
An Analysis of Using Many Small Programs in CS1

Joe Michael Allen1, Frank Vahid1,2, Alex Edgcomb1,2, Kelly Downey1, and Kris Miller1
1Computer Science and Engineering, University of California, Riverside

2zyBooks, Los Gatos, California
jalle010@ucr.edu, vahid@cs.ucr.edu, alex.edgcomb@zybooks.com, kelly@cs.ucr.edu, kmiller@cs.ucr.edu

ABSTRACT
Modern program auto-graders enable new CS1 approaches.
Instructors can easily create new assignments, with students
receiving immediate score feedback and resubmitting
assignments. With such auto-graders, one approach assigns
many small programs (MSPs) each week instead of one large
program (OLP). Earlier research showed MSPs in CS1 yielded
happier students and better grades. Our university and other
schools have switched to MSPs in CS1. This paper addresses
common questions about MSPs. We analyzed submissions for a
76-student section of our MSP CS1 course. Given 7 MSPs per
week each worth 10 points, students needed 50 points for full
credit. Students averaged 17 minutes per MSP and 120 minutes
per week. Given 7 days, students on average started 2.2 days
ahead of the due date, with 37% starting at least 3 days ahead.
40% of students exceeded the required 50 points per week (no
extra credit was given). 50% of students "pivoted" -- switching to
another program before completing the previous one. 54% used
MSPs to study for exams. Students used MSPs in ways beneficial
to their learning and stress reduction: spending sufficient time,
completing more than necessary, preparing for exams, and
pivoting to avoid getting stuck. A common concern is that MSP
CS1 students will do poorly in a CS2 using OLPs. We analyzed 5
quarters of CS2 and found MSP students do fine (in fact slightly
better). These results encourage use and refinement of MSPs in
CS1 and other courses.

CCS CONCEPTS
• Human-centered computing~Empirical studies in HCI • Social
and professional topics~CS1 • Social and professional
topics~Student assessment • Applied computing~Interactive
learning environments • Applied computing~E-learning

KEYWORDS
CS1; MSPs; Auto-grader; Programming; Time spent; Days before
due; Threshold; Pivot; Exam preparation; CS2

ACM Reference format:

Joe M. Allen, Frank Vahid, Alex Edgcomb, Kelly Downey, and Kris
Miller. 2018. An Analysis of Using Many Small Programs in CS1. In
SIGCSE ’19: 50th ACM Technical Symposium on Computer Science
Education, Feb 27–Mar 2, 2019, Minneapolis, MN, USA. ACM, NY, NY,
USA, 7 pages. DOI: https://doi.org/10.1145/3287324.3287466

1 Introduction
Student success in CS1 classes is critical to keeping students in
the computer science (CS) major, training students in other
majors who need some programming, and attracting students to
CS. High-stress, poor performance, and negative evaluations in
college-level introductory programming classes (CS1) are well
known [2, 4, 6]. As such, improving CS1 teaching attracts much
research attention, such as peer instruction [7, 8, 9, 10, 11, 14],
media focus [3, 7, 10], student self-selection of projects [12], and
pair programming [5, 7, 10, 13].

One improvement approach makes use of modern program auto-
graders like zyBooks [18], Mimir [16], CodeLab [17], or Cody
Coursework [15], to give students immediate feedback, thus
allowing for resubmission and improved grades (while
conserving limited instructor grading time). Modern commercial
auto-graders make assignment creation easier than in the past,
causing a dramatic increase in their use in CS1 and other
courses; for example, since zyBooks' auto-grader was released in
2016, over 200 courses (mostly CS1) have started using an auto-
grader that did not before. With the ease of creating and grading
programming assignments, more instructors are creating and
assigning many small programs (MSPs) per week rather than the
more common one large program (OLP) per week. Our 2018
paper [1] summarized a study showing that MSPs led to happier
less-stressed students, without hurting student performance --
and in fact leading to improved code-writing scores on exams,
likely due to students having more practice on focused concepts.

This paper's purpose is to answer various common questions
about MSPs. This research presents data and analysis on our
experience using MSPs in CS1 at our university.

Section 2 describes our methodology, describing our CS1 course
and detailing our data collection techniques. Section 3 addresses
the question "How much time do students spend working on
MSPs?" Section 4 addresses the question "How many days before
the due date do students start MSPs?" Section 5 addresses the
question "What percent of MSPs do students complete each

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by
others than the author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SIGCSE '19, February 27-March 2, 2019, Minneapolis, MN, USA
©2019 Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-5890-3/19/02…$15.00
https://doi.org/10.1145/3287324.3287466

Paper Session: Teaching Practice 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

585

day?" Section 6 addresses the question "Will students complete
more MSPs than required?" Section 7 addresses the question "Do
students take advantage of switching among MSPs when stuck
(pivot)?" Section 8 addresses the question "Do students use MSPs
to study for exams?" Section 9 addresses the question "Do
students who learn using MSPs in CS1 do poorly in a CS2 using
OLPs?" Section 10 concludes.

2 Methodology

2.1 Course
The study was conducted at our U.S. public research university,
whose CS department typically ranks in the top 60 by U.S. News
and World Report. The university operates on the quarter
system. Each academic year is divided into three "regular" 10-
week quarters (fall, winter, spring) and one compressed 5-week
summer session. Throughout the academic year, the CS1 course
serves around 300-500 students each quarter. The course is
required for all computing majors and for various engineering,
science, and math majors, such that about half the students are
computing majors and half are non-computing majors. The
course topics include basic input/output, assignments, branches,
loops, functions, and vectors. The weekly structure of the course
includes three hours of instructor-led lecture, two hours of TA-
led labs, interactive online readings, and auto-graded homework
assignments. The course teaches C++ as the programming
language. The course has a midterm during week six and a final
after week 10. Each exam's points come half from multiple
choice questions and half from free-response coding questions.
The course uses active learning and peer learning in lectures.

2.2 Data collection
We analyzed data from a Spring 2017 76-student section of our
CS1 course that used MSPs. Our CS1 used an online textbook
published by zyBooks for all class readings, activities, and
programming assignments. At the quarter's end, we collected all
student submissions and explores for programming assignments
from zyBooks and combined them into one spreadsheet. A
submission is defined as when the student "turns in" their
assignment for grading. An explore is defined as when a student
runs their code through the zyBooks compiler for testing
without grading (development was done in the built-in zyBooks
coding windows; students were not introduced to an external
development environment). Each student submission has
metadata about the assignment title, a userID (anonymized and
generated from zyBooks), the submission score, the max score
possible for the submission, and a timestamp. An explore has the
same metadata as a submission but without a score and a max
score. For this study, we collected data from the 76 students for
61 MSPs. In total, we collected 16,106 submissions and 48,186
explores for a total of 64,292.

3 How much time do students spend working
on MSPs?

We generally expect students to spend about 3 hours per week
working on their programming assignments. Our past surveys
and analyses showed students on average spending about 2
hours, the average pulled down by students who submit few or
no programs (of course some students spend more than 3 hours
as well). We designed the MSPs to take about the same total time
per week as the traditional OLP approach. A key question is how
much time do students actually spend working on MSPs.

To calculate the total time students spent on MSPs, we used each
timestamp for an explore or submit, calculated the difference
between each timestamp, and summed the differences. We
excluded a difference that exceeded 10 minutes, assuming the
student took a break. Note that our calculations are thus an
underestimate, as some breaks may have actually involved the
student working or researching, and we also cannot capture time
spent understanding and working on the program before the
first explore or submit.

Figure 1 summarizes the average time spent by students on
MSPs per week, as calculated above. The x-axis is the week
number and the y-axis is the time spent in minutes. On average,
students spent 17 minutes per MSP, and 120 minutes per week,
excluding week 1 (which had easy introductory programs) and
week 9 (which had fewer programs to complete). The two most
challenging weeks were week 4 covering loops, and week 8
covering vectors. The dips in weeks 6 and 7 are due to several
MSPs having students rewrite earlier MSPs, but using user-
defined functions.

Figure 1: Average time spent by students each week on
MSPs. Students with 0 submissions or 0 time spent were
excluded from calculations.

We compared our analyses with a survey during lecture of week
8 that had 21 questions, one of which being "The average hours
per week spent on all zyLab programming assignments that week
was?" with response options 1-2, 2-3, 3-4, …, 10+. Figure 2
summarizes student responses. 67 students responded. A
weighted average yields about 5 hours per week, which is higher
than our calculated time of 2 hours a week. This higher value

Paper Session: Teaching Practice 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

586

may be due to various factors including: our calculations being
an underestimate as mentioned earlier, students may
overestimate or overreport time spent, weaker students may skip
lecture and not be included in the survey, the survey's options
may bias students towards selecting higher values, and the
weighted sum may unintentionally round up.

Figure 2: CS1 Spring 2017 survey responses (67 students)
for "The average hours per week spent on all zyLab
programming assignments that week was?" A weighted
sum yields an average of 5 hours per week.

Figure 3 shows the time spent per MSP, using a box-and-whisker
plot. The x-axis is the MSP (61 total) and the y-axis is the time
spent in minutes. Dashed lines separate MSPs by week. The y-
axis is capped at one hour (60 minutes). Students who did not
attempt the given MSP are excluded from the calculations.

4 How many days before the due date do
students start MSPs?

We released each week's MSPs on Tuesday, all due the following
Tuesday at 9:00 pm. That week's readings and lectures (Tuesday
and Thursday, 80 minutes each) taught the concepts covered by
that week's MSPs. That week's 2-hour lab (Thursday) also taught
those concepts, with about 30 minutes at the end for students to
work on the MSPs and ask questions. A key question is how
many days before the due date do students start working on
MSPs.

Figure 4 summarizes the average number of days students began
working on MSPs before the due date. The average was
computed by finding students' first submission for all MSPs,
computing the days between the first submission and the MSP
due date, calculating the percent of students that started T-7, T-
6, …, T-0 days before the due date, and then averaging across all
MSPs. The x-axis is the number of days prior to the due date.
Using "NASA countdown-like" terminology, we use "T-2" to
mean two days before the due date (or Sunday). The y-axis is the
average percent of students that fall under each category. Week
1 is excluded from these calculations since week 1 MSPs were
very easy.

Figure 4: Percent of students who began MSPs each week
T-X days prior to the due date - Spring 2017.

To our pleasure, 37% of students (28) started 3 days ahead or
more. To our displeasure, 63% of students started only 2 days
ahead or less, with 35% of students (27) starting on the due date.
Students on average began 2.2 days ahead of the due date.

Figure 5 shows start times for the other two CS1 sections that
quarter, which used OLPs. Those students began on average 2.1
days ahead of the due date. Only 28% (48) started 3 days ahead or
more, and 25% (43) started on the due date. Note that the due
dates were different between the sections, but this comparison
still gives valuable insight.

Figure 3: Box-and-whisker plot of student time spent for each MSP. On average, students spent 17 minutes per MSP
excluding weeks 1 and 9.

Paper Session: Teaching Practice 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

587

Figure 5: Percent of students who began OLPs each week
T-X days prior to the due date - Spring 2017.

We had hoped that MSPs' less-intimidating nature would have
led to earlier starts by most students. MSPs had a mild impact on
students starting earlier, but many students still started on or
near the due date. We believe starting earlier is good practice,
and thus decided to try to encourage earlier starts. MSPs made
such encouragement easy. In our Fall 2018 course, we simply
included the following policy in our syllabus: "To discourage
procrastination, you will be required to complete at least 20
points out of the 50 points each week by Sunday at 10 pm",
which is 2 days prior to the Tuesday, 10 pm deadline. That small
change led to substantial modification in student behavior, with
start dates shifting from 2.5 (weeks 2 – 5) to 5.3 days before the
due date. At the time of this publication, that Fall 2018 course
covered up to week 5, and also excludes week 1 like the earlier
data. Future work is needed to see if this improvement also helps
to reduce student stress and improve grade performance.

5 What percent of MSPs do students complete
each day?

The previous section showed when students started, defined as
achieving at least 1 point on the MSP (out of 10 points). Here, we
analyze total completion percent per day. A key question is what
percentage of MSPs do students complete each day.

Figure 6 summarizes the completion rate of MSPs per day. The x-
axis is the number of days prior to the due date and the y-axis is
the completion percentage. The top bar is the percent completed
on that day and the bottom bar is the cumulative completion
prior to that day. Recall that only 50 of 70 points (71%) were
required for full credit.

Figure 6: MSP completion T-X days prior to the due date.
The top bar is the percent completed on that day, and the
bottom bar is the percent completed prior to that day.

Figure 6 shows a gradual increase in the completion rate
throughout the week. The completion rate increases 5-10% each
day except for the last day (T-0) which has about a 20% increase.
Because students need only complete 50 of 70 points, some MSPs
have 0% completion, pulling down the averages shown.

6 Will students complete more MSPs than
required?

Each week, students were assigned 7 MSPs (10 points each) and
were only required to complete 50 points of 70 to score 100% on
programming assignments for the week. No extra credit was
given for exceeding 50 points. We refer to the 50-point cutoff as
the full-credit threshold. A key question is whether students
would willingly complete more MSPs than required, which
would suggest that they find MSPs useful and/or enjoyable.

Figure 7 shows the percent of students that scored equal to or
above the full-credit threshold each week. The bottom bar is the
students that completed above the threshold and the top bar is
the students that completed equal to the threshold. In weeks 1, 2,
3, and 6, a higher percentage of students scored above the
threshold than equal to the threshold. Across the quarter, an
average of 40% of students scored above the threshold.

Figure 7: Percent of students who completed equal to or
above the full-credit threshold each week.

Paper Session: Teaching Practice 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

588

Figure 8 provides a more detailed analysis via a bubble chart.
The x-axis is the week number and the y-axis is the total points
scored per week. The bubble size represents the number of
students that scored that number of points. For example, the
largest bubble in week 1 is labeled 53 because 53 students scored
70 points on MSPs for that week. Note that students who scored
0 points for the week are not included because those students
likely dropped the class or decided not to submit labs for the
week. The dashed line represents the full-credit threshold for
each week. Note that week 9's threshold is lower since only five
MSPs were given to students. On average, students who scored
more than the full-credit threshold scored an additional 13
points. As each MSP is worth 10 points, this translates to
completing an additional 1.3 MSPs each week.

Figure 8: Points students scored each week. Students
who scored 0 points for the week are excluded. Dashed
line indicates max points for the week.

We were pleased to find that so many students were able to meet
the full-credit threshold and that a substantial number were
willing to do more than the minimum required work.

7 Do students take advantage of switching
among MSPs when stuck (pivot)?

Pivoting is when a student partially completes an MSP (e.g.,
scores 6 of 10 points) and then decides to work on a different
MSP. Typically, with traditional OLPs, students only have the
option to work on the program until completion. If stuck, a
student has few or no options. With MSPs, the students can
pivot to another MSP. A key question is do students take
advantage of the opportunity to pivot, and if so how often.

A submission is defined as a pivot if all following rules are met:

1. The current submission is not the student's first submission
for the week

2. The current submission is for a different MSP than the
previous submission

3. The current submission is for an MSP that has not been
completed

4. The previous submission has not been completed
5. The current submission and previous submission are for

MSPs assigned in the same week

Figure 9 shows the percent of students who pivoted at least once
in a given week. The x-axis is the week number and the y-axis is
the percent of students that pivoted that week.

Figure 9: Percentage of students who pivoted at least once
in a given week. An average of 50% of students pivoted at
least once each week.

We found that students pivot on average 1.3 times each week.
The highest number of pivots was one student who pivoted 12
times in week 4. Week 1 had few pivots due to the programs
being easy. With more challenging programs beginning in week
2, students made much use of pivots. Students who pivoted at
least once a week pivoted on average 2.5 times.

For insight, we highlight three actual pivoting scenarios.

7.1 Pivot at 0% - Week 8 (vectors)
A student attempted MSP 5 three times but received 0 points on
all submissions. Instead of continuing MSP 5, the student
switched to MSP 7 and scored 10 points. The student did not
return to complete MSP 5. The student scored 50 points on MSPs
for the week, meeting the 50-point full-credit threshold.

7.2 Single pivot - Week 3 (branches)
A student worked on MSP 4 and scored 8 points. The student
switched to MSP 6 and scored 10 points. The student did not
return to complete MSP 4. The student scored 48 points on MSPs
for the week, nearly meeting the 50-point full-credit threshold.

7.3 Multiple pivots (3 or more) - Week 4 (loops)
A student worked on MSP 4 and scored 2 points. The student
switched to MSP 5 and scored 10 points. The student returned to
MSP 4 and improved their score from 2 points to 8. The student
moved to MSP 7 and scored 9 points. The student then worked
on MSP 6 and scored 10 points. Finally, the student returned to
MSP 4 and improved their score from 8 points to 10. The student
scored 69 points on MSPs for the week, exceeding the 50-point
full-credit threshold and nearly hitting the 70-point max.

Paper Session: Teaching Practice 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

589

Students seem to take advantage of the pivot benefit that MSPs
offer, especially when a threshold is used. 94% of students (71
students) pivoted at least once throughout the 10-week quarter.
As a result, we hope to do future work to investigate whether
students who pivot score higher than those who do not, whether
there any detriments to pivoting, and whether students who
pivot return and solve the MSP they switched away from.

8 Do students use MSPs to study for exams?
Given that MSPs are short, concise, and focus on a single
concept, a key question is whether students voluntarily redo
MSPs to prepare for exams.

Given the dates for the midterm and final exams, we defined
criteria to determine if a student used an MSP for exam practice.
We said that a student used an MSP for exam practice if the
student had, for that MSP, a submission or explore timestamp
that was after the MSP's due date and within one week prior to
the exam. The midterm occurred during week six of the quarter
and the final occurred at the end of the quarter.

Table 1 shows the results of how many students used MSPs for
practice and how many unique MSPs were used to study. 54% of
students (41) used MSPs to study for either the midterm or final.
98% of all MSPs (60) were used by at least one student to study
for an exam.

Table 1: Student use of MSPs for exam preparation.

Total number of students 76
Total number of MSPs 61
% of students that used MSPs to study for the midterm 38%
% of students that used MSPs to study for the final 37%
% of students that used MSPs to study for either exam 54%
% of MSPs that were used to study for the midterm 97%
% of MSPs that were used to study for the final 90%
% of MSPs that were used to study for either exam 98%

We are pleased to see many students using MSPs to study for
exams. For comparison, we looked at the other two sections of
CS1 from Spring 2017, which used OLPs. Only 10% of students
(17) used OLPs to study for exams.

9 Do students who learn using MSPs in CS1 do
poorly in a CS2 using OLPs?

A common concern regarding MSPs in CS1 is the impact MSPs
will have on students when they reach CS2 using OLPs. A key
question is how do students taught via MSPs in CS1 fare in CS2,
compared to students taught via OLPs in CS1.

We gathered data from our CS2 course from Winter 2017
through Spring 2018 (5 quarters). We determined which students
took CS1 using MSPs and which took CS1 using OLPs. To be
conservative, we excluded students who did not take CS1 at our
university. We found 241 students that took MSPs and 312

students that took OLPs. In total, 553 students who took CS2 at
our university were considered in our analysis.

Figure 10 shows CS2 performance results. The x-axis shows the
class work categories we analyzed (participation activities, labs,
programming assignments, midterm exams, final exam, and total
grade in the class) and the y-axis is student grade performance.
OLP students are the light bars on the left and MSP students are
the dark bars on the right.

Figure 10: CS2 performance for MSP CS1 students vs. OLP
CS1 students. MSP CS1 students do no worse, and in fact
do slightly better.

Figure 10 shows that students who took CS1 with MSPs perform
similarly, and in fact slightly better, than the students who took
CS1 with OLPs. Note that the purpose of this analysis is not to
claim MSPs in CS1 lead to better performance in CS2. Instead,
the analysis shows that MSPs are not harming students in CS2.
We hope to do further research to better understand the effects
that using MSPs in CS1 has on students in CS2.

10 Conclusion
Modern easy-to-use auto-graders enable new teaching
approaches in CS1 courses, like using MSPs instead of OLPs for
weekly programming assignments. Our previous research
showed that using MSPs in CS1 yielded happier students and
better grades in the course. This paper analyzed how students
use MSPs. We conclude that students are making good use of
MSPs to aid in their learning process: Students spend sufficient
time working on MSPs each week, begin working on MSPs
earlier than for OLPs, complete more MSPs than necessary with
a full-credit threshold, take advantage of pivoting between MSPs,
and use MSPs to study for exams. We also see that MSP CS1
students do just as well, even slightly better, than OLP CS1
students in an OLP CS2. Our department now uses MSPs in all
CS1 sections, and we are aware of dozens of other schools that
have switched to MSPs as well.

ACKNOWLEDGEMENTS
This work was supported by the U.S. Dept. of Education
(GAANN fellowship) and by Google.

Paper Session: Teaching Practice 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

590

REFERENCES
[1] Joe Michael Allen, Frank Vahid, Kelly Downey, and Alex

Edgcomb. 2018. Weekly Programs in a CS1 Class:
Experiences with Auto-graded Many-small Programs (MSP).
In Proceedings of 2018 ASEE Annual Conference &
Exposition. DOI: https://peer.asee.org/31231

[2] Theresa Beaubouef and John Mason. 2005. Why the high
attrition rate for computer science students: some thoughts
and observations. SIGCSE Bull. 37, 2 (June 2005), 103-106.
DOI: http://dx.doi.org/10.1145/1083431.1083474

[3] Mark Guzdial. 2003. A media computation course for non-
majors. In Proceedings of the 8th annual conference on
Innovation and technology in computer science education
(ITiCSE '03), David Finkel (Ed.). ACM, New York, NY, USA,
104-108.DOI: http://dx.doi.org/10.1145/961511.961542

[4] Päivi Kinnunen and Lauri Malmi. 2006. Why students drop
out CS1 course?. In Proceedings of the second international
workshop on Computing education research (ICER '06).
ACM, New York, NY, USA, 97-108. DOI:
http://dx.doi.org/10.1145/1151588.1151604

[5] Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric
Wiebe, Kai Yang, Carol Miller, and Suzanne Balik. 2003.
Improving the CS1 experience with pair programming. In
Proceedings of the 34th SIGCSE technical symposium on
Computer science education (SIGCSE '03). ACM, New York,
NY, USA, 359-362.
DOI:http://dx.doi.org/10.1145/611892.612006

[6] Andrew Petersen, Michelle Craig, Jennifer Campbell, and
Anya Tafliovich. 2016. Revisiting why students drop CS1. In
Proceedings of the 16th Koli Calling International
Conference on Computing Education Research (Koli Calling
'16). ACM, New York, NY, USA, 71-80. DOI:
https://doi.org/10.1145/2999541.2999552

[7] Leo Porter and Beth Simon. 2013. Retaining nearly one-third
more majors with a trio of instructional best practices in
CS1. In Proceeding of the 44th ACM technical symposium on
Computer science education (SIGCSE '13). ACM, New York,
NY, USA, 165-170. DOI:
http://dx.doi.org/10.1145/2445196.2445248

[8] Leo Porter, Cynthia Bailey Lee, and Beth Simon. 2013.
Halving fail rates using peer instruction: a study of four

computer science courses. In Proceeding of the 44th ACM
technical symposium on Computer science education
(SIGCSE '13). ACM, New York, NY, USA, 177-182. DOI:
http://dx.doi.org/10.1145/2445196.2445250

[9] Leo Porter, Cynthia Bailey Lee, Beth Simon, and Daniel
Zingaro. 2011. Peer instruction: do students really learn from
peer discussion in computing?. In Proceedings of the seventh
international workshop on Computing education research
(ICER '11). ACM, New York, NY, USA, 45-52. DOI:
http://dx.doi.org/10.1145/2016911.2016923

[10] Leo Porter, Mark Guzdial, Charlie McDowell, and Beth
Simon. 2013. Success in introductory programming: what
works?. Commun. ACM 56, 8 (August 2013), 34-36. DOI:
https://doi.org/10.1145/2492007.2492020

[11] Beth Simon, Michael Kohanfars, Jeff Lee, Karen Tamayo, and
Quintin Cutts. 2010. Experience report: peer instruction in
introductory computing. In Proceedings of the 41st ACM
technical symposium on Computer science education
(SIGCSE '10). ACM, New York, NY, USA, 341-345. DOI:
http://dx.doi.org/10.1145/1734263.173438

[12] Jeffrey A. Stone and Elinor M. Madigan. 2008. The impact of
providing project choices in CS1. SIGCSE Bull. 40, 2 (June
2008), 65-68. DOI: https://doi.org/10.1145/1383602.1383637

[13] Laurie Williams, Kai Yang, Eric Wiebe, Miriam Ferzli, and
Carol Miller. 2002. Pair Programming in an Introductory
Computer Science. OOPSLA Educator's Symposium, Seattle,
WA.

[14] Daniel Zingaro. 2014. Peer instruction contributes to self-
efficacy in CS1. In Proceedings of the 45th ACM technical
symposium on Computer science education (SIGCSE '14).
ACM, New York, NY, USA, 373-378. DOI:
http://dx.doi.org/10.1145/2538862.2538878

[15] Cody Coursework. https://coursework.mathworks.com/.
Accessed: August, 2018.

[16] Mimir. https://www.mimirhq.com/. Accessed: August, 2018.

[17] Turing's Craft: CodeLab. https://www.turingscraft.com/.
Accessed: August, 2018.

[18] zyBooks. https://www.zybooks.com/catalog/zylabs-

 programming/. Accessed: August, 2018.

Paper Session: Teaching Practice 2 SIGCSE '19, February 27–March 2, 2019, Minneapolis, MN, USA

591

