

INTEGRATED COUPLING AND CLOCK
FREQUENCY ASSIGNMENT OF
ACCELERATORS DURING
HARDWARE/SOFTWARE PARTITIONING

Scott Sirowy and Frank Vahid*
Department of Computer Science and Engineering- University of California, Riverside
*Also with the Center for Embedded Computer Systems, University of California, Irvine

Abstract: Hardware/software partitioning moves software kernels from a microprocessor to
custom hardware accelerators. We consider advanced implementation options
for accelerators, greatly increasing the partitioning solution space. One option
tightly or loosely couples each accelerator with the microprocessor. Another
option assigns a clock frequency to each accelerator, with a limit on the
number of distinct frequencies. We previously presented efficient optimal
solutions to each of those sub-problems independently. In this paper, we
introduce heuristics to solve the two sub-problems in an integrated manner.
The heuristics run in just seconds for large examples, yielding 2x additional
speedup versus the independent solutions, for a total average speedup 5x
greater than partitioning with a single coupling and single frequency.

1. INTRODUCTION

Partitioning an application’s kernels to execute on a custom hardware
accelerator rather than on a microprocessor—known as hardware/software
partitioning—is a well-known technique for improving application
performance [1][2][3][4][5][6] and improving energy consumption
[7][8][9][10]. Such partitioning is relevant to both ASIC (application-
specific integrated circuit) and FPGA (field-programmable gate array)
implementation. The rise of FPGAs in commercial microprocessor platforms

2 Scott Sirowy and Frank Vahid*

[11][12][13][14][15][16][17] makes such partitioning increasingly
important.

Most previous hardware/software partitioning approaches did not
consider different couplings of the accelerators with the microprocessor.
However, modern platforms, including FPGAs, support at least two
couplings. Tightly coupled accelerators have direct access to the
microprocessor memory or cache, and thus operate at a single clock
frequency, which will necessarily be the slowest frequency of any of those
accelerators. Loosely coupled accelerators instead access memory through a
bridge, and thus may each have unique optimized clock frequencies. Thus,
there exists a tradeoff to couple an accelerator tightly or loosely based on the
importance to have single cycle memory access or to run at the fastest
possible clock frequency. Figure 1 shows a typical architecture that supports
multiple couplings. The two tightly coupled accelerators have single cycle
access to memory at the expense of both being clocked at 58 MHz even
though one could have been clocked at 166 MHz. We refer to the problem of
coupling a set of accelerators tightly or loosely as the two-level
microprocessor-accelerator partitioning problem.

 Modern platforms, including FPGAs, may support several different
frequencies on a single chip. For example, the Xilinx Spartan 3 supports four
distinct clock frequencies, while the Xilinx Virtex II supports up to
eight[17]. Much current research investigates methods to take advantage of
multiple clock domains for heterogeneous core architectures, systems-on-a-
chip, etc., for both performance and energy benefits [18][19][20][21][22].
However, the number of accelerators often exceed the number of available
clock frequencies. In this case, the accelerators must be grouped to share
clock frequencies, necessarily running at the slowest frequency of the group.
For example, in Figure 1, the four loosely coupled accelerators must share
two clock frequencies. We refer to the problem of assigning a fixed number
of clock frequencies so as to minimize the application’s execution time as
the clock frequency assignment problem.

Most previous approaches do not consider clock frequency assignment
for the accelerators. While the tightly coupled accelerators should all execute
using the same frequency, the loosely coupled accelerators could potentially
each execute with different frequencies. In previous work, we solved the
coupling assignment problem optimally, assuming enough available clock
frequencies to support unique frequencies for each loosely coupled
accelerator [23]. In a separate work, we solved the problem of assigning a
limited number of frequencies to the set of loosely coupled accelerators such
that performance was maximized [24].

Integrated Coupling and Clock Frequency Assignment of Accelerators
during Hardware/Software Partitioning

3

Figure 1. A two-level system architecture that is driven by four clock frequencies. The system
bus has two tightly coupled accelerators that run at a slower clock frequency but have single

cycle access to memory.

In this work, we show that solving the two problems in an integrated
manner can yield significant performance improvements over solving them
sequentially. Section 2 discusses the problem definition and our previous
sub-problem solutions. Section 3 provides two new heuristics to solve the
integrated coupling and clock frequency assignment problem. Section 4
gives results.

2. PROBLEM DEFINITION AND DESCRIPTION

We previously solved the two-level microprocessor-accelerator
partitioning problem and the clock frequency assignment problem optimally
using novel dynamic programming techniques for each. This section reviews
those solutions, and then defines a new problem integrating both problems.

2.1 Two-Level Microprocessor-Accelerator Partitioning

The problem of partitioning accelerators to either a tightly coupled set or
a loosely coupled set, assuming that each loosely coupled accelerator could
run at its own unique clock frequency, used the following objective function
of minimizing the execution time of all the accelerators:

d cycle access .

58 MHz .

max 58 MHz .

System Bus

Loosely Coupled Accelerators

Acc1 .
Mem

Tightly Coupled Accelerators

Peripheral Bus

Bridge

ųP

max 1000 MHz max 233 MHz max 100 MHz
max 500 MHz

max 166 MHz

233 MHz .

125 MHz
100 MHz

Acc5 .

Acc3 . Acc6 . Acc2 . Acc4

Clock Frequency Synthesizers .

4 Scott Sirowy and Frank Vahid*

))_/)_(

)_/_(*(

)min_/)]__(([

1

1

∑

∑

∑

=

=

+

+

+

n

i
ii

ii

i

n

i
i

freqclkcyclescomp

freqclkaccessesmemdLC

clockaccessesmemcyclescompTC

min_clock is the speed at which the tightly coupled set must run to
guarantee single cycle access to memory (or cache). The d term for the
loosely coupled set is the memory latency penalty incurred for accessing
memory through a bridge. The tradeoff is whether it is advantageous for an
accelerator to have single cycle access to memory at the expense of possibly
being clocked at a slower frequency, versus being run at its own fastest
possible clock frequency but with a memory access penalty through a bridge.
We developed an exhaustive optimal search algorithm (which was too slow
for practical sized examples), and a greedy search heuristic. The greedy
heuristic begins by mapping all the accelerators to the loosely coupled set,
and migrates the accelerators to the tightly coupled set based on the
accelerator’s contribution to the total execution time and how many memory
accesses it requires. The greedy heuristic achieved performance 15% slower
than optimal.

Seeking a fast solution with better results, we eventually developed an
optimal solution that runs in what is known as psuedo-polynomial time (the
partitioning problem is known to be NP-complete [25], so a truly
polynomial-time solution is not practical). The key to our solution is the idea
that the two-level accelerator partitioning problem with n functions can be
decomposed into n 0-1 knapsack problems. In the classic 0-1 knapsack
problem, the goal is to choose a subset of the items whose total value is
maximized while at the same time the sum of the weights does not violate
the constraint on the overall capacity given the value and the weight of n
items to be stored, and the capacity of the knapsack S. This problem is NP-
complete, but can be solved optimally with a dynamic programming
approach using a well-known pseudo-polynomial time.

We refer to our solution as the n-knapsack dynamic programming, or
NKDP, solution. The idea is that if we knew the slowest accelerator in the
tightly coupled set (let the accelerator be X), we can optimally map all the
functions to the tightly and loosely coupled sets.

First, we map X to the tightly coupled set, since based on our assumption,
this is the slowest accelerator in the tightly coupled set. We then map all
accelerators slower than X to the loosely coupled set, because otherwise we
would violate the assumption that X was the slowest accelerator in the
tightly coupled set. For all functions that are as fast or faster than X, we

Integrated Coupling and Clock Frequency Assignment of Accelerators
during Hardware/Software Partitioning

5

compute the reduction in the function’s execution time should it be mapped
to the tightly coupled set as opposed to the loosely coupled set. We can do
this because we know what its clock frequency would be if it were mapped
to the tightly coupled set (the same as X), or to the loosely coupled set (the
accelerator’s given frequency). Note that the reduction in execution time can
be negative, which means mapping the function to the tightly coupled set
will lengthen its execution time. If that happens, the function is mapped to
the loosely coupled set immediately. The remaining accelerators can then be
mapped to either the tightly or loosely coupled sets using the classic 0-1
knapsack problem. The weight of each item is the size of the accelerator, the
value of each item is the reduction of the function’s execution time
calculated in the previous step, and the capacity of the knapsack is the area
constraint of the overall tightly coupled group minus the area of X.

The above steps will yield the optimum solution if X is known. Of
course, we do not know X in advance, but that does not matter since we can
try all the possible choices of X. For each function, we assume the function
is X, and we run the above steps to obtain a locally-optimal solution. Among
all the locally-optimal solutions thus obtained, the one that has the minimum
overall execution time must be globally optimal.

2.2 Clock Frequency Assignment Partitioning

In the clock frequency assignment partitioning problem, we again considered
a set of accelerators A which had already been determined by a previous
hardware/software partitioning decision, and for which different clock
frequencies could be assigned (thus corresponding to the loosely coupled
processors of the previous problem). For each accelerator ai in the set A, we
are given several weights. The weight ai.cycles corresponds to the number of
clock cycles that the accelerator contributes to the total clock cycles for the
application, not including cycles required for accessing memory. The weight
ai.maxfreq represents the fastest clock frequency at which this accelerator
may execute. That frequency would typically be determined by synthesizing
the accelerator and then taking the inverse of the critical path. The weight
ai.freq represents the frequency at which accelerator ai is being clocked in
an implementation. This number is not given, but rather must be determined.
The determined number must be less than or equal to ai.maxfreq.

The application’s execution time E is the sum of the application’s
computation time and communication time. The computation time equals the
cycles multiplied by 1/freq values for every accelerator. The communication
time equals the total number of memory accesses multiplied by the memory
access time. We originally included communication time in our problem

6 Scott Sirowy and Frank Vahid*

formulation, but found that component of time unnecessary to include during
clock-frequency assignment. The reason is that communication time equals
the number of memory accesses by each accelerator times the time
associated with each access, which is essentially invariant. The time
associated with each access consisted of two parts, one part dependent on the
accelerator’s frequency and hence foldable into the accelerator’s compute
time, and the other part independent of the accelerator frequencies, instead
dependent on the frequency of the microprocessor and memory, which do
not impact the relative total execution time of a given partitioning. Note that
this non-overlapping computation/communication model of execution time,
while different from the model uses in multi-processor based
hardware/software partitioning, holds for accelerator-based
hardware/software partitioning.

Given a maximum number of unique clock frequencies F available to the
accelerators, the clock-frequency assignment problem is to:

 Find a positive integer value for every ai.freq, such that each ai.freq is

less than ai.maxfreq for every i, the number of distinct ai.freq values is less
than or equal to F, and the execution time E is minimized.

We found there existed enough substructure in the problem to develop a

fast and efficient dynamic programming algorithm that could solve the clock
frequency partitioning problem optimally.We assume (without loss of
generality) that accelerators a1, a2... aM, are pre-sorted in decreasing order of
maximum frequency and each frequency is unique. Let X(A,C) equal the
total execution time of the first A accelerators using the first C clock
frequencies. We define the following recurrence relation as a function:

If (A=0) then X(A,C)=0
Else If (C=0) then X(A,C)= infinity
Else

−−+=
∑

=
=

)1,1(
.

.

),(
1

CiX
mxfreqa

cyclesa

CAX
A

A

ij
j

A

iMin

If A=0, there are no accelerators, and thus the execution time is 0. If C=0,
there are no clock frequencies available, so execution time is infinite. We
intentionally define X to return 0 for X(0,0).

The “Min” term compares the alternative solutions that assume the
present accelerator’s (aA) maximum frequency is assigned to the present
accelerator only, to the present accelerator and the next accelerator, to the

Integrated Coupling and Clock Frequency Assignment of Accelerators
during Hardware/Software Partitioning

7

present accelerator and the next two accelerators, etc. The expression inside
that term computes the total execution time for this cell as the sum of the
execution times for the accelerators assigned to the present maximum
frequency, added to the previously-computed best solution for the other
accelerators with one less available clock frequencies.

2.3 Integrated Two-Level Partitioning and Clock
Frequency Assignment

The integrated coupling and clock frequency assignment problem takes
as input a set of functions to be implemented as accelerators, determined by
a previous hardware/software partitioning decision (our problem and
partitioning may iterate). Each accelerator is annotated with four numbers,
determined from synthesis and simulation of each function: The number of
memory accesses, the total number of computation cycles, the synthesized
area, and the maximum possible clock frequency. The number of memory
accesses and computation cycles may represent averages or worst-case
numbers, depending on whether the designer seeks to optimize for overall
average or worst-case performance.

The extra cycles of the bridge is also given. This memory access penalty
is an architectural feature of the bridge, and not a per-application number, so
the number is fixed for all applications. A loosely coupled accelerator would
incur this latency penalty each time it made an access to memory, since the
accelerator is connected to the memory through the bridge.

All tightly coupled accelerators, having single-cycle access to memory or
cache, must run at a single clock frequency – this assumption matches
several modern commercial FPGAs that incorporate microprocessors.
Because all those accelerators must run at one clock frequency, they all must
run at the frequency of the slowest tightly coupled accelerator in the group.
The tightly coupled accelerators’ frequency need not be the same as the
microprocessor’s frequency.

Loosely coupled accelerators, in contrast, could potentially run at their
unique, fastest clock frequency. However, since modern FPGA platforms
impose a limit on the number of available clock frequencies, several of the
loosely coupled accelerators may also need to be merged together and share
the same clock frequency. This means several of the accelerators will not be
able to run at their own unique clock frequency. The number of available
clock frequencies F is usually given in the documentation for the particular
FPGA being used. For instance, a Xilinx Spartan 3 board supports up to four
unique clock frequencies, while the Xilinx Virtex II supports up to eight
clock frequencies.

8 Scott Sirowy and Frank Vahid*

Formally, the problem takes as input a set of accelerators
A={a1,a2,…,an}. Each function is annotated with several different weights:
ai.comp_cycles, ai.mem_accesses, ai.area, ai.max_freq, and ai.frequency.
The term ai.frequency is not given and must be determined. The memory
access penalty through a bridge is given as d, and the number of available
clock frequencies is given as F. The objective function is to thus minimize
the application execution time as follows:

Find a positive integer value for every ai.freq, such that each ai.freq is
less than ai.maxfreq for every i, the number of distinct ai.freq values is less
than or equal to F, one group has single cycle access to memory while the
rest have d cycle access, and the execution time E is minimized.

3. HEURISTICS

We present two heuristics to solving the clock frequency assignment
problem for two-level microprocessor-accelerator platforms. Before that, a
straightforward sequential approach performs two-level microprocessor-
accelerator assignment first assuming unlimited distinct clock frequencies,
followed by clock frequency assignment on the loosely coupled accelerators
with (F-1) clock frequencies (since one clock frequency must necessarily be
used for the tightly coupled accelerators). Each sub-problem can be solved
optimally using our previous techniques.

Because the running time of NKDP is O(Sn2), where S is the area
constraint, and the running time of the clock frequency assignment algorithm
is O(nF2), the overall worst case time complexity of the sequential approach
is O(Sn2 + nF2). This is because the sequential approach runs each
algorithm exactly once. In every case, the Sn2 term would dominate the nF2
term, meaning the real complexity is O(Sn2). However, since the assumption
that the two-level microprocessor-accelerator partitioning algorithm can
operate every loosely coupled accelerator at its own distinct clock frequency
is potentially violated, the two level partitioning becomes suboptimal, and
therefore the entire solution is suboptimal.

3.1 No Penalty Migration

Our first heuristic was based on the observation that when the NKDP
algorithm partitions the accelerators into both a tightly coupled and loosely
coupled set, there may be accelerators in the loosely coupled set that are
clocked with a faster maximum frequency than the tightly coupled set. This
is because the NKDP algorithm decided that having a faster frequency was
more important than having single cycle access to memory. However, with

Integrated Coupling and Clock Frequency Assignment of Accelerators
during Hardware/Software Partitioning

9

the number of clocks constrained in clock frequency assignment, that
accelerator’s frequency may be reduced below the tightly coupled clock set
frequency. Thus, migrating the accelerator from the loosely coupled set to
the tightly coupled set makes sense (assuming it fits the area constraint)
since the accelerator would run faster as a tightly coupled accelerator than
merged with a slower accelerator in the loosely coupled set. Because the
accelerator’s fastest possible frequency is faster than the already established
tightly coupled set clock frequency, the heuristic can migrate the accelerator
to the tightly coupled set at no penalty to the tightly coupled set. We call this
No Penalty Migration. After the heuristic migrates an accelerator from the
loosely coupled set to the tightly coupled set, clock frequency assignment is
again run on the remaining accelerators in the loosely coupled set to
determine if a new assignment exists, since one less accelerator may result in
a better partitioning of the available clock frequencies to the remaining
loosely coupled accelerators.

Because the clock frequency assignment algorithm is running a
maximum of n times (if we have to migrate every single accelerator from the
loosely coupled set to the tightly coupled set), the overall worst case time
complexity is O(n2 (S + F2)).

3.2 Nested Dynamic Programming

We also developed a heuristic in which we tried to integrate the two
solutions by having the two-level microprocessor-accelerator algorithm call
the clock frequency assignment algorithm each time the knapsack algorithm
returns a possible solution. We call this the Nested Dynamic Programming
heuristic. The No Penalty Migration heuristic assumes the initial two-level
microprocessor-accelerator partitioning chose the best two-level assignment,
meaning the tightly coupled frequency should be maintained.

However, the clock frequency assigned to the tightly coupled accelerators
may not be optimal when considering the clock frequency assignment
problem too, and thus no amount of clock frequency assignment and
migration on the remaining accelerators would result in the optimal solution.
Because the two-level microprocessor-accelerator dynamic programming
algorithm runs knapsack n times, and comes up with a potential solution n
times, running the clock frequency assignment dynamic programming
algorithm on each of those solutions would result in a more accurate solution
space, since more options are being allowed into the tightly coupled
accelerator set.

10 Scott Sirowy and Frank Vahid*

The solution to each knapsack is passed to the clock frequency
partitioning algorithm. The clock frequency assignment algorithm
determines the clock frequency assignment for the loosely coupled
accelerators. The best solution is maintained and returned. We note the
“best” solution is returned as opposed to the “optimal” solution from the
original NKDP algorithm, because the heuristic still potentially violates the
assumption that the NKDP algorithm assumes each loosely coupled
accelerator can run at its own distinct clock frequency. The heuristic is only
guaranteed to return optimal results when the number of clock frequencies
exceeds the number of accelerators that require a distinct clock frequency.
The worst case running time of the nested dynamic programming heuristic is
also O(n2 (S + F2)), since the nested dynamic programming algorithms run
the clock frequency assignment algorithm n times.

4. EXPERIMENTS AND RESULTS

This section describes results of applying the two heuristics to a
commercial quality H.264 video decoder from Freescale Semiconductor. We
implemented the heuristics on a 2.66 GHz 1GB RAM Pentium 4 PC. We
targeted synthesis to a Xilinx IV Pro, and gathered information on cycles per
function and maximum clock frequency of each accelerator. We also tested
our heuristics using a wide range of synthetic benchmarks.

H.264 is a proprietary video decoder developed by the Video Coding
Experts Group (VCEG), and part of the MPEG-4 standard. Unlike common
benchmarks taken from publicly available reference implementations, the
decoder’s code was highly optimized, and thus did not consist of just two or
three critical functions, but rather of 42 critical functions that together
accounted for about 90% of execution time. We utilized Stitt’s partitioning
into accelerators [6], which was straightforward, involving implementing an
accelerator for each critical function. We gathered computation cycle and
memory access information through simulation and synthesis, and clocked
each accelerator targeted for Xilinx’s Virtex IV Pro. The variation in
maximum frequencies ranged from 40 MHz to 285 MHz.

Figure 2 shows the results running the heuristics on the highly optimized
H.264 video decoder. The speedups are normalized to results when all
accelerators use only one clock frequency and one coupling. Figure 2 shows
that one additional clock frequency allowed the heuristics to couple the 42
accelerators either tightly or loosely, and thus gain a 3.5x speedup over the
single frequency, single coupled implementation. The inclusion of
additional clock frequencies further improves the speedup to almost 4x. For
the H.264 application, the No Penalty Migration and Nested Dynamic

Integrated Coupling and Clock Frequency Assignment of Accelerators
during Hardware/Software Partitioning

11

Programming heuristics performed very similarly, attaining almost the same
speedup. Although both heuristics have the same worst case runtime, the No
Penalty Migration heuristic consistently attained results faster than the
Nested Dynamic Programming heuristic. We also note that as the number of
clock frequencies increases, the improvements of both the No Penalty
Migration and Nested Dynamic Programming heuristics compared to the
sequential approach become almost negligible. This is because as the
number of clock frequencies increases, the more “correct” the original
partitioning of the accelerators to the tightly coupled and loosely coupled
sets becomes, and therefore little additional work is needed. Even for an
application as large as H.264, every heuristic ran in seconds, making its
inclusion into a larger scale exploration environment feasible. However, the
No Penalty Migration heuristic would fare better in real time or dynamic
exploration environments.

0

1

2

3

4

5

2 4 6
Number of Clock

Frequencies

A
p

p
lic

at
io

n
 S

p
ee

d
u

p

Sequential

No Penalty
Migration

Nested D.P

Figure 2. Results of the heuristics on a commercial quality video decoder. Compared to a
single-frequency, single-coupling implementation of the accelerators, the heuristics improve

the execution time by almost 4x.

To further test our heuristics, we applied our heuristics to several
synthetic examples, which included a wide range of accelerators. Each
accelerator in turn supported a large range of computation cycles, memory
accesses and clock frequencies. Figure 3 highlights results of comparing the
No Penalty Migration and Nested Dynamic Programming heuristics to an
implementation that did not consider coupling or multiple clock frequencies.
Figure 3(a) shows the benefit of just including one additional clock
frequency, and thus introducing the ability to tightly or loosely couple each
accelerator. With only two clock frequencies, Figure 3(a) shows the
heuristics are able to achieve on average of about 4x speedup. Note that in
every case the Nested Dynamic Programming heuristic finds the best
partitioning of the accelerators. The Nested Dynamic Programming heuristic

12 Scott Sirowy and Frank Vahid*

also took the longest to complete, finishing many seconds later in the larger
examples. The No Penalty Migration heuristic yielded an average 15%
improvement in application running time over the straightforward sequential
approach. The Nested Dynamic Programming heuristic gained an additional
15% improvement over No Penalty Migration. This was because both the
sequential search and No Penalty Migration partitioned several accelerators
to the tightly coupled set without knowledge of the fact that there were only
two clock frequencies available. The Nested Dynamic Programming
heuristic was able to test all combinations of accelerators in the tightly
coupled set, and therefore was able to find a superior solution.

0

1

2

3

4

5

6

7

7 10 15 20 25 30 35 40

Ave
ra

ge

S
p

ee
d

u
p

0
1

2
3
4
5

6
7

7 10 15 20 25 30 35 40

Ave
ra

ge

S
p

ee
d

u
p

Figure 3. Application speedups for synthetic examples with varying numbers of accelerators:

(a) two clock frequencies, (b) eight clock frequencies. Substantial speedup is achieved for
increasing numbers of clock frequencies compared to single-frequency, single-coupling

implementations.

However, as the number of clock frequencies increased, the heuristics
achieved nearly the same speedups. The reason is because as the number of
clocks increases, the more likely that the initial partitioning of the tightly
coupled set was correct, meaning only minor gains could be made over a
straightforward sequential search. On average across 2 to 6 clock
frequencies, No Penalty Migration yielded a 5% improvement over a
sequential search, while Nested Dynamic Programming provided a 10%
improvement. Comparing Figures 3(a) and 3(b), one sees that additional
available clock frequencies does improve speedups over single-coupled
single-frequency partitions, from an average of 4X in (a) to nearly 5X in (b),
with one example achieving almost 6.5x performance improvement.

For all the examples, our heuristics ran in seconds, compared to an
exhaustive search, which did not complete in any reasonable amount of time
when the number of accelerators exceeded fifteen. Of course, we tradeoff
speed for the exact solution given by an exhaustive search.

Sequential

 No Penalty Migration

 Nested D.P

Integrated Coupling and Clock Frequency Assignment of Accelerators
during Hardware/Software Partitioning

13

The No Penalty Migration heuristic completed its search consistently

faster than Nested Dynamic Programming heuristic while also finding a
better solution for platforms with only a few available clock frequencies.
However, the Nested Dynamic Programming heuristic might be much easier
to implement in a framework where coupling and clock assignments have
already been implemented.

5. CONCLUSIONS AND FUTURE WORK

We showed that the consideration of both coupling and multiple clock
frequencies can lead to substantial speedup over an application
implementation that does not consider either. We also showed that the
integration of both coupling and multiple clock frequencies can lead to
application speedups of over 5x compared to a single-coupling single-
frequency implementation. We developed two new heuristics that integrated
coupling and clock frequency assignment, running in just seconds.

Our formulation assumed mutually exclusive memory accesses and
computation. However, in many cases, these two activities may actually
overlap. We plan on extending the integrated coupling and clock frequency
assignment problem to handle concurrent memory accesses and
computation, which will require a more advanced communication and
architecture model. We also plan on searching for an optimal solution to the
integrated two-level partitioning and clock frequency assignment problem.

6. ACKNOWLEDGEMENTS

This work was supported by grants from the National Science Foundation
(CNS-0614957) and the Semiconductor Research Corporation (2005-HJ-
1331), and by donations from Xilinx, Inc. Freescale Semiconductor supplied
the commercial H.264 decoder

7. REFERENCES

1. Banerjee, S. and N. Dutt. Efficient search space exploration for HW-SW Partitioning. Int.
Symp. on Hardware/Software Codesign and System Synthesis (CODES+ISSS), 2004.

2. Eles, P., Z. Peng, K. Kuchcinsky, and A. Doboli. System Level Hardware/Software
Partitioning Based on Simulated Annealing and Tabu Search. Design Automation for
Embedded Systems, vol2, no 1, 5-32 Jan. 1997

14 Scott Sirowy and Frank Vahid*

3. Gupta, R. and G. De Micheli. Hardware-Software Cosynthesis For Digital Systems. IEEE

Design and Test of Computers. Pages 29-41, September 1993
4. Kalavade, A. and P.A. Subrahmanyam. Hardware/software partitioning for multi-function

systems. IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
1997.

5. Miyamori, T., and U. Olukotun. A Quantitative Analysis of Reconfigurable Coprocessors
for Multimedia Applications. FPGAs for Custom Computing Machines (FCCM). 1998,
pp. 2 – 11.

6. Stitt, G., F. Vahid, G. McGregor, B. Einloth Hardware/Software Partitioning of Software
Binaries: A Case Study of H.264 Decode. Int. Conf. on Hardware/Software Codesign and
System Synthesis (CODES/ISSS), Sep. 2005.

7. Chattopadhyay, A., and Z. Zilic. GALDS: A Complete Framework for Designing
Multiclock ASICs and SoCs. IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, Vol. 13, No. 6, June 2005.

8. Cohn, J.M., D.W. Stout, P.S. Zuchowski, S.W. Gould, T.R. Bednar, and D.E. Lackey.
Managing power and performance for System-on-Chip designs using Voltage Islands. Int.
Conf. on Computer-Aided Design (ICCAD), 2002, pp. 195-202.

9. Henkel, J. A low power hardware/software partitioning approach for core-based embedded
systems. In Proceedings of the 36th ACM/IEEE Design Automation Conference, 122–
127.1999

10. Stitt, G., F. Vahid, and S. Nematbakshi. Energy Savings and Speedups From Partitioning
Critical Software Loops to Hardware in Embedded Systems. IEEE Transactions on
Embedded Computer Systems, January 2004.

11. Corp. 2005. FPSLIC (AVR with FPGA), http://www.atmel.com/products/FPSLIC/.
12. Celoxica. http://www.celoxica.com.
13. Cray XD1. Cray Supercomputers. http://www.cray.com/products/xd1/index.html.
14. Critical Blue. 2005. http://www.criticalblue.com
15. Excalibur. Altera Corp., http://www.altera.com
16. Mimosys. http:// http://www.mimosys.com/.
17. Virtex II and IV. Xilinx Corp., http://www.xilinx.com
18. Hu, J., Y. Shin, N. Dhanwada, and R. Marculescu. Architecting Voltage Islands in Core-

Based System-on-a-Chip Designs. Int. Symp. on Low Power Electronics and Design
(ISLPED), 2004, pp. 180-185.

19. Kumar, R., K.I. Farkas, N.P. Jouppi, P. Ranganathan, and D.M. Tullsen. Single-ISA
Heterogeneous Multi-Core Architectures: The Potential for Processor Power Reduction.
Int. Symposium on Microarchitecture (MICRO), 2003.

20. Muttersbach, J., T Villiger, H Kaeslin, N Felber, and W. Fichtner. Globally-Asynchronous
Locally-Synchronous Architectures to Simplify the Design of On-Chip Systems. IEEE Int.
ASIC/SOC Conference, 1999.

21. Semeraro, G., G. Magklis, R. Balasubramonian, D.H. Albonesi, S. Dwarkadas, and M.L.
Scott. Energy-Efficient Processor Design Using Multiple Clock Domains with Dynamic
Voltage and Frequency Scaling. Int. Symp. on High-Performance Computer Architecture
(HPCA), 2002.

22. Zhang, Y., XS Hu, and DZ Chen. Task scheduling and voltage selection for energy
minimization. Design Automation Conference, 2002

23. Sirowy, S., Y. Wu, S. Lonardi, and F.Vahid. Two-Level Microprocessor-Accelerator
Partitioning. Design and Test Europe(DATE) 2007.

24. Sirowy, S., Y. Wu, S. Lonardi, and F. Vahid. Clock-Frequency Assignment for Multiple
Clock Domain Systems-on-a-Chip. Design and Test in Europe(DATE). 2007.

25. Lengauer, T. 1990. Combinatorial Algorithms for Integrated Circuit Layout. John Wiley
& Sons, Inc., New York, NY.

