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Abstract 
Boolean logic minimization is traditionally used in logic synthesis 
tools running on powerful desktop computers. However, logic 
minimization has recently been proposed for dynamic use in 
embedded systems, including network route table reduction, 
network access control list table reduction, and dynamic 
hardware/software partitioning. These new uses require logic 
minimization to run dynamically as part of an embedded system’s 
active operation. Performing such dynamic logic minimization on-
chip greatly reduces system complexity and security versus an 
approach that involves communication with a desktop logic 
minimizer. An on-chip minimizer must be exceptionally lean yet 
yield good enough results. Previous software-only on-chip 
minimizer results have been good, but we show that a codesigned 
minimizer can be much better, executing nearly 8 times faster and 
consuming nearly 60% less energy, while yielding identical results.  
 
Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real-time 
and embedded systems  

General Terms: Algorithms, Performance. 
Keywords: Logic minimization, dynamic optimization, on-chip 
logic minimization, on-chip synthesis, system-on-a-chip, embedded 
systems, hardware/software codesign, embedded CAD. 

1. Introduction 
On-chip logic minimization is becoming increasingly important in 
applications requiring dynamic optimizations. Unfortunately, most 
logic minimization algorithms have been developed with the 
expectation the algorithms will be run on a desktop workstation. The 
use of these minimization algorithms for performing dynamic 
optimizations within an embedded system is limited. While the 
applications of on-chip logic minimization are just recently 
emerging, logic minimization is already useful in performing 
dynamic hardware/software partitioning, dynamically reducing 
network routing table size, and dynamically reducing network 
access control lists. 

In [12], we presented a first approach to dynamic 
hardware/software partitioning. In this approach, the dynamic 
partitioning system monitors an executing application, determines 
the critical loops of the application, and executes these loops in 
hardware using on-chip configurable logic. Such an approach 

requires several tools to convert the software description of the loop 
to hardware, including decompilation, logic synthesis, technology 
mapping, and place and route. During the logic synthesis phase, the 
dynamic hardware/software partitioning system uses two-level logic 
minimization in an iterative process to optimize the hardware 
circuit, requiring an on-chip logic minimizer. 

Logic minimization is also useful for performing optimization in 
other applications not related to synthesis of hardware circuits. Such 
applications include IP (Internet Protocol) routing table reduction 
and network access control list (ACL) reduction. Network routers 
route an incoming IP packet to its destination by determining the 
packet’s next hop. The router compares the packet’s destination IP 
with the router’s routing table and uses the longest prefix match to 
select the packet’s destination port. While simple lookup schemes 
work for small routers, large network routers with ten of thousands 
of routing table entries can require long lookup times. Longest 
prefix matching can be directly mapped to Ternary CAMs [9]. 
However, TCAMs require large hardware resources and tend to 
have high power consumption. Liu developed a method for reducing 
the routing table size using two-level logic minimization and hence 
reducing the cost of using TCAMs [7].  

Logic minimization is also helpful in reducing the size of a 
network router’s access control list. Most commercially available 
network routers have ACLs that allow the router to accept or deny 
incoming IP packets. The router uses information from the incoming 
IP packet to search the ACL for the first matching entry and takes 
the associated action of either permitting the packet or denying the 
packet. Large ACLs often have thousands of entries, making 
sequential lookup infeasible. Furthermore, hardware-based parallel 
lookup approaches are limited because the approach must preserve 
the ordering of the ACL entries. In [8], we developed an approach 
using TCAMs to efficiently search ACLs, involving an optimization 

Figure 1: Comparison of off-chip and on-chip logic minimization 
methods. 
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technique using two-level logic minimization to reduce the size of 
the ACL.  

Dynamic hardware/software partitioning, IP routing table 
reduction, and ACL reduction require dynamic execution of logic 
minimization. Figure 1 highlights two possible methods for 
performing logic minimization dynamically. In the off-chip method, 
the application transfers the required data to a logic minimizer 
executing on a desktop workstation accessible through a 
communication link such as Ethernet. The workstation optimizes the 
data and transmits the results back to the application. While an off-
chip method has the benefit of using a powerful workstation-based 
minimizer, the communication overhead can greatly slow the 
minimization process, especially when minimization is applied 
frequently. The method also has drawbacks related to ensuring the 
workstation is always available, and reducing security risks (ACL 
lists are heavily guarded by most companies, for example).  

Alternatively, we can perform logic minimization on-chip by 
adding an on-chip minimizer to the chip itself. One approach to this 
method executes the optimizer as an additional task that shares the 
same processing resources as the application itself. Another 
approach to the on-chip method implements the minimizer using a 
separate embedded processor/memory system with direct access to 
the main processor’s memory. Both on-chip approaches benefit 
from reducing or eliminating data transfers between the application 
and the logic minimizer, and they eliminate the complexity and 
security issues of the off-chip approach.  

In either on-chip minimization approach, the logic minimizer 
will have limited processing resources, in terms of both processor 
speed and available instruction and data memory. These limitations 
require the need for a lean minimizer designed to execute on-chip. 
However, a lean minimizer must still provide “good enough” results 
within a reasonable time. We developed a lean software minimizer, 
ROCM (Riverside On-Chip Minimizer), designed to execute on an 
ARM7 processor [2], which is a low-cost lean 32-bit embedded 
processor. While the use of ROCM to perform IP routing table 
reduction, ACL reduction, and dynamic hardware/software 
partitioning provided good results with very low memory 
requirements, these benefits came at the cost of slower execution 
speed and additional energy consumption require by the minimizer. 

In this paper, we present a codesigned on-chip minimizer that 
improves performance and reduces energy consumption. We started 
with customized versions of ROCM, called ROCM-32 and ROCM-
128, customized for applications with fixed input sizes of 32 bits 
and 128 bits, respectively. In our approach, we first modified the 
data structures and algorithms used by ROCM to make ROCM more 
amenable to hardware/software partitioning. We then isolated the 
critical computational kernels and partitioned these functions/loops 
to a minimization coprocessor. Our codesigned on-chip minimizer 
results in better execution time and reduced energy. 

2. Previous work 
The general two-level logic minimization problem for heuristic 
minimizers can be stated as:  

 
Given the inputs F (cover of the on-set) and D (cover of the 
don’t care set) of an incompletely specified logic function, 
determine a cover of F that is minimal, where a minimal cover 
of F is a cover that is not a proper superset of any other cover 
of the function. 
 
We designed our original two-level logic minimization 

algorithm, ROCM, employing techniques used by both Espresso-II 
[3] and Presto [12], which form the heart of many popular 

commercial synthesizers today. The ROCM algorithm uses a simple 
heuristic approach with a single expand phase implemented with the 
main goal of very small memory usage. First, ROCM orders the 
implicants according to decreasing implicant size, under the 
assumption that larger implicants are more likely to cover other 
implicants and less likely to be covered by other cubes [3]. ROCM 
uses an iterative expansion process that attempts to expand each 
implicant and determines if each expansion is valid. While the use 
of the off-set for determining the validity of expanded implicants, as 
is done by Espresso-II, yields a very efficient algorithm, the size of 
the off-set can be very large. We therefore chose not to compute the 
off-set, and we instead employ a tautology-based approach similar to 
that used by Presto. Using this simplified methodology, ROCM 
required on average an order of magnitude less code size and only 
one third the data memory of Espresso-II. ROCM’s low memory 
requirements came at the expense of a mere 2% decrease in 
minimization quality. ROCM’s execution time (ignoring 
communication time) was 13% longer, but when applied 
incrementally (as typical for the network applications) was 10 times 
faster, and when executing on an ARM7 was still 2-5 times faster 
than Espresso-II on a 500 MHz Sun Ultra60 workstation.  

In embedded systems, customizing an algorithm for a particular 
application is often beneficial. A customized version of our logic 
minimizer would require less memory and reduce dynamic memory 
allocation while improving performance. Therefore, in our original 
work, we created customized versions of ROCM, called ROCM-32 
and ROCM-128, optimized for applications with known input size 
[8]. For example, ROCM-32 is optimized for routing table reduction 
applications where the input size is 32-bits. ROCM-32 required an 
average of 11% less data memory and 37% less execution time than 
the non-customized version. 

Cong et al [4][5] sped up two-level logic minimization by 
utilizing an FPGA to speedup the tautology checking algorithm of 
Espresso-II. In their work, the hardware coprocessor performs 
tautology checking for functions of eight or fewer variables. Their 
implementation using an FPGA achieved an average speedup of 
1.36, with a maximum speedup of 2.94. The main limitation of their 
approach is the use of a minterm evaluator for which 2k terms must 
be evaluated, where k is the number of input variables. The 
hardware required for a larger number of variables quickly becomes 
infeasible using their coprocessor design.  

In designing our codesign on-chip logic minimizer, we can 
exploit the customization of ROCM to the input size of the intended 
application. The known input size of the minimization algorithms 
allows for better partitioning and small hardware requirements. A 
small, embedded processor is still required as there is much dynamic 
memory allocation and control logic, which is more feasible to 
implement in software than hardware. We will design the hardware 
coprocessor to efficiently implement the critical computational 
kernels within our minimization algorithms.  

3. Codesigned On-Chip Logic Minimizer 
We performed an initial profiling of the customized ROCM-32 and 
ROCM-128 programs to determine the critical kernels of those logic 
minimizers. To profile the programs, we used a SimpleScalar [11] 
simulator, ported for the ARM family of processors, and extended to 
produce an instruction trace. We then used a loop analysis tool [15] 
to process the instruction trace along with the disassembled binary 
executable to determine the critical functions, loops, and sub-loops. 
Our initial profiling of the logic minimizers revealed good potential 
speedups. However, we noticed some initial limitations resulting 
from our algorithms’ implementation and the organization of data 
structures. Our early investigation identified six critical kernels from 
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within ROCM-32 and ROCM-128 that could be potentially 
implemented in hardware. However, we initially designed our 
algorithms using dynamic memory allocation within the critical 
software loops. We modified these algorithms to remove the 
dynamic memory allocation from within the critical loops. While we 
were able to rewrite the algorithms to eliminate the memory 
allocation from the loops, we added additional code before the 
critical loop to handle the memory allocation, resulting in 3% slower 
execution. Fortunately, the degradation in execution speed is easily 
overcome after partitioning our minimizer.  

 Additionally, we performed another simple modification to the 
logic minimization code to improve the potential speedup we could 
achieve using a hardware coprocessor. The basic underlying data 
structure used for storing implicants contains many different data 
items. While these data items are used for various purposes 
throughout the execution of our logic minimizer, many of these data 
items are not needed during the critical portions of code. However, 
in the original C code, the pertinent data items were interleaved with 
the non-essential data items throughout the data structure. Using a 
compiler that byte-aligns data structures, the data items that we are 
interested in will reside at multiple memory locations. Therefore, the 
original data structure organization would require more memory 
accesses by the hardware coprocessor during execution. Therefore, 
we reorganized the data structures to ensure the required data items 
were located in sequential memory locations as tightly packed as 
possible.  

This necessary rewriting of the algorithms and data structures 
for more efficient hardware execution is something often overlooked 
in codesign research. The rewriting was quite fundamental and 
likely could not be automated easily using existing compiler or 
synthesis transformation methods. Vahid et al [6] observed this 
phenomenon in several other applications. The necessary rewriting 
has implications for top-down codesign approaches that seek to 
automatically partition a single specification among hardware and 
software.  

After we modified our logic minimization tools, we again 
profiled ROCM-32 for IP routing table reduction and profiled 
ROCM-128 for network ACL reduction. Table 2 displays the 
profiling results for ROCM-32, and Table 1 displays the profiling 
results for ROCM-128, listing the six critical kernels that we 
identified. Function/Loop identifies the critical kernels. TotalInstr is 
the total number of instructions of the application. LoopInstr is the 
number of instructions within the critical kernel. LoopTime% is the 
percent of overall execution time spent within the critical kernel. 
LoopSize% is the percent of overall code size corresponding to the 
critical kernel. SpeedupBound is the maximum speedup possible 
assuming the critical kernel is executed in zero time. For ROCM-32, 

the six critical functions/loops account for over 90% of the 
execution time but less than 2% of the overall code. Similarly, 
ROCM-128 accounts for over 90% of the execution time and only 
3% of the code. The six critical kernels include DoesInter, SetLit, 
GetLit, IsCov, Tautology.1, and Cofactor.1. DoesInter determines if 
two implicants intersect. SetLit sets a literal within an implicant to 
the specified value. GetLit retrieves a specific literal from within an 
implicant. IsCov determines if an implicant is covered by another 
implicant. Tautology.1 is a loop that handles special cases for 
determining if the specified function is a tautology. Finally, 
Cofactor.1 is the main loop that determines the cofactor with respect 
to a specified implicant. 

Figure 2(a) shows the overall architecture of our codesigned 
minimizer, which consists of an ARM7 processor coupled with a 
small memory and the minimization coprocessor. Additionally, the 
coprocessor has direct access to memory. We implemented all six 
critical kernels within the coprocessor. We modified the 
minimization software running on the ARM7 to activate the 
coprocessor instead of executing the original code. During the 
coprocessor activation, the software transfers the required 
initialization information along with an encoded value indicating 
which of the six kernels is to be executed. After activating the 
coprocessor, we place the ARM7 in a low power mode until the 
coprocessor wakes up the processor using an interrupt, signaling 
completion.  

Figure 2(b) shows a more detailed architecture of the 
minimization coprocessor. The Proc/Mem Interface is responsible 
for communication with the processor and internal hardware 
components. The Proc/Mem Interface also handles all memory 
accesses for DoesInter, GetLit, SetLit, and IsCov, as all four of these 
hardware components are implemented as combinational logic 
consisting of simple logic gates, 2-bit muxes, and shifters. On the 
other hand, Tautology.1 and Cofactor.1 perform many memory 
accesses, as both algorithms must traverse an array of implicants 
during execution. Therefore, we implemented Tautology.1 and 
Cofactor.1 as separate hardware components that receive the 
initialization data from the Proc/Mem Interface but during execution 
have direct access to memory. While we can implement the internal 
computation required by Cofactor.1 using simple logic gates, 
adders, and shifters, Tautlogy.1 also requires the use of a 32-bit 
multiplier. 

We created two codesigned on-chip logic minimizers for the 
two distinct input sizes needed for our applications. The codesigned 
version of ROCM-32 will be referred to as CD-ROCM-32, and the 
codesigned version of ROCM-128 will be referred to as CD-
ROCM-128. 

Table 1: ROCM-128 profiling results for ACL reduction. 

Function/ 
Loop 

Total 
Instr. 

Loop 
Instr. 

Loop 
Time% 

Loop 
Size% 

Speedup 
Bound 

DoesInter 15518 51 21.3% 0.33% 1.3
SetLit 15518 27 21.3% 0.17% 1.3
GetLit 15518 12 25.9% 0.08% 1.4
IsCov 15518 83 0.5% 0.54% 1.0

Tautology.1 15518 204 11.0% 1.32% 1.1
Cofactor.1 15518 59 12.8% 0.38% 1.1

Overall 15518 436 92.8% 2.81% 13.9
 

Table 2: ROCM-32 profiling results for IP router table reduction. 

Function/ 
Loop 

Total 
Instr. 

Loop 
Instr. 

Loop 
Time% 

Loop 
Size% 

Speedup 
Bound 

DoesInter 15401 34 42.7% 0.22% 1.7
SetLit 15401 23 5.7% 0.15% 1.1
GetLit 15401 8 8.8% 0.05% 1.1
IsCov 15401 67 3.4% 0.44% 1.0

Tautology.1 15401 67 1.7% 0.37% 1.0
Cofactor.1 15401 57 28.5% 0.44% 1.4

Overall 15401 256 90.7% 1.68% 10.8
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4. Results  
While our main requirements for an on-chip logic minimizer is 
small instruction and data memory requirements, the execution time, 
required hardware area, and power consumption are also important. 
In our original approach, we only required a small ARM7 processor 
to execute our logic minimization software. The addition of an 
ARM7 dedicated to executing our software minimizer would require 
roughly 100,000 gates including caches and consume 49 mW of 
power executing at 75 MHz. Such an addition is small compared 
with current chip capacities of several million gates; we saw a router 
chip 3 years ago with 36 ARM processors. Nevertheless, we can 
eliminate the need for an additional processor by sharing a single 
processor with the main application, if the main application’s time 
constraints allow for this sharing. However, our codesigned on-chip 
logic minimizer requires the use of dedicated hardware resources.  

We implemented the coprocessor for CD-ROCM-32 and CD-
ROCM-128 using VHDL to determine the required hardware area 
and power consumption. We synthesized both coprocessors using 
Synopsys Deign Compiler [14] using the UMC 0.18µm technology 
library provided by Artisan Components [1]. Furthermore, we 
determined the power consumption of both coprocessor using 
Design Compiler and gate-level simulations. The CD-ROCM-32 
coprocessor required roughly 19,000 gates and has a power 
consumption of 100 mW when active. The CD-ROCM-128 

minimizer required roughly 32,000 gates with a power consumption 
of 388 mW. Both coprocessors execute at 200 MHz.  

Table 3 highlights the speedup of our codesigned minimizers for 
IP routing table reduction, ACL reduction, and logic synthesis 
optimization with dynamic hardware/software partitioning. For IP 
routing table reduction, we compared ROCM-32 with our 
codesigned CD-ROCM-32, and for ACL reduction and dynamic 
hardware/software partitioning, we compared ROCM-128 with our 
codesigned CD-ROCM-128. Orig. SW Time is the time required by 
our software only minimizer. SW Loop Time is the total time 
required by the six critical kernels when implemented in hardware. 
HW Loop Time is the time required for those critical kernels when 
executed using our hardware coprocessor. HW/SW Time is the total 
time for required by our codesigned minimizer. Speedup is the 
overall speedup of our codesigned minimizer compared to the all 
software version. Our overall speedup for CD-ROCM-32 over an all 
software approach is 7.6, and our overall speedup of CD-ROCM-
128 is 7.9.  

Table 3 also provides the energy reduction of our codesigned 
minimizers over the software based ROCM-32 and ROCM-128. 
Orig. SW Energy is the energy required by our original software 
minimization tools. SW Energy is the energy consumed by the 
ARM7 to execute the software for our codesigned logic minimizers. 
HW Energy is the energy required by our minimization 

Figure 2: Codesigned on-chip logic minimizer architecture: (a) overall codesigned minimizer architecture, (b) detailed co-processor 
architecture. 

 

Table 3: Codesigned on-chip logic minimizer speedup and energy reduction for IP routing table reduction, ACL reduction, and dynamic 
HW/SW partitioning logic synthesis compared with ROCM-32 and ROCM-128. 

Performance (s) Energy (mJ) Codesigned  
Minimizer Orig. SW 

Time 
SW Loop 

Time 
HW Loop 

Time 
HW/SW 

Time Speedup Orig. SW
Energy 

SW  
Energy 

HW  
Energy 

Total 
Energy 

Energy 
Savings 

CD-ROCM-32 (IP) 1.64 1.49 0.06 0.22 7.6 80.1 8.2 6.3 14.6 81.8%

CD-ROCM-128 (ACL) 1.53 1.42 0.08 0.19 7.9 74.7 6.4 32.3 38.8 48.1%

CD-ROCM-128 (LogSyn) 0.054 0.050 0.003 0.007 7.9 2.61 0.22 1.14 1.36 47.8%

   Average: 7.8   Average: 59.2%
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coprocessors. Total Energy is the total energy required by our 
codesigned on-chip logic minimizer. Finally, Energy Savings is the 
percent energy reduction of our codesigned logic minimizers 
compared with ROCM-32 and ROCM-128. We calculated the 
energy required for ROCM-32, ROCM-128, and our codesigned 
minimizers we used the following set of equations: 
Although the minimization coprocessors required up to an order of 
magnitude more power than the ARM7 processor, the overall 
energy reduction of our codesigned minimizers is on average 59.2%. 
Furthermore, CD-ROCM-32 requires over 81% less energy than 
ROCM-32, while CD-ROCM-128 requires roughly 48% less energy 
than ROCM-128. 

We also analyzed the performance of our codesigned on-chip 
logic minimizers compared to our original on-chip minimizer, 
ROCM, and the customized version ROCM-32 and ROCM-128. 
Table 4 presents overall execution times of ROCM, ROCM-32, and 
CD-ROCM-32 in performing routing table reduction using data 
from for four large network routers, MaeWest, AADS, Paix, and 
PacBell, from data available at [10]. Furthermore, Table 5 presents 
overall execution time for performing ACL reduction of five access 
control lists ranging in size from 99 entries to over 3000 entries. For 
performing IP routing table reduction, our codesigned on-chip 
minimizer CD-ROCM-32 has a maximum speedup of 12.8 and an 
average speedup of 12.1 compared to ROCM. Furthermore, 
although logic minimization is executing on-chip using a 75 MHz 
ARM7 processor coupled with a 200 MHz coprocessor, CD-
ROCM-32 is on average 1.2 times faster than Espresso-II executing 
on a 500 MHz Sun Ultra60 workstation for performing IP routing 
table reduction. For performing ACL reduction, CD-ROCM-128 
has a maximum speedup of 18.5 and an average speedup of 15.3 
compared to our initial on-chip logic minimizer. 

5. Conclusions 
On-chip logic minimization requires a fast and lean minimizer 
component producing “good enough” results. We have developed 
such a component through hardware/software partitioning, 
achieving speedups of nearly 8x compared to an earlier software-
only minimizer component, while using a very reasonable number 
of extra gates. The codesigned component also reduces energy by 
more than half. During our codesign process, we needed to modify 
the underlying data structures and algorithms of ROCM, which may 
imply new directions of hardware/software partitioning research. 

The feasibility of fast and lean on-chip logic minimization may open 
up many new applications of logic minimization, beyond the 
networking and dynamic partitioning applications we described, that 
were previously not considered feasible due to the complexity of 
off-chip logic minimization.  
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Table 4: Execution time (seconds) of ROCM, ROCM-32, and 
CD-ROCM-32 for IP routing table reduction, and speedup of CD-

ROCM-32 versus ROCM executing on a 75MHz ARM7. 

Example ROCM ROCM-32 CD-
ROCM-32 Speedup 

MaeWest 2214 1328 175 12.7
AADS 2341 1419 187 12.5
Paix 271 199 26 10.4

PacBell 2666 1581 208 12.8
   Average: 12.1

 

Table 5: Execution time (seconds) of ROCM, ROCM-128, and 
CD-ROCM-128 for ACL reduction, and speedup of CD-ROCM-

128 versus ROCM executing on a 75MHz ARM7. 

Example ROCM ROCM-128 CD-
ROCM-128 Speedup 

Bad 15.63 8.22 1.04 15.0
Typ1 6.87 5.89 0.72 9.5
Typ2 6.15 2.62 0.33 18.5
Long 1572.44 686.81 86.94 18.1
Univ 17.98 86.94 1.16 15.6

  Average: 15.3
 

113


