][20][29], they do not translate well to the combine

block interface. Additionally, eBlocks are limited by power, cost, and
physical dimensions. Many of these methods require a computer to
configure the various blocks.

Utilizing the eBlock simulator, we have implemented six different
combine block interfaces, ranging from truth tables to sentences. We
had approximately 200 students build a variety of systems requiring a
Boolean transformation of sensor data. Such systems include a
doorbell ringing only during the day (AB), an alarm indicating a
garage door left open at night (A’B’), and an alert indicating motion
on the property (A+B). We have found that using color in truth tables
improves success as well as a combine block having a sentence-like
structure with some configurable switches, as shown if Figure 6.
Furthermore, renaming the block from its original name, “logic
block,” to “combine block,” enables users to better recognize the
block’s functionality, coinciding with the intuitive notion of needing to
combine two or more blocks’ outputs together in a certain manner. A
more detailed description of the logic block interfaces considered, the
testing methodology, and results is presented in [3].

Furthermore, the simulator is able to save and accumulate various
user-defined systems into a centralized database. We can then later
evaluate these user-defined systems of various eBlocks and determine
common user pitfalls. Future work will include further automation.

IV. EBLOCK USAGE
Table I summarizes the various usages over the past year of our

physical eBlock prototypes and our graphical tool. Participants who
were non-science, non-engineering majors are classified as non-
computing users. Typical majors of these participants include
business, history, and psychology. Participants classified as beginner
computing users consisted of students in their first course of
introductory programming (<10 weeks). Participants classified as
intermediate computing users are students with 2-3 courses of
programming. Further, advanced computing users are participants with
both programming and electronics experience. Lastly, miscellaneous
users consisted of middle-school or high-school kids, or non-
engineering adults. The hands-on testing has provided invaluable

TABLE I. PHYSICAL PROTOTYPE AND SIMULATOR USAGE SUMMARY

 Date Num. of

Participants Prototype Simulator Description

Non-computing users 02/09/04 13 ● Usability of physical block interfaces
Non-computing users 04/06/04 4 ● Usability of physical block interfaces
Non-computing users 05/10/04 41 ● Usability of various logic block interfaces
Non-computing users 05/20/04 40 ● Usability of various logic block interfaces
Non-computing users 05/21/04 67 ● Usability of various logic block interfaces
Non-computing users 06/29/04 10 ● Usability of various logic block interfaces
Non-computing users 06/30/04 16 ● Usability of various logic block interfaces
Non-computing users 08/03/04 18 ● Usability of various state based block interfaces
Non-computing users 08/06/04 8 ● ● Usability of physical, logic, and state block interfaces
Non-computing users 10/12/04 9 ● Usability of logic and state block interfaces
Non-computing users 10/19/04 9 ● Usability of physical block interfaces
Beginner computing users 05/18/04 21 ● Usability of various logic block interfaces
Beginner computing users 06/01/04 84 ● Usability of various state based block interfaces
Beginner computing users 07/08/04 22 ● Usability of various logic block interfaces
Beginner computing users 08/04/04 14 ● Usability of various state based block interfaces
Intermediate computing users 06/03/04 50 ● Usability of various logic block interfaces
Advanced computing users 02/09/04 6 ● Usability of physical block interfaces
Advanced computing users 05/27/04 39 ● Usability of various state based block interfaces
Advanced computing users 10/27/03 21 ● Usability of physical block interfaces
Miscellaneous varied 5 ● Usability of physical, logic, and state block interfaces

Total Participants: 497

information regarding user interfacing, usability, and comprehension
of eBlocks. Through testing, we were able to observe ambiguities and
common mistakes, we then re-designed problematic areas and tested
the refined designs as discussed in previous sections.

TABLE II summarizes students of varying expertise levels
building a variety of systems involving just sensors and outputs,
sensors with logic and outputs, sensor with state and outputs, and
sensors with logic and state and outputs. We saw that more than half
of all users were able to build the first three types of systems in less
than 10 minutes. In comparison, advanced students required days to
weeks to build similar systems without the benefit of eBlocks. In [4],
we provide a more in-depth description of the experimental
methodology and results.

V. CONCLUSIONS AND FUTURE WORK
The creation of physical prototypes and a graphical tool has been

essential in developing an effective set of eBlocks that can be used by
non-computing-specialists to develop basic sensor/actuator
applications. We highlighted various details of the physical prototypes
and the graphical tool, and summarized their use in a large variety of
user experiments. Future work includes developing a set of integer-
based blocks, involving new physical prototypes and extensions to the
graphical tool. Additional related work includes projects underway
with companies to apply and refine eBlocks for use by healthcare
workers and adult caregivers in remotely monitoring at-home elderly
people with cognitive impairment, and for use in an agricultural
project enabling automated targeted local application of pesticide in
response to insect counts in farm fields.

ACKNOWLEDGMENT
This work is being supported by the National Science Foundation

(CCR-0311026).

REFERENCES
[1] Abdelzaher, T., et. al. EnviroTrack: an Environmental Computing

Paradigm for Distributed Sensor Networks. Int. Conf. on Distributed
Computing Systems, 2004.

[2] Anick, P. G., et. Al. A Direct Manipulation Interface for Boolean
Information Retrieval via Natural Language Query. Proc. ACM SIGIR
Conf. On Research and Development in Information Retrieval, User
Interfaces (1990), 135-150.Beyond Black Boxes
http://llk.media.mit.edu/projects/bbb/, 2004.

[3] Cotterell, S., F. Vahid. A Logic Block Enabling Logic Configuration by
Non-Experts in Sensor Networks. CHI, 2005.

[4] Cotterell, S., K. Downey, F. Vahid. Applications and Experiments with
eBlocks - Electronic Blocks for Basic Sensor-Based Systems. IEEE
SECON, October 2004.

[5] Cotterell, S., F. Vahid, W. Najjar, H. Hsieh. First Results with eBlocks:
Embedded Systems Building Blocks. CODES+ISSS, 2003.

[6] Electronic Blocks,
http://www.itee.uq.edu.au/~peta/Electronic%20Blocks.htm.

[7] Gammon, B. Everything we currently know about making visitor-
friendly mechanical interactives. British Interactive Group,
http://www.big.uk.com, 1999.

[8] Hidreth, C. R. Intelligent Interfaces and Retrieval methods for Subject
Search in Bibliographic Retrieval Systems. Advances in Library
Information Technology, 2 (1989).

[9] Hill, J., D. Culler. MICA: A Wireless Platform For Deeply Embedded
Networks. IEEE Micro 22, 6 (2002).

[10] Horton, M. Commercial Wireless Sensor Networks: Status, Issues and
Challenges. Keynote Presentation, IEEE SECON, 2004.

[11] Horton, Mike. et. al. MICA: The Commercialization of Microsensor
Notes. Sensors Online, April 2002.

[12] Kharma, N. and L. Caro. Magic Blocks: A Game Kit for Exploring
Digital Logic. American Society for Engineering Education Annual
Conference, 2002.

[13] Logiblocks, http://www.logiblocs.com/.
[14] Logidules, http://diwww.epfl.ch/lami/teach/logidules.html, 2004.
[15] Mannion, R., H. Hsieh, S. Cotterell, F. Vahid. System Synthesis for

Networks of Programmable Blocks. Design, Automation and Test in
Europe (DATE), March 2005.

[16] Martin, F., et. al. Crickets: Tiny Computers for Big Ideas.
http://lcs.www.media.mit.edu/people/fredm/projects/cricket/.

[17] Microchip, http://www.microchip.com.
[18] National Research Council. Embedded, Everywhere: A Research

Agenda for Networked Systems of Embedded Computers. National
Academies Press, 2001.

[19] Phidgets, http://www.phidgets.com/.
[20] Pane, J. and Myers, B. Tabular and Textual Methods for Selecting

Objects form a Group. Proc. Visual Languages, pp. 157-164, 2000.
[21] Sikorski, M. Teaching Computers the Young and the Adults:

Observations on Learning Style Differences. CHI, pp 42-43, 1998.
[22] Smarthome Inc., http://www.smarthome.com.
[23] Tanaka, J. The Perfect Search. Newsweek 134, 13, pp 71-72, 1999.
[24] Teleo, http://www.makingthings.com/.
[25] Vahid, F., S. Cotterell, S. Bakshi. eBlocks: Embedded Systems Building

Blocks. Harvard Business School Business Plan Contest, 2004.
[26] Wallich, P. Mindstorms Not Just a Kid’s toy. IEEE Spectrum,

September 2001.
[27] Warneke, B., M. Last, B. Liebowitz, K. Pister. Smart Dust:

Communicationg with a Cubic-Millimeter Computer. Computer Vol. 34,
Issue 1, pg. 44-51, 2001.

[28] Welsh, M., and G. Mainland. Programming Sensor Networks Using
Abstract Regions. First Symposium on Networked Systems Design and
Implementation, 2004.

[29] Young, D. and Shneiderman, B. A Graphical Filter/Flow Representation
of Boolean Queries: A Prototype Implementation and Evaluation.
Journal of American Society for Information Science 44 (1993), 327-
339.

[30] X10 protocol, http://www.x10.org

TABLE II. USER SUCCESS RATES BUILDING VARIOUS
CATEGORIES OF EBLOCK SYSTEM IN 10 MINUTES ACROSS

DIFFERING SKILL LEVELS

a. Total number of students is higher than TABLE I because individual students may have
participated in multiple tests

Categories of eBlock Systems Percentage
Success

Number of
Students

Sensor-to-output 56% 91
Sensors-with-logic 54% 281
Sensors-with-state 66% 168
Sensors-with-logic-and-state 12% 39
Overall 55% 579a

