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Abstract

Earlier work has demonstrated that partitioning one
large behavioral process into smaller ones before synthe-
sis can yield numerous advantages, such as reduced syn-
thesis runtime, easier package constraint satisfaction,
reduced power consumption, improved performance, and
hardware/software tradeoffs. In this paper, we describe
a novel three-step functional partitioning methodology
for automatically dividing a large behavioral process into
mutually-exclusive subprocesses, and we define the prob-
lems and our solutions for each step. The three steps are
granularity selection, pre-clustering, and N-way assign-
ment. We refer to experiments throughout that demon-
strate the effectiveness of the solutions.

1 Introduction

Functional partitioning divides a system’s functional
specification into multiple sub-specifications. Each sub-
specification represents the functionality of a system
component, such as a custom-hardware or software pro-
cessor, and is eventually synthesized down to gates or
compiled down to machine code. While much earlier re-
search focuses on the partitioning of a large number of
processes among processors, we have found that many
applications consist of only one or a small number of
very large processes.

In such cases, we have found numerous benefits to
automatically partitioning, before synthesis or compila-
tion, one large process into smaller sub-processes that
execute in mutual exclusion [1]. One benefit is an order-
of-magnitude reduction in logic synthesis runtimes (tens
of hours down to tens of minutes). Such reductions oc-
cur because synthesis tool heuristics are usually non-
linear, so the sum of runtimes for synthesizing several
small processes (where we assume the common situation
of a synthesis tool synthesizing each process to its own
custom processor) can be much less than the runtime for
one large process. A related benefit is improved system
performance sometimes achieved when the smaller pro-
cesses can be synthesized into custom processors with
shorter clock periods than one large processor, and when
these shorter periods outweigh the overhead of inter-
processor communication In fact, synthesis tool manu-
als often recommend that a designer functionally parti-
tion a system manually before synthesis for these very
reasons. (Of course, further performance benefits can
be gained by allowing the multiple processes to exe-
cute concurrently, a natural extension of the work in
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this paper). Another benefit is the improved satisfac-
tion of input/output (I/O) and size capacity constraints
on a package such as an FPGA, resulting from nearly
order-of-magnitude reductions in inter-package signals
compared to structural partitioning, which is known to
be I/O limited [2]. Such improved satisfaction leads to
fewer packages and thus smaller board sizes and lower
cost systems, while also having implications for easing
the mapping problem of logic emulators. Our recent ex-
periments have demonstrated 50% reductions in power
consumption achievable through functional partition-
ing, since only one of the small mutually-exclusive pro-
cessors is active at a time, so the inactive processors con-
sume almost no power. Some hardware/software code-
sign researchers have shown the benefits of partitioning
a single process to reduce hardware cost or increase soft-
ware speed (e.g., (3, 4]). Other potential benefits include
concurrent synthesis or design, easier debug, and pos-
sibly fewer physical design problems when dealing with
several smaller modules rather than one large one.

Our earlier research has focused on functional parti-
tioning heuristics, rapid estimation during partitioning,
transformations for improving partitioning results, and
experiments demonstrating the benefits of such parti-
tioning. In this paper, we describe a novel three-step
functional partitioning methodology necessary to put
together the earlier pieces into a coherent automated
approach. We highlight experiments throughout. We
also summarize related work.

2 Problem description
2.1 Model

The input consists of a single behavioral process X,
such as a C program or a VHDL process. The process
describes a complex repeating sequential computation,
often consisting of numerous models of operation, and
typically requiring many hundreds or thousands of lines
of sequential program code. This process can be viewed
as consisting of a set of procedures F = {f1, f2,..., fn },
with one representing a main procedure (in VHDL, the
process body is the main procedure). A variable is
treated as a simple procedure, with reads and writes
being procedure calls. Execution of F' consists of pro-
cedures executing sequentially, starting with the main
procedure, which in turn calls other procedures; at any
given time, one and only one procedure is active — in
other words, the procedures are mutually exclusive.
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Fig. 1. The three partitioning steps on a simple example: (a) input specification with numerous procedures, (b)
access graph, (c) granularity selection (using exlining), (d) pre-clustering, (e) N-way assignment (among 2 parts).

Functional partitioning creates a partition P con-
sisting of a set of parts {p1,p2,...pm}, such that ev-
ery procedure f; is assigned to exactly one part p;, i.e.,
prUp2aU ..pm = Fand p;Np; = 0 for all 4,5, # j.
Each p; represents the functions to be implemented on
a single processor. Execution of F' is the same as above.
Since only one procedure is active at a time during exe-
cution, then only one processor will be active at a time,
so the processors are mutually exclusive.

Each part p; is converted to a single process before
synthesis; this process consists of a loop that detects a
request for one of the part’s procedures, receives the nec-
essary input parameters, calls the procedure, and sends
back any output parameters. All parameter passing oc-
curs over a single bus between the processors, called
a FunctionBus, consisting of shared address/data lines,
an address request control line, and a data request con-
trol line. The protocol is one of putting the destination
procedure’s address on the bus and pulsing the address
request, then putting each parameter on the bus and
pulsing the data request, possibly sending a parameter
in several chunks if its size exceeds the bus size.

Synthesis converts a process into a custom processor
component ¢;; for the applications we target, ¢; consists
of a non-trivial datapath and a complex controller with
hundreds of states. A procedure on ¢; may be imple-
mented using any of various techniques, such as a con-
trol subroutine, a datapath component, or even inlined.
Synthesis may implement some of a process’ procedures
in parallel, as long as data dependencies are not violated
— therefore, while the procedures are not necessarily mu-
tually exclusive after partitioning, the processors still
are mutually exclusive. Note that many processors will
likely co-exist on a single package (e.g., an ASIC).
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2.2 Tasks

Five tasks are necessary to achieve a good functional
partitioning. Model creation converts the input to an in-
ternal model; we use a call graph model. For example,
Figure 1(a) shows an extremely simplified input (the ex-
ample comes from a 720 VHDL example of a microwave-
transmitter controller) with one process Mwt, one global
variable, and numerous procedures. Figure 1(b) shows
the call graph, where each node represents a procedure,
and each edge a procedure call. A call graph easily
handles multiply-called and deeply nested procedures,
a comimon situation often overlooked. Allocation is the
task of instantiating processors of varying types; we as-
sume this is done beforehand. Partitioning is the task of
dividing the input process among the allocated proces-
sors — the focus of this paper. Transformation modifies
the input process into one with a different organization
but same overall functionality, leading to a better par-
tition, and is also mentioned in this paper. Estimation
provides data used to create values for design metrics.
We use two types of estimation. Pre-estimation com-
putes estimation information for a given graph node
(procedure) or edge, and is usually done once, before
partitioning heuristics are applied. Examples of pre-
estimated data include the number of bytes, gates, or
clock cycles for a functional object to execute on each
possible component, e.g., Figure 1(b) shows values for
calling frequency and bits per transfer for three edges.
Online-estimation determines actual metric values for a
given implementation by combining pre-estimated val-
ues, and is usually done hundreds or thousands of times
during application of a partitioning heuristic. It may
involve sophisticated data structures that can be incre-
mentally updated as objects are moved. We have de-
scribed estimation techniques elsewhere [5, 6].
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Fig. 2: Sequence of partitioning steps.

3 Partitioning methodology

We apply a three-step partitioning methodology to
obtain an implementation. They occur in sequence as
shown in Figure 2, though iterating over the sequence
is certainly desirable. We now describe each step.

3.1 Step 1: granularity selection

The goal of this partitioning step is to extract proce-
dures from the specification, which are to be assigned to
processors during subsequent N-way assignment. The
essential feature of this step is that it determines the
granularity of subsequent N-way assignment. Granular-
ity is a measure of the complexity of each procedure.
Fine-granularity means many procedures of low com-
plexity, while coarse granularity means few procedures
of high complexity. )

Improper granularity selection can have negative ef-
fects on subsequent partitioning results. First, fine-
granularity means little useful pre-estimation can be
done, which in turn means online estimation may be
less accurate. Alternatively, online estimation may be
made more complex to achieve accuracy, requiring more
time and thus prohibiting use of powerful N-way assign-
ment heuristics that need many estimates.

Second, fine-granularity means there will be numer-
ous procedures, preventing the use of powerful partition-
ing heuristics that have high, such as quadratic, runtime
complexities.

Third, coarse-granularity means that many behav-
iors are grouped together into an inseparable unit, so
any possible solution that separates those behaviors is
excluded. If coarse-grained procedures are not created
carefully, they can prevent good solutions.

From the above effects, we can see the importance
of a distinct partitioning step that chooses the proce-
dures very carefully. In our approach to this step, we
treat each statement as an atomic unit. Granularity
selection is thus the problem of partitioning statements
into procedures, such that: (1) procedures are as coarse-
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grained as possible, to enable maximum pre-estimation
and application of powerful N-way heuristics, and (2)
statements are grouped into a procedure only if their
separation would yield inferior solutions.

The most straightforward heuristic for this parti-
tioning step is to choose a particular specification con-~
struct to represent a procedure, such as each statement
or block. In our approach, we start by selecting each
user-defined procedure (along with each global and non-
scalar variable) as a procedure for partitioning. User-
defined procedures tend to be excellent coarse-grained
groupings of statements, but there is often a need for
some improvement, which can be obtained through trans-
formations.

Procedure inlining is the well-known transformation
of replacing a procedure call by the procedure’s con-
tents, thus making granularity coarser (the inlined pro-
cedure disappears, while all calling procedures are made
more complex).

Procedure cloning makes a copy of a procedure for
exclusive use by a particular caller. This transforma-
tion is a compromise between inlining and not inlining.
A multiply-called procedure when inlined might lead to
excessive size growth, but if not inlined might become a
communication bottleneck. Cloning eliminates the bot-
tleneck while avoiding excessive size growth. Prior ex-
periments demonstrate performance and I/O improve-
ments obtainable through cloning [7].

Procedure ezlining, as its name implies, is the in-
verse of inlining. It replaces a subsequence of a proce-
dure’s statements by a call to a new procedure contain-
ing only that subsequence. This transformation makes
the granularity finer, as it essentially replaces one proce-
dure by two simpler ones. We have isolated two forms
of exlining. Redundancy ezlining seeks to replace two
or more near-identical sequences of statements by one
procedure. We use an interactive approach based on
approximate-string matching, in which each statement
is encoded into a set of characters and appended to
a string represent the entire program, and then near-
redundant strings are searched for. Distinct-computation
ezlining seeks to divide a large sequence of statements
into several smaller procedures such that statements
within a procedure are tightly related and would thus
never be separated in a good N-way assignment solution.
Once again, we make statements our atomic unit; an ap-
proach at the arithmetic-operation level is described in
[8]. We transform the statements into a tree, and then
perform one of three heuristics (varying in their com-
plexity) that insert procedure nodes into the tree with
the goal of minimizing a cost function including proce-
dure size and communication. Further exlining details
can be found in [9].

Figure 1(c) illustrates sample call-graph modifica-
tions made during granularity selection on the earlier ex-
ample. The procedure Model! is large and accesses pro-



cedures that access both an external LCD and a trans-
mitter. Exlining introduces a new procedure Modla,
which makes the granularity finer and expanding the
partitioning solution space to hopefully include better
possible solutions. In particular, it separates the orig-
inal procedure’s statements into those that access the
LCD and those that access the transmitter. On the
other hand, LedClear is very small, consisting only of
one call to LedSend with a particular parameter value.
Thus, LedClear is inlined, making the granularity coarser
and thus eliminating hopefully inferior partitioning so-
lutions. Experiments illustrating the partitioning im-
provements obtained by exlining can be found in [9].

3.2 Step 2: pre-clustering

Given a set of procedures, the goal of pre-clustering
is to reduce the number of procedures for subsequent
N-way assignment, by merging procedures whose sepa-
ration among parts would never represent a good solu-
tion.

This step is distinguished from granularity selection
by the fact that the procedures being clustered here may
not be such that they could have been exlined into a sin-
gle new procedure; i.e., the calls to these procedures do
not appear as adjacent statements. Typically, calls to
such procedures are scattered throughout the specifica-
tion. This step is distinguished from N-way assignment
by the fact that each cluster does not represent a proces-
sor (many clusters may be assigned to each processor),
so this step cannot be guided by direct design metric
estimates as can N-way assignment.

We perform pre-clustering by using a hierarchical
clustering. The procedures created after granularity se-
lection are each converted to a graph node, and edges
are created between every pair weighed by the closeness
of the nodes. The closest pair of nodes is merged into a
new (hierarchical) node, and the merging repeats until
no pair of nodes exceeds a minimum closeness threshold.
Closeness is defined using a weighted sum of several nor-
malized closeness metrics. We must take care to define
these metrics as a normalized number (between 0 and 1),
because leaving such normalization to the user through
the selection of weights, as many approaches require, is
an extremely difficult if not impossible user task. We
describe our closeness metrics in [10]. Some of those
metrics are similar to those for logic-operation cluster-
ing [11] and arithmetic-operation clustering [12, 8].

Figure 1(d) illustrates results of pre-clustering on the
earlier example. Two procedures LedUpdate and Led-
Send communicate very heavily: 48 times per call to
LedUpdate, transmitting 8 bits each time. These two
procedures should probably never be separated. Since
LedSend actually appears 48 times inside LedUpdate, in-
lining during granularity selection was not a reasonable
option. We merge these two procedures during pre-
clustering; they are subsequently treated as one object.
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We demonstrated in [10] that pre-clustering can re-
duce the runtime of N-way assignment using simulated
annealing or Kernighan/Lin by between 25% and 30%.
For N-way greedy heuristics, pre-clustering can actually
improve the final results significantly. To illustrate the
benefits of pre-clustering, we experimented with two-
way partitioning of an Ethernet coprocessor example,
consisting of 125 procedures to be partitioned. The
tradeoffs between the amount of pre-clustering versus
the subsequent runtime of the Kernighan/Lin heuris-
tic and the cost of the final results are shown in Fig-
ure 3. Cost is unit-less number representing a weighted
sum of normalized size, I/O and performance metrics;
smaller means better. We see that when pre-clustering
merges until there are only 85 objects, runtime is de-
creased by 30%, and a better-cost partition is found by
the Kernighan/Lin heuristic. Merging to less than 55
objects yielded much higher costs, due to distant objects
being forcibly merged.
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Fig. 3: Pre-assignment clustering effects on iterative-
improvement runtime and resulting partition cost.

3.3 Step 3: N-way assignment

The goal of N-way assignment is to distribute the
procedures among the given set of processors. Granu-
larity selection and pre-clustering should have already
created a good set of procedures.

Constructive heuristics are used to create an initial
partition, and include random distributjon, as well as
clustering using the same closeness metrics defined above.
One additional metric is used: Balanced size is the size
of an implementation of both sets of nodes, divided by
the size of all nodes. This metric favors merging small
sets over large ones, thus preventing one set from get-
ting too large and defeating the purpose of functional
partitioning.

Iterative improvement heuristics improve a given par-
tition by moving procedures from one part to another
in order to reduce the value of a cost function. We
use three heuristics. Greedy improvement is a linear-
time heuristic that moves nodes that reduce cost un-
til no further such node is found. Simulated anneal-
ing uses randomized hill climbing to avoid local minima



at the expense of potentially long runtimes. An ex-
tended version of Kernighan/Lin uses a more restricted
method of hill climbing to avoid some local minima,
along with a tightly-coupled data structure, yielding
only O(nlog(n)) runtime complexity. We demonstrated
in [5] that this last heuristic obtains results nearly as
good as simulated annealing, but in just a few seconds
rather than many minutes.

We apply two transformations during N-way assign-
ment to improve partitioning results. Cloning, a trans-
formation defined earlier, can be performed selectively
along with this partitioning step, rather than trying
to clone only during granularity selection [7]. A sec-
ond transformation, port-calling, can be used to better
balance I/O among the parts and to reduce total I/0O
by eliminating the case where two parts have I/O ac-
cessing one external port. This transformation involves
replacing all accesses to each external port by a port-
call procedure, and then moving this procedure among
parts just like any other procedure. The port-call pro-
cedure acts as a broker, accessing the port, and send-
ing/receiving data over the FunctionBus to/from the
original accessing procedure.

Figure 1(e) shows the earlier example’s call graph af-
ter being partitioned into two parts. While not entirely
obvious from the figure because not all annotations are
shown, the partition minimizes communication, isolates
external I/O access to one or the other part, and cre-
ates roughly balanced parts, each of which is roughly
half the size of the original input.

We have performed numerous experiments illustrat-
ing the relative tradeoffs among various N-way heuris-
tics [5, 10]. We have also performed experiments show-
ing I/0O and performance improvements obtained through
cloning [7] as well as through port-calling [13].

4 Three-step experiments

The above-referenced experiments each illustrates the
impact of a particular technique applied at a particular
step. In this section, we demonstrate the impact of
combining some of those techniques in the three-step
methodology; a more extensive combination of all the
techniques remains for future work.

We examined three examples, ans (an answering ma-
chine), fuzzy (a fuzzy-logic controller), and mwt (a mi-
crowave transmitter controller). Our goal was to parti-
tion each among a hardware/software architecture con-
sisting of microcontroller and an FPGA, such that the
FPGA size constraint was met and the example’s execu-
tion time was minimized. For each example, we applied
step 1 (granularity selection) to three different degrees,
by applying exlining agressively ezl-2, moderately exl-1,
or not at all exl-0. Then, for each granularity, we ap-
plied step 2 (pre-clustering) to three different degrees,
by applying clustering with a termination criteria of a
closeness threshold of 0.6, 0.7 or 0.8. On the resulting
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Version ans | fuzzy | mwt
exi-0 0.6 | 739 60 1077
ex|-0 0.7 | 290 60 1870
exl-0 0.8 | 274 60 96

exl-1 0.6 | 626 241 600
ext-10.7 | 32 48 6716
exi-1 0.8 | 738 49 600
ex-2 0.6 | 441 | 6769 | 1270
ex-2 0.7 | 169 78 676
ex-20.8 | 74 78 3800

Table 1: Three-step methodology experiments.

9 versions of each example, we applied step 3 (N-way
assignment) using simulated annealing (start tempera-
ture 50, stop temperature 0, equilibrium condition 200
moves with no improvement, temperature decrease ratio
0.93). Results are summarized in Table 1. The numbers
corresponds to normalized squared execution times be-
yond a target execution time for each example — in short,
lower numbers mean better performance. We see that
the best configuration of parameters (i.e., the degree of
exlining, and the degree of clustering) during each step
is highly example-dependent. Thus, a functional parti-
tioning tool should allow tuning of those parameters for
each example. Further work is needed to evaluate good
configurations and relationships among the parameters.

5 Related work and limitations

Several researchers have developed functional par-
titioning techniques for partitioning among hardware
packages. Most efforts partitioned arithmetic-level op-
erations. Aparty [8] partitioned operations among data-
path modules using multi-stage clustering. Vulcan [14]
partitioned operations among packages using iterative
improvement heuristics. Chop [15] partitioned opera-
tions among packages, focusing on providing a suite of
feasible solutions for each package that would satisfy
overall constraints. Multipar [16] and Gebotys’ tech-
niques [17] partitioned operations among packages si-
multaneous with scheduling and allocation, using integer-
linear programming. Other efforts partitioned procedural-
level operations. SpecPart [6] partitioned procedures
among packages using clustering and iterative improve-
ment. Peng and Kuchcinski [18] similarly partitioned
among packages. None of these efforts applied a three-
step methodology as described in this work, although
the idea behind multi-stage clustering in Aparty is along
similar lines, while being limited to just clustering for
the partitioning heuristic and focusing on finer-grained
operations.

Recently, much research effort has focused on devel-
oping functional partitioning techniques for hardware-
software partitioning (for example, see [19]). Most of
these techniques partition and possibly schedule mul-
tiple processes among a custom-hardware and software
processor architecture [20, 3, 4, 6, 21], while some focus



on simultaneous processor allocation and partitioning
[22]. Since these techniques focus on multiple processes,
they do not apply directly to the single-process problem
we address. However, Henkel and Ernst have investi-
gated granularity during hardware-software partition-
ing and developed a technique to dynamically modify
granularity during partitioning [23].

Our work can be viewed as filling a gap between
these two research domains. Most functional partition-
ing work initially dealt with extremely fine-granularity
when they were first developed as extensions of behav-
ioral synthesis, but today most work focuses on very
coarse granularity and deals primarily with hardware-
software partitioning. We focus on medium to coarse
granularity (procedures), with an emphasis on solving
important synthesis problems.

One limitation of the approach for partitioning be-
fore synthesis is that total hardware increase may be
large for examples that have very simple controllers but
large datapaths. Another limitation is that we don’t
address the problem of partitioning large numbers of
small processes; that problem is very much a scheduling
problem. Third, our model dictates that procedures on
different processors do not execute in parallel. Allowing
parallel execution could improve performance, but at
the expense of introducing the need for bus arbitration
and other complexities.

6 Conclusions

We described a three-step partitioning methodology
for partitioning a large behavioral process among cus-
tom hardware or software processors. While earlier work
has described detailed solutions to various functional
partitioning problems, this work combines those solu-
tions into a single coherent approach.

There are many parameters, described in this paper,
that can be used to influence the results of each par-
titioning step. Finding the right parameter values can
be hard, and modifying them when iterating the three
steps can be challenging. Thus, an automatable “meta-
algorithm” for setting and modifying those parameters
during iteration among the steps may be an interesting
research direction.
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