
Energy Benefits of a Configurable Line Size Cache for
Embedded Systems

Chuanjun Zhang

Department of Electrical Engineering

University of California, Riverside

czhang@ee.ucr.edu

Frank Vahid and Walid Najjar

Department of Computer Science and
Engineering

University of California, Riverside

{vahid/najjar}@cs.ucr.edu,

 (F. Vahid is also with the Center for Embedded
Computer Systems at UC Irvine)

Abstract
Previous work has shown that cache line sizes impact
performance differently for different desktop programs –
some programs work better with small line sizes, others
with larger line sizes. Typical processors come with a
line size that is a compromise, working best on the
average for a variety of programs. We analyze the
energy impact of different line sizes, for 19 embedded
system benchmarks, and we show that tuning the line
size to a particular program can reduce memory access
energy by 50% in some examples. Our data argues
strongly for the need for embedded microprocessors to
have configurable line size caches, and for embedded
system designers to put effort into choosing the best line
size for their programs.

1. Introduction
Reducing energy consumption is a key issue in battery
powered embedded systems. Off-chip memory accesses
consume much energy in a microprocessor-based system,
because of the high capacitive load and hence power of off-
chip buses and memory. One method to reduce such power is
to reduce the number of wires that switch per access [1][13].
Another method is to reduce the number of accesses to the off-
chip memory. On-chip cache memories help reduce such
accesses, and so not only improve performance, but also
power.

Caches typically move data to and from off-chip memory in
chunks of several bytes, perhaps 16, 32 or 64 bytes, known as
the line size. When a program exhibits much spatial locality,
then a larger line size can reduce the number of
microprocessor stalls caused by cache misses. But without
spatial locality, a large line size fetches many unnecessary
bytes, which not only lengthen cache fill time, but may also

evict needed bytes from the cache, thus increasing off-chip
memory accesses and stalls.

If the designer of a mass-produced microprocessor chip
does not know what particular program will run on the chip,
the designer may choose a line size that works best on average
across a wide variety of programs. Table 1 shows the cache
line sizes of several popular embedded microprocessors. We
can see that there is no agreement on the best line size, but
that generally, a line size of 32 bytes seems to be preferred.

We performed experiments that show the benefits of a chip
designer creating a cache with a configurable line size rather
than picking a particular line size for all programs, and of the
chip user tuning the line size to the particular program that
will run on the chip. The existence of a fixed program running
on an embedded microprocessor is perhaps one of the most key
characteristics distinguishing embedded from desktop
computing systems, and the tuning of architectures to that
fixed program is an area with much potential research.

2. Related work
Experiments in [3] show the importance of a properly
configured line size on a cache’s miss rate. Five Spec92
benchmarks were found to have minimum miss rates occurring

Processor Line Processor Line
AMD-K6-IIIE 32 Motorola MPC8540 32/64

Alchemy AU1000 32 Motorola MPC7455 32
ARM 7 16 NEC VR5500 32

Hitachi SH7750S (SH4) 32 NEC VR4131 16/32
Hitachi SH7727 16 NEC VR4181 16
IBM PPC 750CX 32 NEC VR4181A 32
IBM PPC 7603 32 PMC Sierra RM7000A 32

IBM750FX 32 SandCraft sr71000 32
IBM403GCX 16 SuperH 32

IBM Power PC 405CR 32 TriMedia TM32A 64
Motorola MPC8240 32 Xilinx Virtex IIPro 32
Motorola MPC823E 16 Triscend A7 16

Table 1: Line size of popular embedded microprocessors.

for line sizes of 32 or 64 bytes, with higher miss rates
occurring for sizes 16 bytes, or with 128 bytes or more.

Line size configuration can be done statically or
dynamically. Statically means configuring the size before the
program executes in its real environment (perhaps based on
profiles from sample executions or simulations), while
dynamically means modifying the line size as the program
executes.

Static cache configuration is supported by many
microprocessors available as cores. A designer selects a
cache’s line size, associativity, and even total size, resulting in
a customized cache being generated for mapping onto an
eventual chip [4].

Some pre-fabricated microprocessor chips also support
static line size configuration. For example, the MIPS
R3000/R4000 [4] has a configurable cache line size. Actually,
the hardware architecture uses a fixed physical line size [15],
but the number of words replaced on a miss could be varied.
The Motorola M*CORE supports static configuration of
certain other cache parameters, such as the amount of
instruction and data associativity [9].

 Some recent work focuses on the advantages of
dynamically sizing cache lines. Nicolaescu [10] uses profile
information to guide a compiler in inserting line size
configuration information into a program. Witchel [17]
proposed a software-controlled cache line size. A compiler
specifies how much data to fetch on a data cache miss. Two
hardware implementations are given to support the compiler-
controlled cache.

Veidenbaum et al [15] proposed a dynamic mechanism to
adapt cache line size to a specific application’s behavior
during the execution of applications. Based on monitoring the
accesses to the cache line, a hardware-based algorithm decides
the future cache line size. They achieved 50% reductions in
memory traffic compared to a 32-byte line size. Inoue [6]
proposed a dynamic variable line size cache. Exploiting the
high on-chip memory bandwidth of on-chip merged
DRAM/logic chips by replacing a whole cache line in one
cycle, they improve performance and save energy, achieving a
75% energy delay product reduction over a conventional
memory path model, taking advantage of on chip memory. This
high bandwidth on-chip memory is not available in typical
embedded systems.

Our work focuses on static configuration of line size.
Though we emphasize the need for a configurable cache on a
pre-fabricated microprocessor chip, the conclusions also apply
to core-based systems of course. Static configuration has the
advantages of less hardware and energy overhead, but the
disadvantage of requiring a designer to select the appropriate
configuration.

Our work differs from much previous work in that we
consider not just performance, but also energy. Furthermore,
our energy calculations are rather thorough, considering not
just miss rates, but also the energy for off-chip accesses and
for microprocessor stalls; factors often overlooked.

3. A Configurable Line Size Cache

3.1 Basic architecture

Creating a cache with a configurable line size is relatively
straightforward. One approach is shown in Figure 1. The
physical line size of the cache is 16 bytes. A counter in the
cache controller specifies how many words to read from the off
chip memory. For a conventional cache, this counter contains a
fixed number, like 4 for a 16-byte line size cache, assuming
one word is read from off chip memory at a time.
 We assume the use of an interleaved memory organization.
Because we configure the cache line size statically, we do not
require the off chip memory to fit for all line size possibilities.
When the line size is 16 bytes, the off chip memory should be
organized as 4 banks interleaved, and 8 or 16 banks
interleaved for line sizes of 32 bytes and 64 bytes,
respectively.

3.2 Using a configurable line size cache
A configurable cache might be used as follows in an embedded
system design flow. An embedded system designer would have
a fixed program that would run on the microprocessor platform
having the configurable cache. Based on simulations or actual
executions on the platform, the designer would determine the
best configuration for that program. The designer would then
modify the boot or reset part of the program to set the cache’s
configuration registers to the chosen configuration. Thus, the
cache configuration would only occur once, during system
initialization.

3.3 Energy computation
We considered not only the cache energy access, but also the
energy for accessing the next level of memory, and the stall
energy of the microprocessor caused by the cache miss. We
assume a write back policy is used. We computed the energy
due to dynamic power consumption as follows:

 energy_dynamic =
 cache_hits*energy_hit + cache_misses*energy_miss

 energy_miss = energy_offchip_access +
 energy_uP_stall + energy_cache_line_fill

Figure 1: Architecture of a line size configurable cache.

Counter

bus

16 bytes

One cache way

Off chip Mem

4 physical lines are
filled when line size

is 64 bytes

We obtained values for cache_hits and cache_misses by
executing our benchmarks on SimpleScalar [2]. Energy_hit is
the energy per access to the cache, which we used CACTI to
compute using a 0.18 micron technology (we are currently
creating an actual layout in a 0.18 micron technology). We
estimate energy_uP_stall as 20% of the energy of an active
microprocessor, a number we determined after looking at the
stall power of several microprocessors. The
energy_cache_line_fill is the energy to write an entire line to
the cache. For a four-way set associative cache, only one way
is accessed during such a write. The energy_offchip_access is
the energy to access off-chip memory. We used the low-power
64-Mbit SDRAM manufactured by Samsung (model
K4S643233E) as a reference, working at 2.5 V and 55 mA.

4. Experiments
We simulated several benchmarks with various line sizes,
including embedded systems programs from Motorola’s
Powerstone suite [9] (padpcm, crc, auto2, bcnt, bilv, binary,
blit, brev, g3fax, fir, pjpeg, ucbqsort, v42) and MediaBench
[7] (adpcm, epic, jpeg, mpeg2, pegwit, g721, art), and some
programs from Spec 2000 [5] (mcf, parser, vpr). We used the
sample test vectors that came with each benchmark as program
stimuli. We consider both a four-way set associative cache,
and a direct mapped cache, and considered line sizes of 16, 32
and 64 bytes. All caches considered had a total size of 8
Kbytes.

4.1 Four-way set-associative cache
Figure 2 shows the miss rates for the benchmarks using a four-
way set-associative instruction and data caches. We see in
some programs that a small line size yields a much higher miss

rate than a larger line size, in which case smaller line size will
likely result in higher energy. In other programs, the small line
size works better, so will likely save energy. In many cases,
the line size has little impact, in which case a smaller line size
will likely save energy. The difference in miss rate between
line sizes is quite high – more than 15% in many cases. In
terms of miss rates, 15% is extremely high.

Figure 3 shows the energy results for a four-way set-
associative instruction cache, for configurations of 16, 32 and
64-byte line size. The energy values are normalized, setting
whatever configuration gave the highest energy for each
example as 100%, so that the energies of the other two
configurations show the savings compared to that highest
configuration. We see that for most benchmarks, a line size of
64 bytes yields the least energy. However, several benchmarks,
like v42, g721, pegwit and jpeg, yield the least energy at a line
size of 16 bytes. The energy differences are surprisingly
significant – over 20% in many cases. A line size of 32 did not
yield significant improvements over the other two line sizes in
any particular case, but did work well on average.

Figure 3 shows the results for the data cache. We see some
differences in best line size between instruction and data
cache. We notice that selecting the best line size is even more
important for data cache, as the energy differences between
line sizes are even greater – up to 50%. The reason is likely
because there is spatial and temporal locality varies more
greatly for data access than instruction access – our analyses of
the benchmarks show that about 70% of the execution time is
spent in about 5% of the instruction code, resulting in high
spatial and temporal instruction locality.

Figure 2: Miss rates of four way instruction (top) and data (bottom)
caches for 16, 32 and 64 byte line sizes. Figure 3: Normalized four way set associative instruction (top)

and data (bottom) cache energy savings for 16, 32 and 64 byte
line sizes (normalized by setting the configuration with highest

energy consumption to 100%).

20%

0%
2%

4%

6%

8%

10%

12%
pa

dp
cm cr

c
au

to
2

bc
nt

bi
lv

bi
na

ry bl
it

br
ev

g3
fa

x fir
pj

ep
g

uc
bq

so
rt

v4
2

ad
pc

m
ep

ic
g7

21
pe

gw
it

m
pe

g
jp

eg
av

er
ag

e

I-cache

0%

20%

40%

60%

80%

100%

pa
dp

cm cr
c

au
to

2
bc

nt
bi

lv
bi

na
ry bl
it

br
ev

g3
fa

x fir
pj

ep
g

uc
bq

so v4
2

ad
pc

m
ep

ic
g7

21
pe

gw
it

m
pe

g
jp

eg
av

er
ag

e

line16 line32 line64I-cache

21%

0%

5%

10%

15%

20%

pa
dp

cm cr
c

au
to

2

bc
nt

bi
lv

bi
na

ry bl
it

br
ev

g3
fa

x fir

pj
ep

g

uc
bq

so
rt

v4
2

ad
pc

m

ep
ic

g7
21

pe
gw

it

m
pe

g

jp
eg

av
er

ag
e

line16 line32 line64

D-cache

0%

20%

40%

60%

80%

100%

pa
dp

cm cr
c

au
to

2
bc

nt
bi

lv
bi

na
ry

bl
it

br
ev

g3
fa

x fir
pj

ep
g

uc
bq

so v4
2

ad
pc

m
ep

ic
g7

21
pe

gw
it

m
pe

g
jp

eg
av

er
ag

e

D-cache

We can see why a line size of 32 is so popular in typical
processors that don’ t have a configurable line size (Table 1).
Although 32 bytes is not the best line size on average or the
best for any of the benchmarks, we see that a line size of 32
bytes does behave the least erratically. Sizes of 16 bytes and
64 bytes are sometimes the best, but sometimes much worse.
32 bytes is usually somewhere in between. 32 bytes is clearly a
compromise. Being able to choose instead either 16 or 64 bytes
is clearly superior on a case-by-case basis.

4.2 Direct mapped cache
Figure 4 shows the miss rates for direct mapped instruction
and data caches. Figure 5 shows the normalized energy savings
for those caches. We see that the line size becomes even more
critical for direct mapped caches – caches that are extremely
popular in embedded systems due in part to their low power
per access. The differences in miss rates among line sizes are
even more pronounced than before. We see a nearly 60%
energy difference in some cases of the data cache.

4.3 Overhead of configurability
The overhead of cache line size configuration is negligible.
From Figure 1, we can see we need to make the counter
configurable. This counter will not reside in the critical path.
A 16-byte line size should have no overhead. A 64-byte line
size could have a few cycles overhead between 16-byte chunks,
but these cycles (if any) should be quite small compared to the
cycles to read and write the bytes themselves. The size of the
counter is also negligible, though making the counter
accessible for writes through memory-mapped I/O will require
some additional wires and logic.

4.4 Average savings through tuning
We compared the average savings that tuning a cache’ s
configurable line size to a program would yield compared to a
fixed line size of 32 bytes. Figure 6 shows average energy
savings of a configurable line size cache compared with a fixed
32-byte line size cache. Figure 7 shows the savings compared
with a 16-byte line size cache. Compared to a fixed 32-byte
line size, tuning yields reasonable average improvements, over
10% for a direct mapped data cache. Compared to a fixed 16-
byte line size, improvements reach almost 20%. Caches may
contribute to about 50% of an embedded processor’ s total
power [8][12], and thus savings in memory access power can
be very quite significant to overall power savings.

5. Conclusions
We have shown that tuning a cache’ s line size to a particular
program is an extremely effective method of reducing memory
access energy for embedded systems. Choosing among 16, 32
or 64 byte line sizes can by itself impact memory access energy
by nearly 60%. Adding such configurability to a cache
architecture is straightforward, and selecting the best
configuration can be done fairly simply by embedded system
designers.

If one compares the miss rates across four-way and direct-
mapped caches, one sees that choosing the best associativity
for a given program is also critical. For this reason, we are
currently working on a configurable cache architecture that not
only has a configurable line size, but also a configurable
number of ways (while maintaining the same total size). We

21%

0%

4%

8%

12%

16%

20%

p
a

d
p

cm cr
c

a
u

to
2

b
cn

t

b
ilv

b
in

a
ry b
lit

b
re

v

g
3

fa
x

fir

p
je

p
g

u
cb

q
so

rt

v4
2

a
d

p
cm

e
p

ic

g
7

2
1

p
e

g
w

it

m
p

e
g

jp
e

g

a
ve

ra
g

e

line16 line32 line64

Figure 4: Miss rate of direct mapped instruction cache (top) and
data cache (bottom) for 16, 32 and 64 byte line size.

Figure 5: Direct mapped instruction (top) and data (bottom) cache
energy savings for 16, 32 and 64 byte line sizes (normalized by

setting the configuration with highest energy to 100%).

20%

0%

4%

8%

12%

16%
pa

dp
cm cr

c

au
to

2

bc
nt bi
lv

bi
na

ry bl
it

br
ev

g3
fa

x fir

pj
ep

g

uc
bq

so
rt

v4
2

ad
pc

m

ep
ic

g7
21

pe
gw

it

m
pe

g

jp
eg

av
er

ag
e

line16 line32 line64

0%

20%

40%

60%

80%

100%

pa
dp

cm cr
c

au
to

2
bc

nt
bi

lv
bi

na
ry bl
it

br
ev

g3
fa

x fir
pj

ep
g

uc
bq

so
r

v4
2

ad
pc

m
ep

ic
g7

21
pe

gw
it

m
pe

g
jp

eg
av

er
ag

0%

20%

40%

60%

80%

100%

pa
dp

cm cr
c

au
to

2
bc

nt
bi

lv
bi

na
ry bl
it

br
ev

g3
fa

x fir
pj

ep
g

uc
bq

so
r

v4
2

ad
pc

m
ep

ic
g7

21
pe

gw
it

m
pe

g
jp

eg
av

er
ag

are also nearly finished with a layout of the configurable cache
in a 0.18 micron CMOS technology, from which we will be
deriving actual delay and power values.

6. Acknowledgments
This work was supported by the National Science Foundation
(grants CCR-9876006 and CCR-0203829).

References
[1] L.Benini, G. De Micheli, E. Macii, D.Scjuto, C.Silvano.

“Asymptotic Zero-Transition Activity Encoding for
Address Busses in Low-Power Microprocessor-Based
Systems,” GLS-VLSI-97:IEEE 7th Great Lake Symposium
on VLSI.pp.77-82:Urbana-Champaign:IL:March 1997.

[2] D. Burger and T.M. Austin. The SimpleScalar Tool Set,
Version 2.0. University of Wisconsin-Madison Computer
Sciences Department Technical Repor #1342. June, 1997

[3] J. L. Hennessy and D .A. Patterson: Computer
architecture Quantitative Approach, 2nd Edition, Morgan-
Kaufmann Publishing Co., Menlo Park, CA.1996

[4] http://www.mips.com
[5] http://www.specbench.org/osg/cpu2000/
[6] K. Inoue, K. Kai, A High-Performance/Low-Power On-

Chip Memory-Path Architecture with Variable Cache-
Line Size, IEICE Trans. Electron. Vol. E83-CV No.11,
Nov. 2000

[7] C. Lee, M. Potkonjak and W. Mangione-Smith.
MediaBench C. Lee, M. Potkonjak and W. Mangione-
Smith. MediaBench: A Tool for Evaluating and

Synthesizing Multimedia and Communications Systems,
MICRO 1997

[8] L. Lee., B. Moyer, J. Arends. Low-Cost Embedded
Program Loop Caching – Revisited. University of
Michigan Technical Report CSE-TR-411-99,
1999.Applications. International Symposium on System-
Level Synthesis, pp. 74-81, 1997.

[9] A. Malik, B. Moyer and D. Cermak. “A Low Power
Unified Cache Architecture Providing Power and
Performance Flexibility.” International Symposium on
Low Power Electronics and Design. June. 2000.

[10] D. Nicolaescu, X. Ji, A. Veidenbaum, A. Nicolau and R.
Gupta, "Compiler-directed Cache Line Size Adaptivity",
IMS, 2000.

[11] Glen Reinman and Norman P .Jouppi, CACTI 2.0:An
Integrated Cache Timing and Power Model. WRL
Research Report 2000/7

[12] Simon Segars, Low Power Design Techniques for
Microprocessors. ISSCC2001

[13] M. R. Stan, W. P. Burleson, “Bus-Invert Coding for Low-
Power I/O,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 3, No. 1, pp. 49-58,
March 1995

[14] F. Vahid and T. Givargis. Platform Tuning for Embedded
Systems Design. IEEE Computer, Vol. 34, No. 3, pp. 112-
114, March 2001.

[15] A. Veidenbaum, W. Tang, R. Gupta, “Adapting Cache
Line Size to Application Behavior. “ICS’ 99 Rhodes
Greece

[16] N.H.E. Weste and K.Eshraghian, "Principles of CMOS
VLSI Design, A System Perspective" Second Edition.
Addison-Wesley. 1993 pp. 233-235.

[17] E. Witchel and K. Asannovic, "The Span Cache: Software
Controlled Tag Checks and Cache Line Size", 28th ISCA,
Sweden, 2001

[18] Semiconductor Industry Association. International
Technology Roadmap for Semiconductors: 1999 edition.
Austin, TX: International SEMATECH, 1999.

80%

85%

90%

95%

100%

4-way I$ 4-way D$ 1-way I$ 1-way D$

32byte con

Figure 6: Average energy savings of a configurable cache
compared with a fixed 32-byte line size cache.

8 0 %

8 5 %

9 0 %

9 5 %

1 0 0 %

4 -w ay I$ 4 -w ay D $ 1 -w ay I$ 1 -w ay D $

 1 6 b y te c o n

Figure 7: Average energy savings of a configurable cache compared
with a fixed 32-byte line size cache.

