INTEGRATED COUPLING AND CLOCK
FREQUENCY ASSIGNMENT OF
ACCELERATORSDURING
HARDWARE/SOFTWARE PARTITIONING

Scott Sirowy and Frank Vahid*
Department of Computer Science and Engineering- University of California, Riverside
* Also with the Center for Embedded Computer Systésmsyersity of California, Irvine

Abstract: Hardware/software partitioning movestwafe kernels from a microprocessor to
custom hardware accelerators. We consider advangadmentation options
for accelerators, greatly increasing the partitignéolution space. One option
tightly or loosely couples each accelerator with thicroprocessor. Another
option assigns a clock frequency to each acceleratith a limit on the
number of distinct frequencies. We previously pnése efficient optimal
solutions to each of those sub-problems indepehdeint this paper, we
introduce heuristics to solve the two sub-problémsn integrated manner.
The heuristics run in just seconds for large exas)pyielding 2x additional
speedup versus the independent solutions, for @ toterage speedup 5x
greater than partitioning with a single couplingl amngle frequency.

1. INTRODUCTION

Partitioning an application’s kernels to execute abigustom hardware
accelerator rather than on a microprocessor—knosvhaadware/software
partitioning—is a well-known technique for improgin application
performance [1][2][3][4][5][6] and improving energyconsumption
[71[8][9][10]. Such partitioning is relevant to HotASIC (application-
specific integrated circuit) and FPGA (field-progmaable gate array)
implementation. The rise of FPGAs in commercialnopeocessor platforms

2 Scott Srowy and Frank Vahid*

[11][12][13][14][15][16][17] makes such partitiongn increasingly
important.

Most previous hardware/software partitioning apphes did not
consider different couplings of the acceleratorshwhe microprocessor.
However, modern platforms, including FPGAs, suppatt least two
couplings. Tightly coupled accelerators have direct access to the
microprocessor memory or cache, and thus operata aingle clock
frequency, which will necessarily be the slowesgirency of any of those
acceleratorsLoosely coupled accelerators instead access memory through a
bridge, and thus may each have unique optimizeckdieequencies. Thus,
there exists a tradeoff to couple an acceleragbtlti or loosely based on the
importance to have single cycle memory access omtoat the fastest
possible clock frequency. Figure 1 shows a typaecehitecture that supports
multiple couplings. The two tightly coupled accebers have single cycle
access to memory at the expense of both being edbek 58 MHz even
though one could have been clocked at 166 MHz. &f&r to the problem of
coupling a set of accelerators tightly or looselg the two-level
mi croprocessor-acce erator partitioning problem.

Modern platforms, including FPGAs, may support esal/ different
frequencies on a single chip. For example, thenXipartan 3 supports four
distinct clock frequencies, while the Xilinx VirteXl supports up to
eight[17]. Much current research investigates mighto take advantage of
multiple clock domains for heterogeneous core #&chires, systems-on-a-
chip, etc., for both performance and energy bengfiB][19][20][21][22].
However, the number of accelerators often exceechttmber of available
clock frequencies. In this case, the acceleratarstrbe grouped to share
clock frequencies, necessarily running at the sébvirequency of the group.
For example, in Figure 1, the four loosely coupdedelerators must share
two clock frequencies. We refer to the problenasdigning a fixed number
of clock frequencies so as to minimize the applices execution time as
the clock frequency assignment problem.

Most previous approaches do not consider clockulgaqy assignment
for the accelerators. While the tightly coupledederators should all execute
using the same frequency, the loosely coupled aatelrs could potentially
each execute with different frequencies. In presiovork, we solved the
coupling assignment problem optimally, assumingughoavailable clock
frequencies to support unique frequencies for eémbsely coupled
accelerator [23]. In a separate work, we solvedpitoblem of assigning a
limited number of frequencies to the set of loosmlypled accelerators such
that performance was maximized [24].

Integrated Coupling and Clock Frequency Assignment of Accelerators 3
during Hardware/Software Partitioning

Figure 1. A two-level system architecture that is drivenfoyr clock frequencies. The system
bus has two tightly coupled accelerators that tumslower clock frequency but have single
cycle access to memory.

Tightly Coupled Accelerators\’: max 166 MHz
1

1
| - AccS} | 125| MHz
uP Mem ! max 58 MH{IL) i 100 MHz
1
< : ? T
System BUS ‘ 233 MHz
Bridge
Peripheral Bus ‘d cycle access

Pt S R »

! @ Q @ !

! Acc3 | | | '

! |Acca] | Acc2] | ACCE | nax 500 MHz !

| max 1000 MHz I max 100 MHz | max 233 MHz !

1

L -

Loosely Coupled Accelerators

In this work, we show that solving the two probleinsan integrated
manner can yield significant performance improvetseaver solving them
sequentially. Section 2 discusses the problem itiefinand our previous
sub-problem solutions. Section 3 provides two newristics to solve the
integrated coupling and clock frequency assignn@oblem. Section 4
gives results.

2. PROBLEM DEFINITION AND DESCRIPTION

We previously solved the two-level microprocessmrederator
partitioning problem and the clock frequency assignt problem optimally
using novel dynamic programming techniques for edtiis section reviews
those solutions, and then defines a new probleagiating both problems.

2.1 Two-Level Microprocessor-Accelerator Partitioning

The problem of partitioning accelerators to eithgightly coupled set or
a loosely coupled set, assuming that each looselpled accelerator could
run at its own unique clock frequency, used thio¥ahg objective function
of minimizing the execution time of all the accelers:

4 Scott Srowy and Frank Vahid*

TC([Zn: (comp__cycles + mem__accesses)]/ min_clock)

i=1

+LC(d* D" (mem_accesses / clk _ freq,)

+Zn:(comp_cycle§)/clk_ freq,))
i=1

min_clock is the speed at which the tightly coupled set must to
guarantee single cycle access to memory (or cadie.d term for the
loosely coupled set is the memory latency penaltuired for accessing
memory through a bridge. The tradeoff is whethes @dvantageous for an
accelerator to have single cycle access to mentaheaxpense of possibly
being clocked at a slower frequency, versus beung at its own fastest
possible clock frequency but with a memory accesgjty through a bridge.
We developed an exhaustive optimal search algor{thhich was too slow
for practical sized examples), and a greedy sehmtlristic. The greedy
heuristic begins by mapping all the acceleratorthéoloosely coupled set,
and migrates the accelerators to the tightly calptet based on the
accelerator’s contribution to the total executimnetand how many memory
accesses it requires. The greedy heuristic acthipgformance 15% slower
than optimal.

Seeking a fast solution with better results, wenavaly developed an
optimal solution that runs in what is known as pkspolynomial time (the
partitioning problem is known to be NP-complete][250 a truly
polynomial-time solution is not practical). The Keyour solution is the idea
that the two-level accelerator partitioning probleanth n functions can be
decomposed inton 0-1 knapsack problems. In the classic 0-1 knapsack
problem, the goal is to choose a subset of thesitedmose total value is
maximized while at the same time the sum of theghitsi does not violate
the constraint on the overall capacity given thiueaand the weight of
items to be stored, and the capacity of the knd&pSachis problem is NP-
complete, but can be solved optimally with a dymarprogramming
approach using a well-known pseudo-polynomial time.

We refer to our solution as theknapsack dynamic programming, or
NKDP, solution. The idea is that if we knew the slowascelerator in the
tightly coupled set (let the accelerator be X), cam optimally map all the
functions to the tightly and loosely coupled sets.

First, we map X to the tightly coupled set, sinesdd on our assumption,
this is the slowest accelerator in the tightly dedpset. We then map all
accelerators slower than X to the loosely coupkdsecause otherwise we
would violate the assumption that X was the slowastelerator in the
tightly coupled set. For all functions that arefast or faster than X, we

Integrated Coupling and Clock Frequency Assignment of Accelerators 5
during Hardware/Software Partitioning

compute the reduction in the function’s executiomet should it be mapped
to the tightly coupled set as opposed to the lgoselipled set. We can do
this because we know what its clock frequency wdnddf it were mapped
to the tightly coupled set (the same as X), ohtlbosely coupled set (the
accelerator’s given frequency). Note that the rédandn execution time can
be negative, which means mapping the function étihtly coupled set
will lengthen its execution time. If that happetis function is mapped to
the loosely coupled set immediately. The remaiiogelerators can then be
mapped to either the tightly or loosely coupleds seting the classic 0-1
knapsack problem. The weight of each item is the of the accelerator, the
value of each item is the reduction of the funcsoexecution time
calculated in the previous step, and the capadithe knapsack is the area
constraint of the overall tightly coupled group msrthe area of X.

The above steps will yield the optimum solutionXfis known. Of
course, we do not know X in advance, but that dm¢snatter since we can
try all the possible choices of X. For each functiore assume the function
is X, and we run the above steps to obtain a lpagitimal solution. Among
all the locally-optimal solutions thus obtainedg thne that has the minimum
overall execution time must be globally optimal.

2.2 Clock Frequency Assignment Partitioning

In the clock frequency assignment partitioning pealy we again considered
a set of acceleratord which had already been determined by a previous
hardware/software partitioning decision, and forickh different clock
frequencies could be assigned (thus correspondindpe loosely coupled
processors of the previous problem). For each ateka; in the setA, we
are given several weights. The weightycles corresponds to the number of
clock cycles that the accelerator contributes &otttal clock cycles for the
application, not including cycles required for agsiag memory. The weight
a.maxfreq represents the fastest clock frequency at whigh dbcelerator
may execute. That frequency would typically be deieed by synthesizing
the accelerator and then taking the inverse ofctiiecal path. The weight
a.freq represents the frequency at which acceleraois being clocked in
an implementation. This number is not given, btheamust be determined.
The determined number must be less than or eqaatriaxireg.

The application’'s execution tim& is the sum of the application’s
computation time and communication time. The comipor time equals the
cycles multiplied by 1freq values for every accelerator. The communication
time equals the total number of memory accessespied by the memory
access time. We originally included communicatignet in our problem

6 Scott Srowy and Frank Vahid*

formulation, but found that component of time ures=ary to include during
clock-frequency assignment. The reason is that aemzation time equals
the number of memory accesses by each accelermas tthe time
associated with each access, which is essentialariant. The time
associated with each access consisted of two jpexespart dependent on the
accelerator’s frequency and hence foldable intoabeelerator's compute
time, and the other part independent of the ac®lefrequencies, instead
dependent on the frequency of the microprocessornagmory, which do
not impact theelative total execution time of a given partitioning. Notbat
this non-overlapping computation/communication maxfeexecution time,
while different from the model uses in multi-proses based
hardware/software partitioning, holds for accelerdtased
hardware/software partitioning.

Given a maximum number of unique clock frequenEiessailable to the
accelerators, thelock-frequency assignment problem is to:

Find a positive integer value for every a,.freq, such that each a;.freqis
less than a..maxfreq for every i, the number of distinct a,.freq values is less
than or equal to F, and the execution time E is minimized.

We found there existed enough substructure in tbbl@m to develop a
fast and efficient dynamic programming algorithrattbould solve the clock
frequency partitioning problem optimally.We assurfwithout loss of
generality) that acceleratoas, a,... ay, are pre-sorted in decreasing order of
maximum frequency and each frequency is unique.X(&t{C) equal the
total execution time of the firsA accelerators using the fir€€ clock
frequencies. We define the following recurrencatreh as a function:

If (A=0) then X(A,C)=0
Else If (C=0) then X(A,C)= infinity
Else
ZA:aI cycles
X(AC)= Min| Jaeg ¥ X(-2CD

If A=0, there are no accelerators, and thus thewian time is 0. If C=0,
there are no clock frequencies available, so ek@tuime is infinite. We
intentionally define X to return O for X(0,0).

The “Min” term compares the alternative solutiofsatt assume the
present accelerator'saf) maximum frequency is assigned to the present
accelerator only, to the present accelerator andndxt accelerator, to the

Integrated Coupling and Clock Frequency Assignment of Accelerators 7
during Hardware/Software Partitioning

present accelerator and the next two acceleratrsThe expression inside
that term computes the total execution time fos #ell as the sum of the
execution times for the accelerators assigned & gresent maximum
frequency, added to the previously-computed behkittisn for the other

accelerators with one less available clock fregigsnc

2.3 Integrated Two-L evel Partitioning and Clock
Frequency Assignment

The integrated coupling and clock frequency assemtnproblem takes
as input a set of functions to be implemented aslacators, determined by
a previous hardware/software partitioning decisi@ur problem and
partitioning may iterate). Each accelerator is aateal with four numbers,
determined from synthesis and simulation of eactction: The number of
memory accesses, the total number of computatictesythe synthesized
area, and the maximum possible clock frequency. fiimaber of memory
accesses and computation cycles may representgagem@ worst-case
numbers, depending on whether the designer seeéptitmize for overall
average or worst-case performance.

The extra cycles of the bridge is also given. Themory access penalty
is an architectural feature of the bridge, andanper-application number, so
the number is fixed for all applications. A looselyupled accelerator would
incur this latency penalty each time it made aress¢o memory, since the
accelerator is connected to the memory througibtidge.

All tightly coupled accelerators, having singledeyaccess to memory or
cache, must run at a single clock frequency — #ssumption matches
several modern commercial FPGAs that incorporat&raprocessors.
Because all those accelerators must run at onk frleguency, they all must
run at the frequency of thebowest tightly coupled accelerator in the group.
The tightly coupled accelerators’ frequency neetl b® the same as the
microprocessor’s frequency.

Loosely coupled accelerators, in contrast, coultepially run at their
unique, fastest clock frequency. However, sincaeleno FPGA platforms
impose a limit on the number of available clockgfrencies, several of the
loosely coupled accelerators may also need to lvgaddogether and share
the same clock frequency. This means several afi¢helerators will not be
able to run at their own unique clock frequencye Ttumber of available
clock frequencie§ is usually given in the documentation for the jatar
FPGA being used. For instance, a Xilinx Spartao&rt supports up to four
unique clock frequencies, while the Xilinx Virtek $upports up to eight
clock frequencies.

8 Scott Srowy and Frank Vahid*

Formally, the problem takes as input a set of &ca8drs
A={a,,&,...,a}. Each function is annotated with several diffdrareights:
a.comp_cycles, a.mem accesses, a.area, a.max_freq, and a.frequency.
The terma,.frequency is not given and must be determined. The memory
access penalty through a bridge is given as dtlamdumber of available
clock frequencies is given as F. The objective fioncis to thus minimize
the application execution time as follows:

Find a positive integer value for every a.freq, such that each a.freq is
less than a..maxfreq for every i, the number of distinct a;.freq valuesis less
than or equal to F, one group has single cycle access to memory while the
rest have d cycle access, and the execution time E is minimized.

3. HEURISTICS

We present two heuristics to solving the clock fremcy assignment
problem for two-level microprocessor-acceleratatfprms. Before that, a
straightforward sequential approach performs two-level microprocessor-
accelerator assignment first assuming unlimitedirais clock frequencies,
followed by clock frequency assignment on the Iboseupled accelerators
with (F-1) clock frequencies (since one clock frequencyinmecessarily be
used for the tightly coupled accelerators). Eadivmwblem can be solved
optimally using our previous techniques.

Because the running time of NKDP is Ofgrwhere S is the area
constraint, and the running time of the clock frergey assignment algorithm
is O(nP), the overall worst case time complexity of thguential approach
is O(SA + nP). This is because the sequential approach runk eac
algorithm exactly once. In every case, thé @mm would dominate the AF
term, meaning the real complexity is OfsiHowever, since the assumption
that the two-level microprocessor-accelerator paning algorithm can
operate every loosely coupled accelerator at its distinct clock frequency
is potentially violated, the two level partitioningecomes suboptimal, and
therefore the entire solution is suboptimal.

31 No Penalty Migration

Our first heuristic was based on the observatiat thhen theNKDP
algorithm partitions the accelerators into botlightty coupled and loosely
coupled set, there may be accelerators in the lipasripled set that are
clocked with a faster maximum frequency than thatly coupled set. This
is because the NKDP algorithm decided that havifasger frequency was
more important than having single cycle access émary. However, with

Integrated Coupling and Clock Frequency Assignment of Accelerators 9
during Hardware/Software Partitioning

the number of clocks constrained in clock frequerssignment, that
accelerator’s frequency may be reduced below tielyi coupled clock set
frequency. Thus, migrating the accelerator from lttosely coupled set to
the tightly coupled set makes sense (assumingsittiie area constraint)
since the accelerator would run faster as a tigtdlypled accelerator than
merged with a slower accelerator in the looselypted set. Because the
accelerator’s fastest possible frequency is fabem the already established
tightly coupled set clock frequency, the heurisam migrate the accelerator
to the tightly coupled set at no penalty to thatligcoupled set. We call this
No Penalty Migration. After the heuristic migrates an accelerator fribra
loosely coupled set to the tightly coupled setcklfrequency assignment is
again run on the remaining accelerators in the eiyosoupled set to
determine if a new assignment exists, since orsedeselerator may result in
a better partitioning of the available clock frenqoes to the remaining
loosely coupled accelerators.

Because the clock frequency assignment algorithmruisning a
maximum ofn times (if we have to migrate every single acceétegrixom the
loosely coupled set to the tightly coupled sety tiverall worst case time
complexity is O(A (S + F)).

3.2 Nested Dynamic Programming

We also developed a heuristic in which we triediriegrate the two
solutions by having the two-level microprocessarederator algorithm call
the clock frequency assignment algorithm each timeeknapsack algorithm
returns a possible solution. We call this tested Dynamic Programming
heuristic. TheNo Penalty Migration heuristic assumes the initial two-level
microprocessor-accelerator partitioning chose #ws two-level assignment,
meaning the tightly coupled frequency should benta@ned.

However, the clock frequency assigned to the totlupled accelerators
may not be optimal when considering the clock feeguy assignment
problem too, and thus no amount of clock frequemasgignment and
migration on the remaining accelerators would teisulhe optimal solution.
Because the two-level microprocessor-acceleratgramiyc programming
algorithm runs knapsaak times, and comes up with a potential solution
times, running the clock frequency assignment dyoaprogramming
algorithm on each of those solutions would result more accurate solution
space, since more options are being allowed in® tightly coupled
accelerator set.

10 Scott Srowy and Frank Vahid*

The solution to each knapsack is passed to thek cfoequency
partitioning algorithm. The clock frequency assigmh algorithm
determines the clock frequency assignment for thesdly coupled
accelerators. The best solution is maintained r@tgined. We note the
“best” solution is returned as opposed to the ‘foptf solution from the
original NKDP algorithm, because the heuristicl gtdtentially violates the
assumption that the NKDP algorithm assumes eactselpocoupled
accelerator can run at its own distinct clock freogy. The heuristic is only
guaranteed to return optimal results when the nurobelock frequencies
exceeds the number of accelerators that requinstimal clock frequency.
The worst case running time of the nested dynamtigramming heuristic is
also O(A (S + P)), since the nested dynamic programming algorithams
the clock frequency assignment algorithriimes.

4. EXPERIMENTSAND RESULTS

This section describes results of applying the theuristics to a
commercial quality H.264 video decoder from Freks&emiconductor. We
implemented the heuristics on a 2.66 GHz 1GB RAMtiBen 4 PC. We
targeted synthesis to a Xilinx IV Pro, and gathénddrmation on cycles per
function and maximum clock frequency of each acatde. We also tested
our heuristics using a wide range of synthetic bemarks.

H.264 is a proprietary video decoder developed Hey Yideo Coding
Experts Group (VCEG), and part of the MPEG-4 stashddinlike common
benchmarks taken from publicly available refereimoplementations, the
decoder’s code was highly optimized, and thus didconsist of just two or
three critical functions, but rather of 42 critichlnctions that together
accounted for about 90% of execution time. We a¢di Stitt's partitioning
into accelerators [6], which was straightforwartydlving implementing an
accelerator for each critical function. We gathecednputation cycle and
memory access information through simulation anuttesis, and clocked
each accelerator targeted for Xilinx’s Virtex IV d?rThe variation in
maximum frequencies ranged from 40 MHz to 285 MHz.

Figure 2 shows the results running the heuristicghe highly optimized
H.264 video decoder. The speedups are normalizetegolts when all
accelerators use only one clock frequency and oopling. Figure 2 shows
that one additional clock frequency allowed thertstigs to couple the 42
accelerators either tightly or loosely, and thum ga3.5x speedup over the
single frequency, single coupled implementation. he Tinclusion of
additional clock frequencies further improves theexlup to almost 4x. For
the H.264 application, thé&lo Penalty Migration and Nested Dynamic

Integrated Coupling and Clock Frequency Assignment of Accelerators 11
during Hardware/Software Partitioning

Programming heuristics performed very similarly, attaining ashthe same
speedup. Although both heuristics have the samstwase runtime, thido
Penalty Migration heuristic consistently attained results fastemnthhe
Nested Dynamic Programming heuristic. We also note that as the number of
clock frequencies increases, the improvements dh libe No Penalty
Migration and Nested Dynamic Programming heuristics compared to the
sequential approach become almost negligible. Téidecause as the
number of clock frequencies increases, the moraréct the original
partitioning of the accelerators to the tightly pted and loosely coupled
sets becomes, and therefore little additional wisrkieeded. Even for an
application as large as H.264, every heuristic imiseconds, making its
inclusion into a larger scale exploration environteasible. However, the
No Penalty Migration heuristic would fare better in real time or dynami
exploration environments.

25
e]
g 4 i
s B Sequential
0 34
c
2 24 [m] Nq Pe_nalty
_g 1] Migration
a O Nested D.P
o
< 0+
2 4 6
Number of Clock
Frequencies

Figure 2. Results of the heuristics on a commercial quaiitigo decoder. Compared to a
single-frequency, single-coupling implementatiortte accelerators, the heuristics improve
the execution time by almost 4x.

To further test our heuristics, we applied our Mizs to several
synthetic examples, which included a wide rangeactelerators. Each
accelerator in turn supported a large range of coatipn cycles, memory
accesses and clock frequencies. Figure 3 highligisisits of comparing the
No Penalty Migration and Nested Dynamic Programming heuristics to an
implementation that did not consider coupling oftiple clock frequencies.
Figure 3(a) shows the benefit of just including oadditional clock
frequency, and thus introducing the ability to tigtor loosely couple each
accelerator. With only two clock frequencies, FguB(a) shows the
heuristics are able to achieve on average of albowpeedup. Note that in
every case theNested Dynamic Programming heuristic finds the best
partitioning of the accelerators. Thiested Dynamic Programming heuristic

12 Scott Srowy and Frank Vahid*

also took the longest to complete, finishing maegosnds later in the larger
examples. TheNo Penalty Migration heuristic yielded an average 15%
improvement in application running time over thegttforward sequential
approach. Thélested Dynamic Programming heuristic gained an additional
15% improvement ovelo Penalty Migration. This was because both the
sequential search amdb Penalty Migration partitioned several accelerators
to the tightly coupled set without knowledge of thet that there were only
two clock frequencies available. ThBested Dynamic Programming
heuristic was able to test all combinations of &egors in the tightly
coupled set, and therefore was able to find a supsslution.

7 7
6 6
5 11 a 5
5 E
- 4 8 4
3 3 o 3
9 g,
%] 2
1
1]
0+ - Seaquentie
EI
AN JN-T, SRR ST SRR &QQ’ No Penalt Migration \\e&
o v
Nested D.

Figure 3. Application speedups for synthetic examples wahying numbers of accelerators:
(a) two clock frequencies, (b) eight clock frequescSubstantial speedup is achieved for
increasing numbers of clock frequencies comparesitigle-frequency, single-coupling
implementations.

However, as the number of clock frequencies ine@athe heuristics
achieved nearly the same speedups. The reasondadeeas the number of
clocks increases, the more likely that the inipaltitioning of the tightly
coupled set was correct, meaning only minor gamddcbe made over a
straightforward sequential search. On average scdsto 6 clock
frequencies,No Penalty Migration yielded a 5% improvement over a
sequential search, whilslested Dynamic Programming provided a 10%
improvement. Comparing Figures 3(a) and 3(b), omes shat additional
available clock frequencies does improve speedums single-coupled
single-frequency partitions, from an average ofidXa) to nearly 5X in (b),
with one example achieving almost 6.5x performanggovement.

For all the examples, our heuristics ran in secomgdsnpared to an
exhaustive search, which did not complete in aagoaable amount of time
when the number of accelerators exceeded fifteércoOrse, we tradeoff
speed for the exact solution given by an exhaustazch.

Integrated Coupling and Clock Frequency Assignment of Accelerators 13
during Hardware/Software Partitioning

The No Penalty Migration heuristic completed its search consistently
faster thanNested Dynamic Programming heuristic while also finding a
better solution for platforms with only a few awdile clock frequencies.
However, theNested Dynamic Programming heuristic might be much easier
to implement in a framework where coupling and klassignments have
already been implemented.

S. CONCLUSIONSAND FUTURE WORK

We showed that the consideration of both couplind multiple clock
frequencies can lead to substantial speedup over application
implementation that does not consider either. Wso alhowed that the
integration of both coupling and multiple clock dteencies can lead to
application speedups of over 5x compared to a e&iogupling single-
frequency implementation. We developed two new isgos that integrated
coupling and clock frequency assignment, running$h seconds.

Our formulation assumed mutually exclusive memorgceases and
computation. However, in many cases, these twoviies may actually
overlap. We plan on extending the integrated cogpdind clock frequency
assignment problem to handle concurrent memory saese and
computation, which will require a more advanced ommication and
architecture model. We also plan on searching iooimal solution to the
integrated two-level partitioning and clock freqagmssignment problem.

6. ACKNOWLEDGEMENTS

This work was supported by grants from the Nati@@énce Foundation
(CNS-0614957) and the Semiconductor Research Catipor (2005-HJ-
1331), and by donations from Xilinx, Inc. Freesc&@miconductor supplied
the commercial H.264 decoder

1. REFERENCES

1. Banerjee, S. and N. Dutt. Efficient search sgag®oration for HW-SW Partitioning. Int.
Symp. on Hardware/Software Codesign and Systemh8gist (CODES+ISSS), 2004.

2. Eles, P., Z. Peng, K. Kuchcinsky, and A. Dob&ystem Level Hardware/Software
Partitioning Based on Simulated Annealing and T&march. Design Automation for
Embedded Systems, vol2, no 1, 5-32 Jan. 1997

14 Scott Srowy and Frank Vahid*

3. Gupta, R. and G. De Micheli. Hardware-Softwamsyhthesis For Digital Systems. IEEE
Design and Test of Computers. Pages 29-41, Septeiiba

4. Kalavade, A. and P.A. Subrahmanyam. Hardwarsyaoé partitioning for multi-function
systems. IEEE/ACM International Conference on CompAided Design (ICCAD),
1997.

5. Miyamori, T., and U. Olukotun. A Quantitative &lgsis of Reconfigurable Coprocessors
for Multimedia Applications. FPGAs for Custom Contipg Machines (FCCM). 1998,
pp. 2 -11.

6. Stitt, G., F. Vahid, G. McGregor, B. Einloth idarare/Software Partitioning of Software
Binaries: A Case Study of H.264 Decode. Int. Conf Hardware/Software Codesign and
System Synthesis (CODES/ISSS), Sep. 2005.

7. Chattopadhyay, A., and Z. Zilic. GALDS: A ComgeFramework for Designing
Multiclock ASICs and SoCs. IEEE Trans. on Very lexr§cale Integration (VLSI)
Systems, Vol. 13, No. 6, June 2005.

8. Cohn, J.M., D.W. Stout, P.S. Zuchowski, S.W. [@pT.R. Bednar, and D.E. Lackey.
Managing power and performance for System-on-Chgghs using Voltage Islands. Int.
Conf. on Computer-Aided Design (ICCAD), 2002, pp54202.

9. Henkel, J. A low power hardware/software paning approach for core-based embedded
systems. In Proceedings of the 36th ACM/IEEE DegMgriomation Conference, 122—
127.1999

10. Stitt, G., F. Vahid, and S. Nematbakshi. Ene3gyings and Speedups From Partitioning
Critical Software Loops to Hardware in Embedded t&ys. IEEE Transactions on
Embedded Computer Systems, January 2004.

11. Corp. 2005. FPSLIC (AVR with FPGAjttp://www.atmel.com/products/FPSLIC/

12. Celoxica. http://www.celoxica.com

13. Cray XD1. Cray Supercomputeingp://www.cray.com/products/xd1/index.html

14. Critical Blue. 2005http://www.criticalblue.com

15. Excalibur. Altera Corp., httpsvw.altera.com

16. Mimosys. http:/http://www.mimosys.com/

17. Virtex Il and IV. Xilinx Corp. http://www.xilinx.com

18. Hu, J., Y. Shin, N. Dhanwada, and R. Marculegeuhitecting Voltage Islands in Core-
Based System-on-a-Chip Designs. Int. Symp. on Lawe? Electronics and Design
(ISLPED), 2004, pp. 180-185.

19. Kumar, R., K.l. Farkas, N.P. Jouppi, P. Rangarg and D.M. Tullsen. Single-ISA
Heterogeneous Multi-Core Architectures: The Po#drfor Processor Power Reduction.
Int. Symposium on Microarchitecture (MICRO), 2003.

20. Muttersbach, J., T Villiger, H Kaeslin, N Felband W. Fichtner. Globally-Asynchronous
Locally-Synchronous Architectures to Simplify thedign of On-Chip Systems. IEEE Int.
ASIC/SOC Conference, 1999.

21. Semeraro, G., G. Magklis, R. Balasubramoniahi. Blbonesi, S. Dwarkadas, and M.L.
Scott. Energy-Efficient Processor Design Using Mgt Clock Domains with Dynamic
Voltage and Frequency Scaling. Int. Symp. on Higinfétmance Computer Architecture
(HPCA), 2002.

22. Zhang, Y., XS Hu, and DZ Chen. Task schedubling voltage selection for energy
minimization. Design Automation Conference, 2002

23. Sirowy, S., Y. Wu, S. Lonardi, and F.Vahid. Fuevel Microprocessor-Accelerator
Partitioning. Design and Test Europe(DATE) 2007.

24. Sirowy, S., Y. Wu, S. Lonardi, and F. Vahido&K-Frequency Assignment for Multiple
Clock Domain Systems-on-a-Chip. Design and Te&rope(DATE). 2007.

25. Lengauer, T. 1990. Combinatorial Algorithms fotegrated Circuit Layout. John Wiley
& Sons, Inc., New York, NY.

