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Level Cache

ABSTRACT
Tuning a configurable cache subsystem to an application can
greatly reduce memory hierarchy energy consumption.
Previous tuning methods use a level one configurable cache
only, or a second level with separate instruction and data
configurable caches. We instead use a commercially-common
unified second level, a seemingly minor difference that
actually expands the configuration space from 500 to about
20,000. We develop additive way tuning for tuning a cache
subsystem with this large space, yielding 62% energy savings
and 35% performance improvements over a non-configurable
cache, greatly outperforming an extension of a previous
method.  

Categories and Subject Descriptors
B.3.2 [Hardware]: Memory Structures: Design Styles – cache
memories.

General Terms
Design.

Keywords
Configurable cache, cache hierarchy, cache exploration, cache
optimization, low power, low energy, architecture tuning,
embedded systems.

1. INTRODUCTION AND MOTIVATION
The memory hierarchy of a microprocessor can consume as
much as 50% of the system power in a microprocessor [6].
Such a large contributor to total system power is a good
candidate for optimizations to reduce total system power and
energy.

Applications require highly diverse cache configurations
for optimal energy consumption in the memory hierarchy.
Even different phases of the same application may benefit from
different cache configurations in each phase [10].

Recent technologies have enabled the tuning of cache
parameters to the needs of an application. Core-based
processor technologies allow a designer to design a specific
cache configuration. Additionally, processor designs with
configurable caches are available that can have their caches
configured during system reset or even during runtime [6].

Such configurable caches have been shown to have very little
size or performance overhead compared to non-configurable
caches [6][12].

With the option of cache configuration readily available, a
problem is to determine the best cache configuration for a
particular application. Previous methods use cache hierarchies
with limited configurability, yielding cache configuration
spaces of at most a few hundred possible cache configurations,
making fast exploration relatively straightforward. Most such
methods configure total size, line size, and associativity for
only a single level of cache, having less than 50 possible
configurations, achieving memory hierarchy energy savings of
40% [12]. A few methods also include a second level of
separate instruction and data configurable caches, having a
few hundred possible configurations, achieving increased
memory hierarchy energy savings of 53% [4]. The increased
savings suggest that the larger cache configuration space
reveals a greater opportunity for energy savings, by allowing
the cache to be tuned more closely to an application’s needs.
However, a larger configuration space makes exploration
heuristic development more difficult.

Two-level caches are common in desktop systems and are
becoming common in increasingly capable embedded systems.
However, the second level cache is commonly unified (having
one cache with both instructions and data), rather than separate
(having one cache for instructions and another for data). A
multi-way unified cache enables tradeoffs between the number
of instruction ways and the number of data ways, with those
tradeoffs known as way management [6]. Each way may be used
for instructions only, data only, or both instructions and data
(or may even be shut down). The interdependence between
instruction and data has a (perhaps surprisingly) large impact
on the cache configuration space that we must explore. With
separated level two caches, we can effectively explore the
instruction cache hierarchy independently from the data cache
hierarchy, because a configuration of one cache hierarchy
doesn’t (significantly) affect the other cache hierarchy. In
contrast, with a unified second level, the two hierarchies
become tightly interdependent, requiring us to consider
(roughly) the cross product of the two configuration spaces.
For example, two spaces of 200 configurations each, when
independent yield 400 configurations to be searched, but
when interdependent yield 40,000. Our results will show that
this larger space, rather than consisting of uninteresting or
impractical configurations, indeed contains useful
configurations that allow for intense specialization of the
cache hierarchy to an application’s needs.

In this paper, we present a heuristic cache tuning method
for a highly configurable two-level cache hierarchy. We
improve upon previous methods by significantly increasing
the search space via a unified second level configurable cache,
resulting in greater energy savings than previous methods and
increased applicability to current and future systems. Our
cache hierarchy allows for 18,144 possible cache
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configurations. Our heuristic achieves an average energy
savings of 62%, while requiring explicit examination of a mere
0.2% of the search space on average – approximately 34
configurations.

2. RELATED WORK
Commercial systems with tunable caches (e.g., [6]) do not
address how to tune those caches, leaving the task to the
designer. Several research efforts therefore focus on providing
automated assistance for such tuning. Most such efforts focus
on single level cache tuning. Platune [3] is a framework for
tuning configurable system-on-a-chip (SOC) platforms.
Platune offers many configurable parameters and prunes the
search space by isolating interdependent parameters from
independent parameters. However, the level one cache
parameters, being interdependent, are explored exhaustively.
Whereas exhaustive exploration was feasible for a level one
cache due to the small number of possible configurations, the
exhaustive method is not feasible with a highly configurable
cache. An exhaustive search of tens of thousands of
configurations could take months or more to fully explore.

To speed up exploration time, heuristic methods have been
developed. Palesi et al. [7] designed an extension to the
Platune tuning environment that used a genetic algorithm to
speed up exploration time and produce comparable results.
Zhang et al. [12] presents a heuristic method for tuning a
configurable cache that searches the cache parameters in their
order of impact on energy consumption. The heuristic
produces a set of Pareto-optimal points trading off energy
consumption and performance.

A few methods exist for tuning two levels of cache, using
reduced configurability to maintain a manageable search
space. Balasubramonian et al. [1] proposes a method for
redistributing the cache size between the level one and level
two caches or between the level two and level three caches
while maintaining a conventional level one cache. In previous
work [4], we designed an exploration heuristic for a
configurable cache hierarchy that explores separate level one
instruction and data caches and separate level two instruction
and data caches.

3. CONFIGURABLE CACHE
ARCHITECTURE
Our configurable two-level cache architecture consists of
separate configurable level one caches and a unified level two
cache. The level one configurable cache architecture is based
on the tunable cache described in [13]. Hardware layout
verification for the configurable cache is presented in [12]. The
tunable parameters consist of cache size, line size, and
associativity. The base cache structure in an 8 KB cache
consisting of four 2 KB banks where each bank acts as a way.
Special way configuration registers allow for a 2-way set
associative and a direct mapped cache using way
concatenation. Additionally, ways may be shut down to allow
for direct mapped and 2-way set associative 4 KB caches and a
direct mapped 2 KB cache. Way shutdown and way
concatenation can be combined to allow a direct-mapped 4 KB
cache.

The second level cache is a configurable unified cache
quite different than the first level cache. For the second level,
we utilize way management implemented in Motorola’s
M*CORE processor [6]. Way management allows for each
particular way in a unified cache to be specified as a unified

way (instruction and data), an instruction-only way, a data-
only way, or the way can be shut down entirely.

For the exploration parameters, we chose values to reflect
typical off-the-shelf embedded systems. For the level one
cache, we explore 2, 4, and 8 KB cache sizes, 16, 32, and 64
byte line sizes, and direct-mapped, 2-, and 4-way set
associativities. For the level two cache, we use a 64 KB cache
with four configurable ways and configurable line sizes of 16,
32, and 64 bytes. However, our heuristic is not dependent on
these values, nor on embedded applications – for desktop
applications, larger total-size values would be appropriate. For
comparison purposes, we use a common cache configuration to
act as a base cache configuration to show the effectiveness of
our cache tuning heuristic in reducing energy. The base cache
configuration is an 8 Kbyte 4-way set associative cache with a
32 byte line size for the level one cache, and a 64 Kbyte fully
unified cache with a 64 byte line size for the level two cache –
a reasonably common configuration.

Our configurable cache architecture offers 18,144 different
configurations. For each level one cache, there are 18 different
cache configurations (configurable parameters are size, line
size, and associativity, each with three possible values, minus
invalid combinations). The second cache level has 36 unique
combinations of way configuration for each of the three line
sizes, resulting in 108 different level two configurations.
Thus, the maximum number of cache configurations is 34,992.
However, the second level line size must be equal than or
greater than the largest level one line size, reducing the design
space to 18,144 – still a very large number of configurations.

4. TUNING HEURISTICS

4.1 Sequential Exploration with Ratio
Projection
A simple tuning heuristic for two-level caches ignores the
tuning dependency between the level one instruction and data
caches, and sequentially explores the two levels, first tuning
level one, then level two. As previous tuning methods don’t
consider a unified cache, we first developed a sequential
heuristic for two-level caches, providing a close comparison to
current methods, and illustrating the need to fully explore the
tuning dependencies.

For level one exploration, our heuristic explores
parameters in the order of their impact on the energy
consumption, with higher impact parameters explored first
[13]. Cache size is explored first followed by line size and then
associativity. To reduce cache flushing during exploration, the
heuristic explores each parameter starting with the smallest
value and increasing to the largest value. For the level two
cache, the heuristic must also consider that the cache i s
unified. Thus, not only must the heuristic determine the total
size, line size, and ways, but the heuristic must also determine
how many ways will be for data, how many for instruction, how
many for both instruction and data, and how many will be shut
down. For unified level two cache exploration, we initially
developed a method we call ratio projection.

The ratio projection method projects the number of
necessary instruction and data ways needed for the best cache
configuration. Ratio projection sets the level two cache to
have one instruction way and adds data ways one at a time. The
lowest energy configuration suggests the ideal number of data
ways needed in the level two cache. The method determines the
ideal number of instruction ways similarly. The method then
must combine the ideal number of instruction and data ways.



Simply adding the number of ways could exceed the available
number of ways in the level two cache. Instead, the method
decreases the number data and instruction ways and/or unifies
them and trying to keep the ratio of instruction to data ways
as close to the ideal as possible. For example, the method
might determine the ideal number of instruction and data ways
to be 3 and 3, respectively. Given only four available ways, the
ratio projection method would allocate 2 instruction and 2
data ways, thus maintaining the same ratio of instruction to
data ways. Further details of the ratio projection method are
available in [5].

The sequential heuristic performed poorly for many
benchmarks. Although the heuristic resulted in a 20-40%
decrease in energy consumption over the base cache
configuration for most examples, poor performance on some
benchmarks (as much as 3.6x more energy) resulted in the
heuristic yielding an average energy increase of 24%. Clearly,
a simple adaptation of current methods does not sufficiently
explore tuning dependencies.

4.2 Alternating Cache Exploration with
Additive Way Tuning – ACE-AWT
The poor results of the first heuristic substantiate the
hypothesis that precise exploration with regards to tuning
dependencies is necessary. Exploring the level one cache
separately from the level two cache naively ignores the
dependency that exists between the two levels via the level
two unified cache. For example, altering a parameter in the
level one instruction cache changes the effectiveness of the
level two cache by changing the quantity of level two fetches
and the addresses fetched. Also, the change in level two
utilization by instructions affects the level one data cache by
changing the contention among instructions and data in the
shared level two cache.

In [4], we similarly concluded the importance of tuning
levels one and two together (though instruction and data were
separate in that work), and we thus designed the interlaced
exploration method. Instead of fully exploring the level one
cache and then proceeding to the level two cache, the
interlaced method explores one parameter for the level one
cache and then for the level two cache, before proceeding to
explore the next parameter. However, that interlaced method
only addressed dependency between separate level one and
level two caches, and not the dependency between the level
one instruction and data caches. Additionally, the interlaced
method cannot be easily adapted to a unified cache featuring
way management.

For level two exploration, way management makes
interlaced exploration of the cache levels difficult because of
the dependency between size and associativity. To change
cache size, way management either adds or removes a way.

However, the added or removed way is either a unified, data, or
instruction way, thus affecting associativity. Similarly, when
changing the cache’s associativity, a way is either added or
removed, which changes the cache size. This dependency
complicates level two cache exploration, preventing exploring
either associativity or size alone.

To overcome the difficulty arising in interlaced
exploration and to extend the interlaced heuristic to address
level one instruction and data cache dependencies, we
introduce the alternating cache exploration with additive way
tuning heuristic for level two cache exploration (ACE-AWT).
For each cache parameter, the ACE-AWT heuristic first tunes
the level one instruction cache, then the level one data cache,
followed by additive way tuning for the level two cache. The
first phase of additive way tuning, illustrated in Figure 1(a),
adds ways one at a time and chooses the next way to add based
on what type of added way resulted in the lowest energy cache
configuration. Additive way tuning starts by adding one way
to the level two cache, and then explores three configurations
– a single instruction, data, or unified way. The heuristic
chooses the lowest-energy configuration, and then adds
another way to the level two cache, again trying an instruction,
data, or unified way. This additive method of increasing the
cache size and associativity continues until the level two
cache is full or until there is no longer a decrease in energy
consumption. This phase of additive way tuning is done when
the level two cache size is initially explored.

Alternating level exploration with a unified second level
of cache increases the difficulty of exploring the line size. The
line size of the level two cache must always be equal or greater
than the line sizes of both of the level one instruction and data
caches. To allow for level one line size exploration, our
heuristic increases the size of the level two line size while
increasing the size of the level one line size. After determining
level one line sizes, the ACE-AWT heuristic explores
remaining larger level two line sizes.

During associativity exploration, Figure 1(b) illustrates
the final tuning step applied to fine tune the cache
configuration. The ACE-AWT heuristic adjusts ways to hone in
on the best cache configuration by attempting to add and/or
remove ways. First, the heuristic tries to increase the number of
ways by adding either an instruction, data, or unified way one
at a time. If the cache size is full, the heuristic skips the
enlargement step. The heuristic then explores decreasing the
size of the cache by removing an instruction, data, or unified
way one at a time. If removing a way causes the cache to be
empty, that configuration is ignored. The lowest energy cache
configuration is chosen if it improves upon the current cache
configuration. This tuning step is continued until there is no
improvement in energy consumption or there is no previously
unexplored configuration to explore. Further details of the
ACE-AWT heuristic are available in [5].

Figure 1: Additive way tuning for level two cache way exploration for the (a) first phase and (b) the fine tuning phase.
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5. RESULTS
We applied each heuristic to 27 benchmarks - sixteen
benchmarks from the EEMBC benchmark suite [2] and eleven
benchmarks from the Powerstone benchmark suite [6]. These
benchmarks are all embedded system benchmarks and thus
suitable for the configurable cache parameter values we
examined. We stress that we could also run desktop
benchmarks using suitable cache parameter values, and we are
doing so for related and future work.

We used estimation methods and measurements to
calculate the total system energy consumption, including both
dynamic and static energy. We used CACTI [9] to determine
the dynamic energy consumption consumed by a cache fetch
for each cache configuration for 0.18-micron technology. We
obtained the main memory fetch energy using a standard
Samsung memory, and CPU stall energy from a 0.18-micron
MIPS microprocessor (details are available in [5]). Our energy
numbers represent all memory-access-related energy only. We
estimate cache static energy as 10% of total cache energy – a
reasonable assumption for current and near future technology.
For miss penalties and throughput for both cache levels, we
estimate ratios typical for an embedded system. We assume a
level two fetch is four times slower than a level one fetch, and a
main memory fetch is ten times slower than a level two fetch.
We assume memory throughput is 50% of latency, meaning
blocks fetches after the first block take 50% of the latency of
the first block fetch.

We modified SimpleScalar to simulate way management in
the level two cache and to determine cache hit and miss values
for each cache configuration. We ran exploration scripts that
applied each heuristic to every benchmark.

Figure 2 shows the energy consumption for each
benchmark for both tuning heuristics, and shows the optimal
cache energy consumption for 12 randomly chosen
benchmarks (we couldn’t generate optimal energy for every
benchmark due to the large time required). Energy
consumption for each heuristic is normalized to the energy
consumption of the base cache for each benchmark. Figure 2
shows that while the sequential with ratio projection heuristic
performed well on a number of benchmarks, the average energy
increased  due to poor heuristic performance on several
benchmarks. However, the ACE-AWT heuristic achieves energy
savings for every benchmark, resulting in an average 62%
energy savings. For the benchmarks with optimal cache
configuration information, the ACE-AWT either finds the
optimal or near-optimal configuration. The ACE-AWT achieves
these energy savings by exploring only 34 unique
configurations on average over all benchmarks – a mere 0.2%
of the total search space.

We also examined the performance impact of the ACE-AWT
heuristic. In real time systems, negative performance impacts
are likely unacceptable. We observed that for the ACE-AWT
heuristic, each benchmark shows an improvement  in
performance with an average speedup of 35%. We found that

this improvement comes due to tuning the line size to the
locality needs of the application [11]. (While this result may
seem surprising, the compromise line size found in most
caches, typically 32 bytes, may perform best on average across
all benchmarks, but specific applications often do much better
with either a 16 byte or 64 byte line size).

6. CONCLUSIONS AND FUTURE WORK
We presented a new heuristic for tuning a two-level cache with
a unified second level, yielding an average 62% memory-
access-energy savings over a base cache configuration, while
exploring only 0.2% of the design space. Future work includes
applying our heuristic to desktop/server applications and
architectures. We are also investigating finer-grained cache
tuning to program phases.
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Figure 2: Energy consumption normalized to the base cache configuration (bold line) for both cache exploration heuristics and
the optimal cache configuration.
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