
A Codesigned On-Chip Logic Minimizer
Roman Lysecky, Frank Vahid*

Department of Computer Science and Engineering
University of California, Riverside

{rlysecky, vahid}@cs.ucr.edu
*Also with the Center for Embedded Computer Systems at UC Irvine

Abstract
Boolean logic minimization is traditionally used in logic synthesis
tools running on powerful desktop computers. However, logic
minimization has recently been proposed for dynamic use in
embedded systems, including network route table reduction,
network access control list table reduction, and dynamic
hardware/software partitioning. These new uses require logic
minimization to run dynamically as part of an embedded system’s
active operation. Performing such dynamic logic minimization on-
chip greatly reduces system complexity and security versus an
approach that involves communication with a desktop logic
minimizer. An on-chip minimizer must be exceptionally lean yet
yield good enough results. Previous software-only on-chip
minimizer results have been good, but we show that a codesigned
minimizer can be much better, executing nearly 8 times faster and
consuming nearly 60% less energy, while yielding identical results.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-time
and embedded systems

General Terms: Algorithms, Performance.
Keywords: Logic minimization, dynamic optimization, on-chip
logic minimization, on-chip synthesis, system-on-a-chip, embedded
systems, hardware/software codesign, embedded CAD.

1. Introduction
On-chip logic minimization is becoming increasingly important in
applications requiring dynamic optimizations. Unfortunately, most
logic minimization algorithms have been developed with the
expectation the algorithms will be run on a desktop workstation. The
use of these minimization algorithms for performing dynamic
optimizations within an embedded system is limited. While the
applications of on-chip logic minimization are just recently
emerging, logic minimization is already useful in performing
dynamic hardware/software partitioning, dynamically reducing
network routing table size, and dynamically reducing network
access control lists.

In [12], we presented a first approach to dynamic
hardware/software partitioning. In this approach, the dynamic
partitioning system monitors an executing application, determines
the critical loops of the application, and executes these loops in
hardware using on-chip configurable logic. Such an approach

requires several tools to convert the software description of the loop
to hardware, including decompilation, logic synthesis, technology
mapping, and place and route. During the logic synthesis phase, the
dynamic hardware/software partitioning system uses two-level logic
minimization in an iterative process to optimize the hardware
circuit, requiring an on-chip logic minimizer.

Logic minimization is also useful for performing optimization in
other applications not related to synthesis of hardware circuits. Such
applications include IP (Internet Protocol) routing table reduction
and network access control list (ACL) reduction. Network routers
route an incoming IP packet to its destination by determining the
packet’s next hop. The router compares the packet’s destination IP
with the router’s routing table and uses the longest prefix match to
select the packet’s destination port. While simple lookup schemes
work for small routers, large network routers with ten of thousands
of routing table entries can require long lookup times. Longest
prefix matching can be directly mapped to Ternary CAMs [9].
However, TCAMs require large hardware resources and tend to
have high power consumption. Liu developed a method for reducing
the routing table size using two-level logic minimization and hence
reducing the cost of using TCAMs [7].

Logic minimization is also helpful in reducing the size of a
network router’s access control list. Most commercially available
network routers have ACLs that allow the router to accept or deny
incoming IP packets. The router uses information from the incoming
IP packet to search the ACL for the first matching entry and takes
the associated action of either permitting the packet or denying the
packet. Large ACLs often have thousands of entries, making
sequential lookup infeasible. Furthermore, hardware-based parallel
lookup approaches are limited because the approach must preserve
the ordering of the ACL entries. In [8], we developed an approach
using TCAMs to efficiently search ACLs, involving an optimization

Figure 1: Comparison of off-chip and on-chip logic minimization
methods.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’03, October 1-3, 2003, Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010...$5.00.

Transmit Data

Transmit

Workstation

Off-Chip Method

On-Chip Method

SOC

Proc MemI$

D$

Mem
I$

D$

Proc

Proc

Mem

DMA

Minimizer

109

technique using two-level logic minimization to reduce the size of
the ACL.

Dynamic hardware/software partitioning, IP routing table
reduction, and ACL reduction require dynamic execution of logic
minimization. Figure 1 highlights two possible methods for
performing logic minimization dynamically. In the off-chip method,
the application transfers the required data to a logic minimizer
executing on a desktop workstation accessible through a
communication link such as Ethernet. The workstation optimizes the
data and transmits the results back to the application. While an off-
chip method has the benefit of using a powerful workstation-based
minimizer, the communication overhead can greatly slow the
minimization process, especially when minimization is applied
frequently. The method also has drawbacks related to ensuring the
workstation is always available, and reducing security risks (ACL
lists are heavily guarded by most companies, for example).

Alternatively, we can perform logic minimization on-chip by
adding an on-chip minimizer to the chip itself. One approach to this
method executes the optimizer as an additional task that shares the
same processing resources as the application itself. Another
approach to the on-chip method implements the minimizer using a
separate embedded processor/memory system with direct access to
the main processor’s memory. Both on-chip approaches benefit
from reducing or eliminating data transfers between the application
and the logic minimizer, and they eliminate the complexity and
security issues of the off-chip approach.

In either on-chip minimization approach, the logic minimizer
will have limited processing resources, in terms of both processor
speed and available instruction and data memory. These limitations
require the need for a lean minimizer designed to execute on-chip.
However, a lean minimizer must still provide “good enough” results
within a reasonable time. We developed a lean software minimizer,
ROCM (Riverside On-Chip Minimizer), designed to execute on an
ARM7 processor [2], which is a low-cost lean 32-bit embedded
processor. While the use of ROCM to perform IP routing table
reduction, ACL reduction, and dynamic hardware/software
partitioning provided good results with very low memory
requirements, these benefits came at the cost of slower execution
speed and additional energy consumption require by the minimizer.

In this paper, we present a codesigned on-chip minimizer that
improves performance and reduces energy consumption. We started
with customized versions of ROCM, called ROCM-32 and ROCM-
128, customized for applications with fixed input sizes of 32 bits
and 128 bits, respectively. In our approach, we first modified the
data structures and algorithms used by ROCM to make ROCM more
amenable to hardware/software partitioning. We then isolated the
critical computational kernels and partitioned these functions/loops
to a minimization coprocessor. Our codesigned on-chip minimizer
results in better execution time and reduced energy.

2. Previous work
The general two-level logic minimization problem for heuristic
minimizers can be stated as:

Given the inputs F (cover of the on-set) and D (cover of the
don’t care set) of an incompletely specified logic function,
determine a cover of F that is minimal, where a minimal cover
of F is a cover that is not a proper superset of any other cover
of the function.

We designed our original two-level logic minimization

algorithm, ROCM, employing techniques used by both Espresso-II
[3] and Presto [12], which form the heart of many popular

commercial synthesizers today. The ROCM algorithm uses a simple
heuristic approach with a single expand phase implemented with the
main goal of very small memory usage. First, ROCM orders the
implicants according to decreasing implicant size, under the
assumption that larger implicants are more likely to cover other
implicants and less likely to be covered by other cubes [3]. ROCM
uses an iterative expansion process that attempts to expand each
implicant and determines if each expansion is valid. While the use
of the off-set for determining the validity of expanded implicants, as
is done by Espresso-II, yields a very efficient algorithm, the size of
the off-set can be very large. We therefore chose not to compute the
off-set, and we instead employ a tautology-based approach similar to
that used by Presto. Using this simplified methodology, ROCM
required on average an order of magnitude less code size and only
one third the data memory of Espresso-II. ROCM’s low memory
requirements came at the expense of a mere 2% decrease in
minimization quality. ROCM’s execution time (ignoring
communication time) was 13% longer, but when applied
incrementally (as typical for the network applications) was 10 times
faster, and when executing on an ARM7 was still 2-5 times faster
than Espresso-II on a 500 MHz Sun Ultra60 workstation.

In embedded systems, customizing an algorithm for a particular
application is often beneficial. A customized version of our logic
minimizer would require less memory and reduce dynamic memory
allocation while improving performance. Therefore, in our original
work, we created customized versions of ROCM, called ROCM-32
and ROCM-128, optimized for applications with known input size
[8]. For example, ROCM-32 is optimized for routing table reduction
applications where the input size is 32-bits. ROCM-32 required an
average of 11% less data memory and 37% less execution time than
the non-customized version.

Cong et al [4][5] sped up two-level logic minimization by
utilizing an FPGA to speedup the tautology checking algorithm of
Espresso-II. In their work, the hardware coprocessor performs
tautology checking for functions of eight or fewer variables. Their
implementation using an FPGA achieved an average speedup of
1.36, with a maximum speedup of 2.94. The main limitation of their
approach is the use of a minterm evaluator for which 2k terms must
be evaluated, where k is the number of input variables. The
hardware required for a larger number of variables quickly becomes
infeasible using their coprocessor design.

In designing our codesign on-chip logic minimizer, we can
exploit the customization of ROCM to the input size of the intended
application. The known input size of the minimization algorithms
allows for better partitioning and small hardware requirements. A
small, embedded processor is still required as there is much dynamic
memory allocation and control logic, which is more feasible to
implement in software than hardware. We will design the hardware
coprocessor to efficiently implement the critical computational
kernels within our minimization algorithms.

3. Codesigned On-Chip Logic Minimizer
We performed an initial profiling of the customized ROCM-32 and
ROCM-128 programs to determine the critical kernels of those logic
minimizers. To profile the programs, we used a SimpleScalar [11]
simulator, ported for the ARM family of processors, and extended to
produce an instruction trace. We then used a loop analysis tool [15]
to process the instruction trace along with the disassembled binary
executable to determine the critical functions, loops, and sub-loops.
Our initial profiling of the logic minimizers revealed good potential
speedups. However, we noticed some initial limitations resulting
from our algorithms’ implementation and the organization of data
structures. Our early investigation identified six critical kernels from

110

within ROCM-32 and ROCM-128 that could be potentially
implemented in hardware. However, we initially designed our
algorithms using dynamic memory allocation within the critical
software loops. We modified these algorithms to remove the
dynamic memory allocation from within the critical loops. While we
were able to rewrite the algorithms to eliminate the memory
allocation from the loops, we added additional code before the
critical loop to handle the memory allocation, resulting in 3% slower
execution. Fortunately, the degradation in execution speed is easily
overcome after partitioning our minimizer.

 Additionally, we performed another simple modification to the
logic minimization code to improve the potential speedup we could
achieve using a hardware coprocessor. The basic underlying data
structure used for storing implicants contains many different data
items. While these data items are used for various purposes
throughout the execution of our logic minimizer, many of these data
items are not needed during the critical portions of code. However,
in the original C code, the pertinent data items were interleaved with
the non-essential data items throughout the data structure. Using a
compiler that byte-aligns data structures, the data items that we are
interested in will reside at multiple memory locations. Therefore, the
original data structure organization would require more memory
accesses by the hardware coprocessor during execution. Therefore,
we reorganized the data structures to ensure the required data items
were located in sequential memory locations as tightly packed as
possible.

This necessary rewriting of the algorithms and data structures
for more efficient hardware execution is something often overlooked
in codesign research. The rewriting was quite fundamental and
likely could not be automated easily using existing compiler or
synthesis transformation methods. Vahid et al [6] observed this
phenomenon in several other applications. The necessary rewriting
has implications for top-down codesign approaches that seek to
automatically partition a single specification among hardware and
software.

After we modified our logic minimization tools, we again
profiled ROCM-32 for IP routing table reduction and profiled
ROCM-128 for network ACL reduction. Table 2 displays the
profiling results for ROCM-32, and Table 1 displays the profiling
results for ROCM-128, listing the six critical kernels that we
identified. Function/Loop identifies the critical kernels. TotalInstr is
the total number of instructions of the application. LoopInstr is the
number of instructions within the critical kernel. LoopTime% is the
percent of overall execution time spent within the critical kernel.
LoopSize% is the percent of overall code size corresponding to the
critical kernel. SpeedupBound is the maximum speedup possible
assuming the critical kernel is executed in zero time. For ROCM-32,

the six critical functions/loops account for over 90% of the
execution time but less than 2% of the overall code. Similarly,
ROCM-128 accounts for over 90% of the execution time and only
3% of the code. The six critical kernels include DoesInter, SetLit,
GetLit, IsCov, Tautology.1, and Cofactor.1. DoesInter determines if
two implicants intersect. SetLit sets a literal within an implicant to
the specified value. GetLit retrieves a specific literal from within an
implicant. IsCov determines if an implicant is covered by another
implicant. Tautology.1 is a loop that handles special cases for
determining if the specified function is a tautology. Finally,
Cofactor.1 is the main loop that determines the cofactor with respect
to a specified implicant.

Figure 2(a) shows the overall architecture of our codesigned
minimizer, which consists of an ARM7 processor coupled with a
small memory and the minimization coprocessor. Additionally, the
coprocessor has direct access to memory. We implemented all six
critical kernels within the coprocessor. We modified the
minimization software running on the ARM7 to activate the
coprocessor instead of executing the original code. During the
coprocessor activation, the software transfers the required
initialization information along with an encoded value indicating
which of the six kernels is to be executed. After activating the
coprocessor, we place the ARM7 in a low power mode until the
coprocessor wakes up the processor using an interrupt, signaling
completion.

Figure 2(b) shows a more detailed architecture of the
minimization coprocessor. The Proc/Mem Interface is responsible
for communication with the processor and internal hardware
components. The Proc/Mem Interface also handles all memory
accesses for DoesInter, GetLit, SetLit, and IsCov, as all four of these
hardware components are implemented as combinational logic
consisting of simple logic gates, 2-bit muxes, and shifters. On the
other hand, Tautology.1 and Cofactor.1 perform many memory
accesses, as both algorithms must traverse an array of implicants
during execution. Therefore, we implemented Tautology.1 and
Cofactor.1 as separate hardware components that receive the
initialization data from the Proc/Mem Interface but during execution
have direct access to memory. While we can implement the internal
computation required by Cofactor.1 using simple logic gates,
adders, and shifters, Tautlogy.1 also requires the use of a 32-bit
multiplier.

We created two codesigned on-chip logic minimizers for the
two distinct input sizes needed for our applications. The codesigned
version of ROCM-32 will be referred to as CD-ROCM-32, and the
codesigned version of ROCM-128 will be referred to as CD-
ROCM-128.

Table 1: ROCM-128 profiling results for ACL reduction.

Function/
Loop

Total
Instr.

Loop
Instr.

Loop
Time%

Loop
Size%

Speedup
Bound

DoesInter 15518 51 21.3% 0.33% 1.3
SetLit 15518 27 21.3% 0.17% 1.3
GetLit 15518 12 25.9% 0.08% 1.4
IsCov 15518 83 0.5% 0.54% 1.0

Tautology.1 15518 204 11.0% 1.32% 1.1
Cofactor.1 15518 59 12.8% 0.38% 1.1

Overall 15518 436 92.8% 2.81% 13.9

Table 2: ROCM-32 profiling results for IP router table reduction.

Function/
Loop

Total
Instr.

Loop
Instr.

Loop
Time%

Loop
Size%

Speedup
Bound

DoesInter 15401 34 42.7% 0.22% 1.7
SetLit 15401 23 5.7% 0.15% 1.1
GetLit 15401 8 8.8% 0.05% 1.1
IsCov 15401 67 3.4% 0.44% 1.0

Tautology.1 15401 67 1.7% 0.37% 1.0
Cofactor.1 15401 57 28.5% 0.44% 1.4

Overall 15401 256 90.7% 1.68% 10.8

111

4. Results
While our main requirements for an on-chip logic minimizer is
small instruction and data memory requirements, the execution time,
required hardware area, and power consumption are also important.
In our original approach, we only required a small ARM7 processor
to execute our logic minimization software. The addition of an
ARM7 dedicated to executing our software minimizer would require
roughly 100,000 gates including caches and consume 49 mW of
power executing at 75 MHz. Such an addition is small compared
with current chip capacities of several million gates; we saw a router
chip 3 years ago with 36 ARM processors. Nevertheless, we can
eliminate the need for an additional processor by sharing a single
processor with the main application, if the main application’s time
constraints allow for this sharing. However, our codesigned on-chip
logic minimizer requires the use of dedicated hardware resources.

We implemented the coprocessor for CD-ROCM-32 and CD-
ROCM-128 using VHDL to determine the required hardware area
and power consumption. We synthesized both coprocessors using
Synopsys Deign Compiler [14] using the UMC 0.18µm technology
library provided by Artisan Components [1]. Furthermore, we
determined the power consumption of both coprocessor using
Design Compiler and gate-level simulations. The CD-ROCM-32
coprocessor required roughly 19,000 gates and has a power
consumption of 100 mW when active. The CD-ROCM-128

minimizer required roughly 32,000 gates with a power consumption
of 388 mW. Both coprocessors execute at 200 MHz.

Table 3 highlights the speedup of our codesigned minimizers for
IP routing table reduction, ACL reduction, and logic synthesis
optimization with dynamic hardware/software partitioning. For IP
routing table reduction, we compared ROCM-32 with our
codesigned CD-ROCM-32, and for ACL reduction and dynamic
hardware/software partitioning, we compared ROCM-128 with our
codesigned CD-ROCM-128. Orig. SW Time is the time required by
our software only minimizer. SW Loop Time is the total time
required by the six critical kernels when implemented in hardware.
HW Loop Time is the time required for those critical kernels when
executed using our hardware coprocessor. HW/SW Time is the total
time for required by our codesigned minimizer. Speedup is the
overall speedup of our codesigned minimizer compared to the all
software version. Our overall speedup for CD-ROCM-32 over an all
software approach is 7.6, and our overall speedup of CD-ROCM-
128 is 7.9.

Table 3 also provides the energy reduction of our codesigned
minimizers over the software based ROCM-32 and ROCM-128.
Orig. SW Energy is the energy required by our original software
minimization tools. SW Energy is the energy consumed by the
ARM7 to execute the software for our codesigned logic minimizers.
HW Energy is the energy required by our minimization

Figure 2: Codesigned on-chip logic minimizer architecture: (a) overall codesigned minimizer architecture, (b) detailed co-processor
architecture.

Table 3: Codesigned on-chip logic minimizer speedup and energy reduction for IP routing table reduction, ACL reduction, and dynamic
HW/SW partitioning logic synthesis compared with ROCM-32 and ROCM-128.

Performance (s) Energy (mJ) Codesigned
Minimizer Orig. SW

Time
SW Loop

Time
HW Loop

Time
HW/SW

Time Speedup Orig. SW
Energy

SW
Energy

HW
Energy

Total
Energy

Energy
Savings

CD-ROCM-32 (IP) 1.64 1.49 0.06 0.22 7.6 80.1 8.2 6.3 14.6 81.8%

CD-ROCM-128 (ACL) 1.53 1.42 0.08 0.19 7.9 74.7 6.4 32.3 38.8 48.1%

CD-ROCM-128 (LogSyn) 0.054 0.050 0.003 0.007 7.9 2.61 0.22 1.14 1.36 47.8%

 Average: 7.8 Average: 59.2%

(a)

MEM

ARM7

Min.
Coproc.

Proc/Mem Interface

DoesInter

IsCov

GetLit

SetLit

Tautology.1

Cofactor.1

data
addr

Minimization Coprocessor
(b)

112

coprocessors. Total Energy is the total energy required by our
codesigned on-chip logic minimizer. Finally, Energy Savings is the
percent energy reduction of our codesigned logic minimizers
compared with ROCM-32 and ROCM-128. We calculated the
energy required for ROCM-32, ROCM-128, and our codesigned
minimizers we used the following set of equations:
Although the minimization coprocessors required up to an order of
magnitude more power than the ARM7 processor, the overall
energy reduction of our codesigned minimizers is on average 59.2%.
Furthermore, CD-ROCM-32 requires over 81% less energy than
ROCM-32, while CD-ROCM-128 requires roughly 48% less energy
than ROCM-128.

We also analyzed the performance of our codesigned on-chip
logic minimizers compared to our original on-chip minimizer,
ROCM, and the customized version ROCM-32 and ROCM-128.
Table 4 presents overall execution times of ROCM, ROCM-32, and
CD-ROCM-32 in performing routing table reduction using data
from for four large network routers, MaeWest, AADS, Paix, and
PacBell, from data available at [10]. Furthermore, Table 5 presents
overall execution time for performing ACL reduction of five access
control lists ranging in size from 99 entries to over 3000 entries. For
performing IP routing table reduction, our codesigned on-chip
minimizer CD-ROCM-32 has a maximum speedup of 12.8 and an
average speedup of 12.1 compared to ROCM. Furthermore,
although logic minimization is executing on-chip using a 75 MHz
ARM7 processor coupled with a 200 MHz coprocessor, CD-
ROCM-32 is on average 1.2 times faster than Espresso-II executing
on a 500 MHz Sun Ultra60 workstation for performing IP routing
table reduction. For performing ACL reduction, CD-ROCM-128
has a maximum speedup of 18.5 and an average speedup of 15.3
compared to our initial on-chip logic minimizer.

5. Conclusions
On-chip logic minimization requires a fast and lean minimizer
component producing “good enough” results. We have developed
such a component through hardware/software partitioning,
achieving speedups of nearly 8x compared to an earlier software-
only minimizer component, while using a very reasonable number
of extra gates. The codesigned component also reduces energy by
more than half. During our codesign process, we needed to modify
the underlying data structures and algorithms of ROCM, which may
imply new directions of hardware/software partitioning research.

The feasibility of fast and lean on-chip logic minimization may open
up many new applications of logic minimization, beyond the
networking and dynamic partitioning applications we described, that
were previously not considered feasible due to the complexity of
off-chip logic minimization.

6. Acknowledgements
This work was supported in part by the National Science
Foundation (CCR-0203829), the Semiconductor Research
Corporation, and a Department of Education GAANN fellowship.

7. References
[1] Artisan Components. http://www.artisan.com, 2003.
[2] Advanced RISC Machines Ltd. ARM7.

http://www.arm.com/armtech/ARM7_Thumb/, 2002.
[3] Brayton, R., et al. Logic Minimization Algorithms for VLSI

Synthesis. Kluwer Academic Publishers, Boston, MA, 1984.
[4] Cong, J., J. Peck. On Acceleration on the Check Tautology

Logic Synthesis Algorithm using an FPGA-based
Reconfigurable Coprocessor. Proc. Field-Programmable
Custom Computing Machines (FCCM), 1997.

[5] Cong, J., J. Peck. On Acceleration on the Check Tautology
Logic Synthesis Algorithm using an FPGA-based
Reconfigurable Coprocessor. Technical Report TR-970010,
University of California, Los Angeles, 1997.

[6] Grattan, B., G. Stitt and F. Vahid. Codesign Extended
Applications. IEEE/ACM Int. Symposium on
Hardware/Software Codesign, May 2002, pp. 1-6.

[7] Liu, H. Routing Table Compaction in Ternary-CAM. IEEE
Micro, pp. 58-64, Jan/Feb 2002.

[8] Lysecky, R., F. Vahid. On-Chip Logic Minimization. Proc. 40th
Design Automation Conference, 2003.

[9] McAuley, A. P. Francis. Fast Router Table Lookup Using
CAMs. Proc. Infocom, Vol. 3, pp. 1382-91, 1993.

[10] Merit Network, Inc. Internet Routing Table Statistics,
http://www.merit.edu/ipma/routing_table/, 2002.

[11] SimpleScalar LLC. http://www.simplescalar.com, 2003.
[12] Stitt, G., R. Lysecky, F. Vahid. Dynamic Hardware/Software

Partitioning: A First Approach. Proc. 40th Design Automation
Conference, 2003.

[13] Svoboda, A., D.E. White. Advanced Logical Circuit Design
Techniques. Garland Press, New York, 1979.

[14] Synopsys, Inc. Design Compiler. http://www.synopsys.com,
2003.

[15] Villarreal, J., R. Lysecky, S. Cotterell, F. Vahid. Loop Analysis
of Embedded Applications. UC Riverside Technical Report
UCR-CSE-01-03, 2001. totalstaticARMactiveHWHW

ARMactiveactiveARMARMidleidleARMARM

HWARMtotal

tPtPE
tPtPE

EEE

×+×=

×+×=
+=

)(

)()()()(

Table 4: Execution time (seconds) of ROCM, ROCM-32, and
CD-ROCM-32 for IP routing table reduction, and speedup of CD-

ROCM-32 versus ROCM executing on a 75MHz ARM7.

Example ROCM ROCM-32 CD-
ROCM-32 Speedup

MaeWest 2214 1328 175 12.7
AADS 2341 1419 187 12.5
Paix 271 199 26 10.4

PacBell 2666 1581 208 12.8
 Average: 12.1

Table 5: Execution time (seconds) of ROCM, ROCM-128, and
CD-ROCM-128 for ACL reduction, and speedup of CD-ROCM-

128 versus ROCM executing on a 75MHz ARM7.

Example ROCM ROCM-128 CD-
ROCM-128 Speedup

Bad 15.63 8.22 1.04 15.0
Typ1 6.87 5.89 0.72 9.5
Typ2 6.15 2.62 0.33 18.5
Long 1572.44 686.81 86.94 18.1
Univ 17.98 86.94 1.16 15.6

 Average: 15.3

113

