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Abstract 
Dynamically-loaded tagless loop caching reduces instruction 
fetch power for embedded software with small loops, but only 
supports simple loops without taken branches. Preloaded tagless 
loop caching supports complex loops with branches and thus can 
reduce power further, but has a limit on the total number of 
instructions cached. We show that each does well on particular 
benchmarks, but neither is best across all of those benchmarks. 
We present a new hybrid loop cache that only preloads the 
complex loops, while dynamically loading other loops, thus 
achieving the strengths of each approach. We demonstrate better 
power savings than either previous approach alone. 
Keywords: Loop cache, low power, embedded systems, 
architecture. 

1. Introduction 
Instruction fetch power may consume nearly 50% of an 
embedded microprocessor system’s power [1][11]. Reducing 
instruction fetch power can thus result in significant system 
power savings, important in embedded systems to increase 
battery lifetime or reduce cooling requirements. 

Several methods focus on reducing instruction fetch power 
such as bus encoding [1] and program compression [6]. A 
complementary approach capitalizes on embedded system 
software that tends to spend much time in small loops by using a 
tiny and hence low-power cache to store such loops. One such 
method [1] uses a simple but clever controller that dynamically 
detects and loads only loops, and that conservatively detects 
when the loop is exited, thus eliminating the need for tag 
comparisons. Such a dynamically loaded loop cache method is 
transparent to the designer, but is limited to supporting loops 
without taken branches or subroutine calls. In [5], we proposed 
another tagless method that overcomes this limitation by 
observing that embedded programs are typically fixed, and hence 
the most frequent loops can be preloaded into the loop cache. 
The preloaded loop cache method can support loops that are 
more complex, and thus provides greater power savings, but has 
a limit as to how many loops can be preloaded. Each approach 
has been shown to excel in different situations. 

We present the design of a hybrid dynamically-
loaded/preloaded loop cache that gains the advantages of both 
methods. The hybrid loop cache can operate as a dynamically 
loaded cache only, providing transparency in cases where 
designers do not wish to perform preloading or if the application 
running will not be fixed. The hybrid cache can also be 
preloaded with only those loops that would not work well if 
dynamically loaded, thus avoiding the preloading of dynamically 
loadable loops and hence effectively increasing the size of the 

preloaded loop storage. We demonstrate power improvements on 
several benchmarks.   

2. Related Work  
An extremely small cache of 32 to 64 words, tightly integrated 
with a processor, has very small access power compared to 
accessing a standard first level cache or a standard on-chip or off-
chip program memory.  Kin et al [7] first proposed such a small 
cache, called a filter cache, to reduce power, at the expense of 
reduced performance due to frequent filter cache misses. Bellas 
et al [2] used a profile-guided compiler to map frequently 
executed loops to a special address range, and discussed 
architecture extensions that would only load items in that range 
into the filter cache, thus reducing (but not eliminating) misses. 
We refer to this approach as a selective filter cache. Two 
approaches were further developed that eliminate the power-
costly tag comparisons of the above approaches, which we now 
discuss. 

2.1 Dynamically Loaded Tagless Loop Caching  
The dynamically loaded loop cache, designed at Motorola [1], 
exploits the fact that many loops are small and are formed by the 
last loop instruction jumping back to the loop start. This 
instruction is denoted as a short backwards branch (sbb) 
instruction and can be any program-counter relative branch 
instruction, i.e., an sbb is not a special instruction. During 
program execution, the instructions being fetched from 
instruction memory are monitored. A taken sbb triggers the loop 
cache controller to begin filling the loop cache. During the next 
loop iteration, the instructions fetched from instruction memory 
are fed to both the processor and the loop cache. On the third 
loop iteration, the instruction memory is bypassed and 
instructions are instead fetched from the loop cache. If a loop 
does not completely fit in the loop cache, only the first 
instructions are cached. 

Fetching continues from the loop cache until the triggering 
sbb is not taken. Loop cache filling or fetching also terminates if 
there is a control of flow change (cof), namely a taken jump. A 
cof causes termination because a cof during filling prevents the 
entire loop from being loaded into the loop cache, and a cof 
during loop cache fetching could cause execution to leave the 
loop cache. 

Unlike filter caches, a dynamically loaded loop cache does not 
suffer any misses and hence imposes no performance overhead. It 
involves no tag comparisons, resulting in even less power per 
access. Furthermore, it is completely transparent to a designer, 
requiring no special profile-guided compilation step. 

However, the dynamically loaded loop cache cannot cache 
loops with cofs, even cofs resulting from simple if statements 
that would never cause execution to leave the loop cache, nor 



cofs caused by calls from the loop to simple subroutines. In some 
cases, it may increase power due to extensive thrashing, caused 
by particular loop nestings. 

2.2 Preloaded Tagless Loop Caching 
We introduced the preloaded tagless loop cache in [5] to increase 
the percentage of frequently executed code that could be captured 
in the loop cache. Based on the observation that embedded 
system products typically have a fixed application, meaning that 
the program running on the microprocessor will not change 
during the lifetime of the product (e.g., a digital camera), the 
critical regions of code could be determined ahead of time and 
loaded into a cache whose contents would not change. The cache 
could now capture critical regions of code including loops with 
cofs, subroutines, and nested loops. By keeping the starting and 
ending addresses of each critical region and the starting location 
of the instructions in the cache, any number of regions could be 
stored. Like the dynamically loaded loop cache, the cache would 
be tagless, small, tightly integrated with the microprocessor and 
provide low power instruction fetching. Several methods for 
preloading the loop cache are possible; most are carried out 
during system reset. 

Fetching from the preloaded loop cache begins when a cof 
causes the next instruction to be within the range of one of the 
loops in the loop cache. Since the loop cache is prefilled, cofs do 
not pose a fill problem. During loop cache fetching, a few pre-
determined exit bits associated with each instruction in the loop 
cache are used to determine if a cof exits the current loop. Static 
code analysis sets these bits, which are then preloaded with the 
loop. In rare cases where static analysis cannot determine the 
target branch address, such as the case of an indirect jump, the 
exit bits are conservatively set to indicate a loop exit. 

The preloaded tagless loop cache has the added benefit of 
supporting subroutines and more loops than the dynamic 
approach. However, the loop cache size is fixed and so can only 
hold a limited number of instructions. In contrast, the dynamic 
loop cache is continually refilled. The preloaded method also 
requires the designer to perform the extra design step necessary 
for profiling the code and filling the loop cache. 

3. Hybrid Loop Caching 
Table 1 provides data on the two tagless loop caching approaches 
for several benchmarks. Notice that in some cases dynamic is 
best, while in others preloaded is best – and the power difference 
between the two can be large. What is needed is a loop caching 
scheme that achieves the benefits of both approaches. 

We thus designed a hybrid loop cache, consisting of a main 
loop cache loaded either dynamically or from a second level of 
preloaded storage. As with the earlier approaches, the main loop 
cache is very small and tightly integrated with the 
microprocessor. The second level of preloaded storage is not as 
power critical because accesses to it will be infrequent – thus, 
the second level can be as big as size constraints allow. 

3.1 Architecture 
The hybrid loop cache architecture can be seen in Figure 1. Its 
main components consist of two levels of storage, two 
controllers, a loop match memory (comparators), and loop 
address registers (LARs). The first level of storage is the main 

loop cache where instruction fetches occur. The second level of 
storage contains the loops that have been determined as critical 
regions of code, have been preanalyzed to determine exit bits, 
and have been preloaded during system reset. The two 
controllers are responsible for controlling the operation of the 
loop cache and will be discussed below. The loop address 
registers hold the starting and ending addresses of the loops 
stored in the second level storage and the starting position of the 
loop in the second level storage. 

3.2 Operation 
The hybrid loop cache consists of two controllers: the loop cache 
controller and the preloaded loop filler. The loop cache controller 
is the master controller and is responsible for dynamically filling 
the main loop cache, determining when to check for a preloaded 
loop, and for orchestrating instruction fetches. This controller can 
operate in either a dynamic or a preloaded caching mode. The 
preloaded loop filler is responsible for both detecting the 
execution of loops that have been preanalyzed and for filling the 
main loop cache with these loops. It is only activated when the 
loop cache controller requests a loop to be filled from the second 
level storage. Both state machines can be seen in Figure 2. 

An important feature of the hybrid loop cache is its ability to 
function like a dynamic loop cache if the designer does not wish 
to take the extra step to preanalyze the application. If the 
designer wishes to bypass the preanalysis step and forgo the 
loading of the second level of storage, the loop cache controller 
will act as a dynamically loaded loop cache – completely 
transparent to the designer. This also means that the application 
running on the microprocessor does not need to be fixed as it was 
in the preloaded loop cache. In that case, only the dynamic 
portion of the design would function. The same architecture can 
be used for both fixed and changing application systems. 

3.2.1 Detecting Loops / Filling the Main Loop Cache 
Filling the main loop cache can be done dynamically while 
instructions are fetched from main memory, or from the 
preloaded second level of storage. Determining where the main 
loop cache will be filled from is the responsibility of the loop 
cache controller.  

During the Idle state, memory fetches are serviced by the 
main memory and the main loop cache is disabled. To reduce the 
number of comparisons resulting from checking for preloaded 
loops, dynamic loading takes precedence, meaning that during 
the Idle state, the loop cache controller transitions to Dynamic 
Fill upon execution of a taken sbb (tsbb). At this point, new 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Basic architecture of the hybrid loop cache. 
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instructions will be loaded into the main loop cache and the loop 
cache contents are invalidated (ilc). 

The Dynamic Fill state functions the same as it does for the 
dynamic loop cache. During this state, if there is a cof, the loop 
can no longer be assumed as a candidate for the dynamic caching 
method and the state machine transitions to Idle. At this point, 
the preloaded loop filler is activated to determine if the loop is 
preloaded in the second level of storage. 

The activate loop detection logic (ald) signal is what triggers 
the preloaded loop filler to transition from the Idle state to the 
Wait state to wait for the next instruction read. The next 
instruction address is compared with the LARs by activating the 
loop match memory (almm). If there is a match (lm) the loop is 
loaded into the main loop cache. If the loop calls any simple 
subroutines, one may be loaded along with the loop. The loop 
cache busy (lcbusy) signal is asserted during this time. This 
provides mutual exclusive filling of the loop cache. 

3.2.2 Fetching From the Main Loop Cache 
Fetching from the main loop cache in the hybrid approach, 
whether it be a dynamically loaded or a preloaded loop, is the 
same as it is for the separate dynamic and preloaded loop caches. 
The hybrid approach has two active states, one for each fetching 
method and depending on the active state, the main loop cache is 
accessed appropriately. The only differences are in the conditions 
for transitioning to the Preloaded Active state. 

There are two ways to transition to the Preloaded Active 
state. The first way happens when the triggering sbb of a 
preloaded loop is taken. For this, execution transitions 
immediately to the Preloaded Active state and while in this state, 
operation is the same as it is for the preloaded loop cache.   

The second way is via the Wait for Address and Exit Bits 
state. The loop cache controller transitions to this state when 
there is a cof and lcv is asserted. This state is necessary to 
resume fetching from the main loop cache after a return from a 
subroutine that has not been preloaded. The next instruction 
address must fall within the range of the loaded loop and the exit 
bits must indicate that loop cache fetching will continue.  

4. Experiments 
To examine the power effectiveness of our hybrid loop caching 
method, we ran tests on ten benchmarks from the Powerstone 
benchmark suite [10] running on a 32-bit MIPS microprocessor 
and three benchmarks from the MediaBench suite [8] running on 
SimpleScaler [3]. We ran each benchmark on an instruction set 
simulator to obtain an address trace of the program execution. 
We developed a loop cache simulator (lcsim) that reads in the 
instruction trace and outputs detailed statistics including the 
number of instruction memory fetches and loop cache operations 
(i.e. detect (address comparison), fill and fetch). We also 
modeled each loop cache controller in synthesizable VHDL and 
synthesized the controllers using Synopsys Design Compiler [12]. 
We simulated the loop cache controllers to determine the 
switching activity per loop cache operation.  

Based on data in [1], we used a ratio of 100 to 1 for the power 
consumption for an access to instruction memory verses a loop 
cache of size 16. The power consumed by the loop cache was 
increased by 1.5 for each doubling of the size of the loop cache. 
Power of the internal nets of the loop cache controller were 1/8 of 
the bus wires to a loop cache of size 16. We assume that the time 
to access main memory and the loop cache are the same. 

Our results are represented as a percentage of power savings 
compared to a design with no loop cache. For power 
consumption, we only consider the power consumed due to 
accesses to the instruction memory which can be nearly 50% of 
the total power consumption [1][11]. 

Our test results include running the benchmarks through the 
dynamically loaded, preloaded and hybrid loop caching schemes. 
We tested a hybrid main loop cache and second level storage 
sizes of 16 to 128 entries. For each test, we compared the hybrid 
results to a dynamically loaded and preloaded loop cache with a 
loop cache size equal to the size of the hybrid main loop cache. 

Table 1 shows the results for our tests comparing a hybrid 
cache with a main loop cache size of 32 and a second level 
storage of size 128, with a dynamic and preloaded cache each of 
size 32. In the dynamic and the preloaded columns, the approach 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 
 

Figure 2: State machines for the hybrid loop cache controller and preloaded loop filler and their interconnect logic. 
* Unless specified, all other signals are deasserted in each state. , ** Abbreviations are described in the text. 
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with the greatest savings is bold. Of the thirteen benchmarks, the 
hybrid approach performed the best in nine of them and 
preformed equally as well in ine. For the remaining three, the 
hybrid approach performed better or as well as a strictly dynamic 
approach but was outperformed by the preloaded cache. 

Figure 3 examines the effects of deep sub micron 
technologies with increasing bus capacitances. The ratios 
represent the increase in power consumed by the loop cache for 
each doubling of its size, starting at size 16. We looked at a 
hybrid loop cache with a main loop cache size of 32 and a second 
level storage size of 1024 and preloaded loop cache of size 1024. 
As the power ratio increases, the power savings for the hybrid 
loop cache remain relatively constant, only decreasing slightly 
because of the small number of accesses to the large second level 
cache. The very small main loop cache ensures the constant 
power savings. However, because the preloaded loop cache 
executes entirely from the very large loop cache, it suffers 
heavily from increased bus capacitances.  

A very important trait of the hybrid loop cache is its resilience 
when it is used as simply a dynamically loaded loop cache. To 
test this, we compared the results of a hybrid loop cache with no 
preloaded loops to the results of a strictly dynamically loaded 
loop cache in Table 2.  In all cases, the hybrid loop cache fell 
less than 1% short of the dynamically loaded loop cache. If the 
designer does not wish to preanalyze the application, the power 
savings of a dynamically loaded loop cache can still be achieved 
transparently to the designer.  

5. Conclusions 
A hybrid loop cache can reduce embedded system software 
instruction fetch power by nearly 50%. It can be used 
transparently as a dynamically-loaded loop cache if the designer 
does not wish to take the preloading step and will provide the 
same power savings as a dynamically loaded loop cache. If 

preloading is an option, it can hold more loops than a preloaded 
loop cache of the same size because it does not need to store the 
loops that can be dynamically loaded. Future work includes 
developing an efficient loop match memory to be able to support 
large numbers of loops without power overhead for the 
comparisons and investigating the impact our design has on 
system performance. 
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Table 1: Percentage of power savings for instruction fetching. 
The bold entries indicate the better of dynamic or preloaded. 

Note that hybrid is as good as either in most cases. 
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Figure 3: Power savings for increasing capacitance ratios.  

Table 2: Power savings for instruction fetching of a 
dynamically loaded loop cache verses a hybrid cache with 

no preloaded loops. 
 Main Loop Cache Size 
 16 32 64 128 

Dynamic 30% 30% 30% 29% 
Hybrid 29% 29% 29% 28% 

 

 Dynamic 
32 

Preloaded 
32 

Hybrid 
32/128 

adpcm* 0% -1% 35% 
blit 95% 94% 95% 
compress 9% 9% 17% 
crc -1% 63% 99% 
des 23% 3% 38% 
engine 20% 26% 19% 
epic* 0% 47% 19% 
fir 29% 36% 56% 
g3fax 59% 61% 96% 
jpeg* 2% 12% 41% 
summin 54% 46% 76% 
ucbqsort 2% 34% 49% 
v42 5% 25% 22% 
AVG 23% 35% 51% 

 

* MediaBench 


