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Abstract 
Embedded system programs tend to spend much time in small 
loops. Introducing a very small loop cache into the instruction 
memory hierarchy has thus been shown to substantially reduce 
instruction fetch energy. However, loop caches come in many 
sizes and variations – using the configuration best on the 
average may actually result in worsened energy for a specific 
program. We therefore introduce a loop cache exploration tool 
that analyzes a particular program’s profile, rapidly explores 
the possible configurations, and generates the configuration 
with the greatest power savings. We introduce a simulation-
based approach and show the good energy savings that a 
customized loop cache yields. We also introduce a fast 
estimation-based approach that obtains nearly the same results 
in seconds rather than tens of minutes or hours.  
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1. Introduction 
Reducing power and energy consumption of embedded systems 
translates to longer battery life and reduced cooling 
requirements.   For embedded microprocessor based systems, 
instruction fetching can contribute to a large percentage of 
system power (50% in [18][10] and 43% in [23]), since such 
fetching occurs on nearly every cycle, involves driving of long 
and possibly off-chip bus lines, and may involve reading of 
numerous memories – such as in set-associative caches.  

Several approaches to reducing instruction fetch energy 
have been proposed, including program compression to reduce 
the amount of bits fetched [3][15][20], bus encoding to reduce 
the number of switched wires [4][22][27][29] and efficient 
instruction cache design [2][13][16][28].  

Another category of approaches, which capitalize on the 
common feature of embedded applications spending much time 
in small loops [19][32], integrate a tiny (perhaps 64 word) 
instruction cache with the microprocessor. Such tiny caches 
have extremely low power per access, perhaps 50 times less 
than regular instruction memory access [19], thus reducing total 
instruction fetch energy substantially. A filter cache [14] is one 
such tiny cache, implemented as a direct-mapped cache, but a 
filter cache may result in many misses and hence performance 
degradation. Tagless, missless low-power tiny instruction cache 

architectures have recently been introduced, including the 
dynamically-loaded tagless loop cache [18][19], which shows 
average power savings of 30-40%, followed by the preloaded 
tagless loop cache [9], which shows average power savings of 
60-70%.  

A designer of a mass-produced microprocessor platform 
might use the cache architecture that performs best across a 
wide set of benchmarks. However, an embedded system 
typically runs one fixed application for the system’s lifetime. 
For example, a cell phone’s software typically does not change. 
Furthermore, embedded system designers are increasingly 
utilizing microprocessor cores rather than off-the-shelf 
microprocessor chips. The combination of a fixed application 
and a flexible core opens the opportunity to tune the core’s 
architecture to that fixed application. Architecture tuning is the 
customizing of an architecture to most efficiently execute a 
particular application (or set of applications) under given 
constraints on size, performance, power, energy, etc. [31], as 
discussed in the Y-chart methodology of [12]. A very 
aggressive form of tuning involves creating a customized 
instruction set [1][6][7][8]. 

Complementary to such application-specific instruction-set 
processor design is the design of customized memory 
architectures. Traditionally, these architectures have focused on 
the data memory organization and fast exploration. One such 
approach attempts to reduce power consumption by reducing 
memory traffic through memory optimizing transformations, 
storing frequently accessed variables in register files and on-
chip cache, reducing misses by configuring the cache size 
correctly and data placement [26]. Another approach uses an 
exploration strategy for determining the on chip memory 
architecture [25]. In this approach, they focused on a memory 
architecture comprised of a Scratch-pad memory and cache 
parameters to decrease off chip memory traffic. To reduce 
system power, a hardware based approach is presented in [11], 
where they create a custom memory hierarchy consisting of 
additional layers of smaller memories in which the more 
frequently used data is stored. Furthermore, in [24] they present 
an exploration environment that utilizes a two phase memory 
exploration scheme along with system level transformations to 
reduce memory size and power.  

 Loop cache designs vary greatly as well. Choosing the right 
style and size of a loop cache can mean the difference between 
an 80% instruction fetch savings and no savings or even a loss. 
In this paper, we describe our automated environment for 
synthesizing the best loop cache architecture for a given 



program. We show excellent energy savings using a simulation 
based environment. Furthermore, we describe an estimation 
method that results in nearly two orders of magnitude speedup, 
enabling best cache selection in just seconds with almost no loss 
in result quality. 

2. Loop Cache Architectures 
The first type of loop cache we consider was proposed in [18], 
which was using in Motorola’s M*CORE embedded processor. 
The loop cache, illustrated in Figure 1(a), is a small instruction 
buffer tightly integrated with the processor, having no tag 
comparison or valid bit. To eliminate performance degradation, 
the loop cache is not a genuine first level cache, but rather an 
alternative location from which to fetch instructions, selected 
through a multiplexor (controlled by the loop cache controller) 
as shown in the figure. The loop cache controller is responsible 
for filling the loop cache when detecting a simple loop – 
defined as any short backwards branch instruction. At the end of 
the first iteration of a loop, a short backwards branch is 
detected. Then, during the second iteration, the loop cache is 
filled. Finally, starting with the third iteration, the loop cache 
controller fetches instructions from the loop cache instead of 
regular instruction memory. This type of loop cache is 
dynamically loaded, and requires no special compilers or 
instructions and is thus transparent to the designer. We refer to 
this type of loop cache as the original dynamic loop cache. 

One drawback of the original dynamic loop cache is the 
cache’s inability to handle loops that are larger than the cache 
itself. To alleviate this problem, the flexible dynamic loop cache 
was proposed in [19]. In this design, if a loop is larger than the 
loop cache, the loop cache will be filled with the instructions 
located at the beginning of the loop until the loop cache is full. 

A problem with the dynamically loaded loop caches is that a 
control of flow change in a loop will cause filling or fetching 
from the loop cache to stop. Thus, internal branches within 
loops, multiple backwards branches to the same starting point in 
a loop, nested loops, and subroutines pose problems. A 
preloaded loop cache was proposed in [9] to overcome these 
limitations, illustrated in Figure 1(b). Using profiling 
information gathered for a particular application, the loops that 
comprise the largest percentage of execution time are selected 

and preloaded into the loop cache during system reset. After this 
initialization, the contents of the loop cache do not change for 
the duration of the program execution. The loop cache 
controller can check for a loop address whenever a short 
backwards branch is executed. Since loops are preloaded, loop 
cache fetching can begin on the second rather than third loop 
iteration. This approach is referred to as the preloaded loop 
cache (sbb), which stands for short backwards branch. 
Alternatively, loop addresses can be looked for on every 
instruction, allowing loop cache fetching to begin on the first 
iteration. This approach is referred to as the preloaded loop 
cache (sa), where sa stands for starting address. Both preloaded 
caching schemes can handle control of flow, but limit the 
number of loops that can be stored in the loop cache. In 
addition, preloaded loop caches are not transparent to the 
designer, but instead requires that programs be profiled 
beforehand and the loop cache be preloaded. 

We thus see that a variety of loop cache configurations are 
possible. We described four basic styles above. Furthermore, for 
each style, different sizes are possible – larger loop caches can 
hold bigger loops, but at the expense of more power per access. 
Additionally, preloaded loop caches can support different 
numbers of loops. The best configuration depends directly on 
what program we are considering. Generally, a dynamically-
loaded loop cache will work best for programs with large 
numbers of small, straight-line loops. A preloaded loop cache 
will work best for programs with a few key loops that possess 
control of flow changes. Furthermore, the best cache size will 
depend on the loop sizes. 

3. Exploration Framework 
We evaluated a number of cache architecture configurations on 
a set of Powerstone benchmarks [21]. For each benchmark, we 
considered 72 different cache configurations: 

• original dynamic loop cache – cache sizes ranging from 8 
to 1024 entries (by powers of 2). 

• flexible dynamic loop cache – cache sizes ranging from 8 
to 1024 entries (by powers of 2). 

• preloaded loop cache using start address – cache sizes 
ranging from 8 to 1024 entries (by powers of 2), with 
either 2 or 3 loop address registers 

• preloaded loop cache using short backwards branch 
address – cache sizes ranging from 8 to 1024 entries (by 
powers of 2), with 2-6 loop address registers 

Each entry within a loop cache corresponds to a 32-bit 
instruction. For the preloaded loop caches, the number of loop 
address registers available indicates the maximum number of 
loops that can be preloaded into the loop cache. 
3.1 Loop Cache Simulation Method 
We developed a suite of tools to evaluate each cache 
configuration for a given benchmark. The tool chain is shown in 
Figure 2. Starting from C code for each benchmark, an lcc 
compiler ported to the MIPS instruction set compiles each 
application. We then use a MIPS instruction-set simulator to 
obtain a program instruction trace for each benchmark. The 
program instruction trace is then fed to a loop analysis tool 
called LOOAN [33]. LOOAN analyzes the original assembly 
program and the trace, from which it generates loop statistics 
describing the hierarchy of subroutines and loops, and detailed 

Figure 1: Basic architecture of dynamic loop cache (a) and 
preloaded loop cache (b).  
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profiling statistics such as the number of executions of a 
particular loop, the number of dynamic instructions per loop 
iteration, and the total contribution of each loop and subroutine 
to the entire program execution. The loop statistics are fed to a 
loop packer & script generator tool that selects the best loops to 
store in a preloaded loop cache, and generates a script that will 
explore all 72 possible loop cache configurations with 
associated loop packings for the preloaded caches. We 
developed a loop cache simulator, called lcsim, that the script 
calls for each configuration. The simulator reads the program 
instruction trace, and keeps an accurate count of important loop 
cache operations, including the number of fill operations (for a 
dynamically loaded cache), the number of instruction-memory 
fetches, the number of loop cache fetches, the number of 
address comparisons (for a preloaded cache), etc. lcsim 
generates these loop cache statistics as a file. Finally, an lc 
power calc tool reads these statistics, as well as technology 
parameters, and the loop cache power information, to generate 
loop cache power data.  

We calculated power and energy based on the switching 
activity of each operation and the relative capacitance of various 
components. The switching activity for each operation was 
measured by pre-implementing the various cache designs in 
VHDL. Each design was synthesized using Synopsys Design 
Compiler and simulated at the gate-level to determine the 
average switching activity. The relative capacitance values 
associated with the different components of each design were 
factored out such that we could set these values to correspond to 
different technologies. Using this approach, we can compare the 
various cache configurations without limiting the results to a 
given technology. A designer interested in determining how 
each cache configuration performs for a specific technology can 
simply set the performance value to the technology of interest. 

The simulation-based approach mimics each loop cache 
controller exactly (lcsim contains exactly the same state 
machines as our VHDL loop cache controller models), and thus 
yields completely accurate counts of all loop cache related 
events (fills, fetches, compares, etc.). However, such an 
approach took anywhere from a couple minutes for small 
examples, to half an hour for medium sized examples. We also 

ran several larger examples through lcsim (from MediaBench 
[17]), which took tens of hours to complete.  Most of the time 
came from having to read the very large program trace files for 
each configuration being examined. 
3.2 Loop Cache Estimation Method 
We sought to develop a faster method than loop cache 
simulation for exploring the loop cache configuration space. 
Note that lcsim follows the paradigm of traditional cache 
simulators, like Dinero [5].  Thus, we could look into traditional 
cache simulation speedup methods, like examining multiple 
configurations per pass [30] or compacting the trace size using 
statistical methods [34]. However, we found that due to the 
nature of loop caches, a far faster and simpler estimation 
method was possible. In short, we could apply simple equations 
and algorithms to the loop statistics in order to generate very 
accurate loop cache statistics. 

Our estimation method is illustrated in Figure 2. LOOAN is 
again used to generate loop statistics for a program. For our 
estimations, the loop statistics we are interested in are the start 
and end address of each loop, the loop size, the number of times 
a loop is called, the average times a loop iterates once it is 
called, and the total number of instructions executed by this 
loop. LOOAN was further augmented to output the addresses at 
which function calls were made to create a more complete 
picture of the executing program. Once this data is generated, 
we then use the various estimation techniques described below 
to statically analyze each benchmark. The goal of each 
estimation technique is to determine the loop cache statistics – 
the number of instruction memory fetches, detection operations 
(i.e. checking to see if we should execute from the loop cache or 
not), number of instructions filled into loop cache, and the 
number of instructions fetched from the loop cache – without 
running the time-consuming lcsim at all. 

To determine the number of various operations we take the 
loop hierarchy provided by LOOAN and iterate through each 
loop. Then, for each loop we accumulate the estimated number 
of fills, fetches, detects corresponding to only the loop we are 
currently investigating. The estimation method varies according 
to the cache type being considered. We now discuss the 
estimation strategy for each loop cache type. 

Figure 2: Simulation and estimation based loop cache configuration synthesis methods.  
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3.2.1 Original Dynamically Loaded Loop Cache 
In the original dynamically loaded loop cache, we are interested 
in the number of times we fill the loop cache with an 
instruction, the number of times we fetch an instruction from the 
loop cache, and the number of instruction memory fetches. 
Since the original dynamically loaded loop cache contains no 
preloaded loops, there are no loop address registers we must 
compare addresses with, thus no detect operations. 

On the first iteration of each loop, the loop cache controller 
sees a short backwards branch (sbb) that triggers filling the loop 
cache on the second iteration. It will continue to fill the loop 
cache until a control of flow is detected. Thus, to estimate the 
number of fill instructions, we first see if the loop size is less 
than or equal to the size of the loop cache we are interested in. 
Next, we check whether this loop would iterate at least two 
times, since otherwise the loop cache would never be filled with 
this loop. We then want to see how many instructions from this 
loop would be filled into the loop cache. We determine where 
the first control of flow will occur. This control of flow can 
originate from the sbb that trigged the fill, an sbb from a 
subloop, or a function call. The control of flow may also 
correspond to a jump, but this information is not provided in the 
static analysis. If the current loop contains subloops, the loop 
cache controller will fill to the end of the first subloop. 
Similarly, if the loop contains a function call, the function call 
map previously generated from LOOAN is used to determine 
the exact instruction from which the function call originates. 
The smallest of the three aforementioned addresses is 
determined and from it we subtract the start address of the loop 
we are interested in. This calculation is the number of 
instructions that will be filled into the loop cache. Therefore, 
each time this particular loop is called, it will fill that many 
instructions, so we then multiply this number by the number of 
times the loop is executed. 

The original dynamic loop cache fetches instructions 
starting with the third iteration of the loop. Once again, the loop 
cache controller will stop fetching when a control of flow is 
detected. To calculate the number of fetches, we again check to 
see if the loop size is less than or equal to the size of the cache 
we are interested in. In addition, we check to see that the 
average number of iterations is greater than or equal to three. If 
not, this loop will never be fetched from the loop cache. The 
location of the first control of flow change within the loop is 
determined using the same method as mentioned above. If this 
control of flow change occurs at the end of the loop, the loop 
will be fetched from the loop cache starting with the third 
iteration. Thus, we multiply the number of instructions within 
the loop by the iteration average minus two. Additionally, this 
behavior occurs every time the loop is executed, hence, we 
multiply the fetches per execution by the number of times the 
loop is called. 

Finally, we fetch an instruction from instruction memory 
when it is not fetched from the loop cache. Using the output 
from LOOAN indicating the total number of instructions 
executed, we obtain the number of instruction memory fetches 
by subtracting from the total number of instructions executed 
the number of fetch operations we previously determined. 

3.2.2 Flexible Dynamically Loaded Loop Cache 
The estimation method for the flexible dynamically loaded loop 
cache is similar to the estimation described for the original 
dynamically loaded loop cache. However, in the flexible 
dynamically loaded loop caches, loop size is not limited to less 
than or equal to the loop cache size. Thus, in determining the 
number of instructions fetched or filled we still determine the 
first control of flow, whether it be an sbb from a subloop, a 
function call, or the sbb corresponding to the end of this loop. 
We then check to see if the start address minus the end address 
is larger then the loop cache size. If it is, we set the number of 
instructions fetched or filled on a given iteration to the loop 
cache size. This value is still multiplied by number of times the 
loop is called if we are calculating the number of fills or by the 
number of times the loop is called and the number of iterations 
minus two if we are calculating the number of fetches. As 
before, the number of instruction memory fetches is equal to the 
number of total instructions executed minus the number of loop 
cache fetches. 
3.2.3 Preloaded Loop Cache (SA) 
The preloaded loop caching scheme requires that we select 
loops beforehand via profiling. These loops are never replaced, 
thus the number of dynamic fills for this type of caching scheme 
is always zero (fills occur before regular program execution). 
Depending on the number of loops allowed in the loop cache, 
we have corresponding loop address registers that indicate 
which loops have been preloaded. With this caching scheme, we 
start fetching from the loop cache on the first iteration of the 
loop.  

To determine the number of instructions fetched from the 
loop cache, we see if the current loop we are looking at was 
selected for preloading. If so, every instruction corresponding to 
that loop will always be fetched from the loop cache since the 
preloaded loop will always remain in the loop cache. The output 
from LOOAN indicates the number of instructions executed by 
the loop, thus the number of fetches is equal to the number of 
instructions executed by the current loop. 

The start addresses of the preloaded loops are kept in the 
loop address registers. This means we are not able to wait for an 
sbb to detect if the current instruction is within the loop cache. 
Instead, for every instruction not fetched from the loop cache, 
we must compare its address with each of the loop address 
registers to see if we should indeed fetch from the loop cache. 
Thus, the number of detects is equal to the number of total 
instructions executed minus the number of instructions fetched 
from the loop cache. For each detect operation, we must 
compare it with each of the loop address registers so we 
multiply the aforementioned value by the number of loop 
address registers. In addition, in order to start fetching from the 
preloaded loop cache, we must initially check to determine if 
the current instruction address is located within the loop cache. 
To accommodate this behavior, we add to the number of detects 
the number of times the current loop is called multiplied by the 
number of loop address registers. Furthermore, each time the 
loop makes a function call we must jump to the function then 
jump back to the caller. When jumping to the function call we 
must see if the function is preloaded, and when returning from 
the function we must determine if the returning loop is 
preloaded. Thus, each function call results in two detect 



operations. Therefore, we search the loop hierarchy to see if any 
of the instructions within the current loop make a function call. 
If so, we add to the number of detect operations the number of 
loop address registers times two for each function call. 

To determine the number of instruction memory fetches, we 
once again subtract from the total number of instructions 
executed, as reported by LOOAN, the number of fetches from 
the loop cache. 
3.2.4 Preloaded Loop Caches (SBB) 
The preloaded loop cache (sbb) scheme is almost identical to 
the preloaded loop cache (sa) scheme. In this loop cache design, 
the loops are again selected and loaded before hand. 
Additionally, once the loops are loaded they do not change 
during the course of the program. However, unlike the 
preloaded loop cache (sa) scheme, the address of the sbb at the 
end of each loop is stored in the loop address registers. The loop 
cache controller will wait until a control of flow change to 
determine if the address is in the loop cache. Therefore, we do 
not fetch from the loop cache until the second iteration of the 
loop.  

Given that the loops are preloaded the number of 
instructions filled into the loop cache is zero for the execution 
of the program. 

Since loops are preloaded, only those loops will contribute 
to the number of fetches. In addition, we must wait for a control 
of flow to trigger the controller to compare the address with the 
loop address registers to see if the loop is preloaded. There are 
two cases which we can determine statically when a control of 
flow occurs. The first case is when the loop executes it’s first 
iteration, when the loop reaches it’s sbb this will trigger a detect 
and on the second iteration we fetch the corresponding 
instructions from the loop cache. Thus, the number of fetches 
contributed by this loop is equal to the number of times the loop 
is executed, multiplied by the number of average iterations 
minus 1. The second potential control of flow occurs when a 
function is called from within the loop. There is a control of 
flow to call the function and a control of flow to return from the 
function. Upon returning to the loop from the function call, the 
control of flow change will trigger fetching starting from the 
location following the function call. Thus, in this situation the 
number of fetches contributed by this loop is equal to the total 

number of instructions executed. However, to account for the 
above situation, the number of executions multiplied by the 
difference between the function call address and the starting 
address of the loop is subtracted from the total for this loop.  

The number of detect operations corresponds to the number 
of control of flows in the given program. There exists a control 
of flow at the end of a loop, when calling a function, and when 
returning from a function. Thus for every loop we find, we add 
a detect operation to represent the sbb at the end of the loop. For 
every function call we add two detect operations. 

Once we have gathered the various statistics we are 
interested in for each of the cache configurations considered, we 
feed this information into another program, which calculates the 
power of each loop cache design. The relative capacitance 
values can be varied in this stage so that the power values 
outputted correspond to the desired technology. 

4. Results 
Many times designers find a configuration that does relatively 
well and use this particular configuration for all applications. 
Figure 3 presents the percent power savings using a flexible 32 
entry loop cache (configuration 11) versus the optimal loop 
cache configuration for each benchmark. Although the flexible 
loop cache performs fairly well for most examples, however, if 
we had selected the optimal cache configuration on a per 
application basis, an additional 70% power savings can be 
achieved on average. This clearly demonstrates that simply 
selecting a cache configuration that performs well and using it 
for all applications leaves substantial room for improvement. 
Thus, a tool for automatically determining the optimal loop 
cache configuration provides a great advantage.  

In evaluating our simulation- and estimation-based 
approaches, we need to analyze the results for each with respect 
to accuracy and fidelity between the two approaches. Due to the 
number of loop cache configurations evaluated, in order to 
facilitate plotting of so many configurations, we associate each 
configuration with a numerical code, with Table 1 providing a 
key, to show the mapping. For example, 1 represents the 
original dynamic cache with 8 entries, 2 represents the original 
dynamic cache with 16 entries, and so on. For the pre-loaded 
loop cache using start address, an 8 entry cache with 2 loop 
address registers is referred to with 17 and an 8 entry cache with 
3 loop address register is configuration 18.  

To determine the accuracy of the estimation method, we 
first ran each of the benchmarks through the loop cache 
simulator to obtain the power savings for each cache 
configuration over a configuration without a cache. Next, each 
benchmark was run through the loop cache estimator to obtain 
the power savings of each cache configuration over a 
configuration without a cache. Figure 4 compares the reported 

Figure 3: Percent savings using a 32 entry flexible loop cache 
(configuration 11) (left) versus using optimal cache configuration for 

each benchmark (right).  
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Line Size Code 

Original Dynamic 8-1024 N/A 1-8 

Flexible Dynamic 8-1024 N/A 9-16 

Pre-loaded Loop Cache (SA) 8-1024 2-3 loops 17-32 

Pre-loaded Loop Cache (SBB) 8-1024 2-6 loops 33-72 



power savings obtained through simulation versus the reported 
power savings through estimation for the jpeg benchmark. By 
simply looking at the graph, it is easy to determine that the 
estimated results are very close to the simulation-based results. 
Specifically, on average, the power savings reported by the 
estimation method and the simulation method differ by less than  
1%. 

We then compared the average power savings reported for 
each cache configuration over all benchmarks using the 
simulation based method versus the average power savings 

reported for each cache configuration over all benchmarks using 
the estimation based method. This comparison is shown in 
Figure 5. For the dynamic loop caches (original and flexible), 
the estimation method reported approximately 15% more power 
savings than reported by the simulation-based results. For the 
preloaded loop caches (sa and sbb), the estimator reported –1% 
to 3% difference in power savings. However, on average the 
estimation methodology reported 2% more power savings over 
the simulation based methodology.  

While the relative accuracy of the estimated power savings 
is important, in order for this approach to be viable, there must 
be fidelity between the choices selected under each approach as 
the best loop cache configuration. Therefore, to ensure any 
inaccuracies from estimation do not compromise the fidelity, for 
each benchmark we selected the loop cache configuration 
chosen as the best by both the simulation-based approach and 
the estimation-based approach. Figure 6 shows the power 
savings for the cache configuration selected by the simulation-
based approach versus the power savings using the cache 
configuration selected by the estimation-based approach across 
all benchmarks. In most cases, the cache configuration selected 
by the estimation method saves as much power as the cache 
configuration selected by the simulation methodology. The 
worst difference in performance of the loop cache obtain from 
estimation versus simulation is for the summin benchmark, 
where the estimation approach selects a cache configuration that 

Figure 4: Percent savings for various cache configurations, savings using simulation (left) versus savings using estimation (right) for 
the jpeg benchmark.  

 

Figure 5: Percent savings for various cache configurations, savings using simulation (left) versus savings using estimation (right) for 
averages over all benchmarks 

 

Figure 6: Power savings using cache configurations from 
simulation approach (left) versus estimation approach (right) 
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is 10% less than the optimal configuration. However, on 
average the cache configuration obtained through estimation is 
less than 1% away from the optimal reported by the simulation 
method. 

We have shown that through estimation we have good 
accuracy and preserve fidelity. Now we describe the speedup 
obtained by using estimation rather than simulation. Table 2 
shows the breakdown of time spent in various areas of the 
simulation based approach for each benchmark. In addition, the 
breakdown of time spent in various areas of the estimation 
based approach for each benchmark is also shown. All 
simulations and estimations were executed on a 500 MHz Sun 
Ultra60 workstation. From Table 2, it can be seen that the 
majority of time for the simulation-based method is spent 
running the loop cache simulator (lcsim). Thus, by decreasing 
this time by using estimation, a significant speed up is 
achievable. For the larger examples, jpeg, summin, and v42, the 
simulation based approach required approximately 30 minutes, 
15 minutes, and 21 minutes, respectively. However, by using 
the estimation based method the time required were reduced to 
approximately 17 seconds, 8 seconds, and 12 seconds, 
respectively. While, many of the other benchmarks did not 
require a very long time for simulation due to their small size, 
the estimation approach still resulted in significant speed up. 
Overall, the speedup using estimation ranges from 9 to 109 
across various benchmarks, with an average speed up of 66. We 
have begun to investigate even larger examples from 
MediaBench, and are finding that the simulation based method 
takes tens of hours, while estimation still requires only seconds 
to minutes. 

After we explore the design space, we know exactly which 
loop cache configuration would yield the greatest savings. We 
create a simple tool that generates synthesizeable VHDL code 
corresponding to the desired cache configuration.  

5. Conclusions  
We have shown that synthesizing a custom loop cache yields 
good energy savings for embedded applications and thus is an 
important part of a core-based embedded system design flow. 
We have implemented a simulation based tool that finds the 
loop cache configuration yielding the best energy savings for a 
given program. We have also implemented a fast estimation 
based method that obtains nearly the same savings but in 
seconds rather than hours.  

Our future work includes investigating additional loop 
cache structures and investigating a wider variety of 
benchmarks. 
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