
 Synthesis of Customized Loop Caches for Core-Based
Embedded Systems
Susan Cotterell and Frank Vahid

Department of Computer Science and Engineering
University of California, Riverside

{susanc, vahid}@cs.ucr.edu
*Also with the Center for Embedded Computing at UC Irvine

Abstract
Embedded system programs tend to spend much time in small
loops. Introducing a very small loop cache into the instruction
memory hierarchy has thus been shown to substantially reduce
instruction fetch energy. However, loop caches come in many
sizes and variations – using the configuration best on the
average may actually result in worsened energy for a specific
program. We therefore introduce a loop cache exploration tool
that analyzes a particular program’s profile, rapidly explores
the possible configurations, and generates the configuration
with the greatest power savings. We introduce a simulation-
based approach and show the good energy savings that a
customized loop cache yields. We also introduce a fast
estimation-based approach that obtains nearly the same results
in seconds rather than tens of minutes or hours.

Keywords
Low power, low energy, tuning, loop cache, embedded systems,
instruction fetching, customized architectures, memory
hierarchy, estimation, synthesis.

1. Introduction
Reducing power and energy consumption of embedded systems
translates to longer battery life and reduced cooling
requirements. For embedded microprocessor based systems,
instruction fetching can contribute to a large percentage of
system power (50% in [18][10] and 43% in [23]), since such
fetching occurs on nearly every cycle, involves driving of long
and possibly off-chip bus lines, and may involve reading of
numerous memories – such as in set-associative caches.

Several approaches to reducing instruction fetch energy
have been proposed, including program compression to reduce
the amount of bits fetched [3][15][20], bus encoding to reduce
the number of switched wires [4][22][27][29] and efficient
instruction cache design [2][13][16][28].

Another category of approaches, which capitalize on the
common feature of embedded applications spending much time
in small loops [19][32], integrate a tiny (perhaps 64 word)
instruction cache with the microprocessor. Such tiny caches
have extremely low power per access, perhaps 50 times less
than regular instruction memory access [19], thus reducing total
instruction fetch energy substantially. A filter cache [14] is one
such tiny cache, implemented as a direct-mapped cache, but a
filter cache may result in many misses and hence performance
degradation. Tagless, missless low-power tiny instruction cache

architectures have recently been introduced, including the
dynamically-loaded tagless loop cache [18][19], which shows
average power savings of 30-40%, followed by the preloaded
tagless loop cache [9], which shows average power savings of
60-70%.

A designer of a mass-produced microprocessor platform
might use the cache architecture that performs best across a
wide set of benchmarks. However, an embedded system
typically runs one fixed application for the system’s lifetime.
For example, a cell phone’s software typically does not change.
Furthermore, embedded system designers are increasingly
utilizing microprocessor cores rather than off-the-shelf
microprocessor chips. The combination of a fixed application
and a flexible core opens the opportunity to tune the core’s
architecture to that fixed application. Architecture tuning is the
customizing of an architecture to most efficiently execute a
particular application (or set of applications) under given
constraints on size, performance, power, energy, etc. [31], as
discussed in the Y-chart methodology of [12]. A very
aggressive form of tuning involves creating a customized
instruction set [1][6][7][8].

Complementary to such application-specific instruction-set
processor design is the design of customized memory
architectures. Traditionally, these architectures have focused on
the data memory organization and fast exploration. One such
approach attempts to reduce power consumption by reducing
memory traffic through memory optimizing transformations,
storing frequently accessed variables in register files and on-
chip cache, reducing misses by configuring the cache size
correctly and data placement [26]. Another approach uses an
exploration strategy for determining the on chip memory
architecture [25]. In this approach, they focused on a memory
architecture comprised of a Scratch-pad memory and cache
parameters to decrease off chip memory traffic. To reduce
system power, a hardware based approach is presented in [11],
where they create a custom memory hierarchy consisting of
additional layers of smaller memories in which the more
frequently used data is stored. Furthermore, in [24] they present
an exploration environment that utilizes a two phase memory
exploration scheme along with system level transformations to
reduce memory size and power.

 Loop cache designs vary greatly as well. Choosing the right
style and size of a loop cache can mean the difference between
an 80% instruction fetch savings and no savings or even a loss.
In this paper, we describe our automated environment for
synthesizing the best loop cache architecture for a given

program. We show excellent energy savings using a simulation
based environment. Furthermore, we describe an estimation
method that results in nearly two orders of magnitude speedup,
enabling best cache selection in just seconds with almost no loss
in result quality.

2. Loop Cache Architectures
The first type of loop cache we consider was proposed in [18],
which was using in Motorola’s M*CORE embedded processor.
The loop cache, illustrated in Figure 1(a), is a small instruction
buffer tightly integrated with the processor, having no tag
comparison or valid bit. To eliminate performance degradation,
the loop cache is not a genuine first level cache, but rather an
alternative location from which to fetch instructions, selected
through a multiplexor (controlled by the loop cache controller)
as shown in the figure. The loop cache controller is responsible
for filling the loop cache when detecting a simple loop –
defined as any short backwards branch instruction. At the end of
the first iteration of a loop, a short backwards branch is
detected. Then, during the second iteration, the loop cache is
filled. Finally, starting with the third iteration, the loop cache
controller fetches instructions from the loop cache instead of
regular instruction memory. This type of loop cache is
dynamically loaded, and requires no special compilers or
instructions and is thus transparent to the designer. We refer to
this type of loop cache as the original dynamic loop cache.

One drawback of the original dynamic loop cache is the
cache’s inability to handle loops that are larger than the cache
itself. To alleviate this problem, the flexible dynamic loop cache
was proposed in [19]. In this design, if a loop is larger than the
loop cache, the loop cache will be filled with the instructions
located at the beginning of the loop until the loop cache is full.

A problem with the dynamically loaded loop caches is that a
control of flow change in a loop will cause filling or fetching
from the loop cache to stop. Thus, internal branches within
loops, multiple backwards branches to the same starting point in
a loop, nested loops, and subroutines pose problems. A
preloaded loop cache was proposed in [9] to overcome these
limitations, illustrated in Figure 1(b). Using profiling
information gathered for a particular application, the loops that
comprise the largest percentage of execution time are selected

and preloaded into the loop cache during system reset. After this
initialization, the contents of the loop cache do not change for
the duration of the program execution. The loop cache
controller can check for a loop address whenever a short
backwards branch is executed. Since loops are preloaded, loop
cache fetching can begin on the second rather than third loop
iteration. This approach is referred to as the preloaded loop
cache (sbb), which stands for short backwards branch.
Alternatively, loop addresses can be looked for on every
instruction, allowing loop cache fetching to begin on the first
iteration. This approach is referred to as the preloaded loop
cache (sa), where sa stands for starting address. Both preloaded
caching schemes can handle control of flow, but limit the
number of loops that can be stored in the loop cache. In
addition, preloaded loop caches are not transparent to the
designer, but instead requires that programs be profiled
beforehand and the loop cache be preloaded.

We thus see that a variety of loop cache configurations are
possible. We described four basic styles above. Furthermore, for
each style, different sizes are possible – larger loop caches can
hold bigger loops, but at the expense of more power per access.
Additionally, preloaded loop caches can support different
numbers of loops. The best configuration depends directly on
what program we are considering. Generally, a dynamically-
loaded loop cache will work best for programs with large
numbers of small, straight-line loops. A preloaded loop cache
will work best for programs with a few key loops that possess
control of flow changes. Furthermore, the best cache size will
depend on the loop sizes.

3. Exploration Framework
We evaluated a number of cache architecture configurations on
a set of Powerstone benchmarks [21]. For each benchmark, we
considered 72 different cache configurations:

• original dynamic loop cache – cache sizes ranging from 8
to 1024 entries (by powers of 2).

• flexible dynamic loop cache – cache sizes ranging from 8
to 1024 entries (by powers of 2).

• preloaded loop cache using start address – cache sizes
ranging from 8 to 1024 entries (by powers of 2), with
either 2 or 3 loop address registers

• preloaded loop cache using short backwards branch
address – cache sizes ranging from 8 to 1024 entries (by
powers of 2), with 2-6 loop address registers

Each entry within a loop cache corresponds to a 32-bit
instruction. For the preloaded loop caches, the number of loop
address registers available indicates the maximum number of
loops that can be preloaded into the loop cache.
3.1 Loop Cache Simulation Method
We developed a suite of tools to evaluate each cache
configuration for a given benchmark. The tool chain is shown in
Figure 2. Starting from C code for each benchmark, an lcc
compiler ported to the MIPS instruction set compiles each
application. We then use a MIPS instruction-set simulator to
obtain a program instruction trace for each benchmark. The
program instruction trace is then fed to a loop analysis tool
called LOOAN [33]. LOOAN analyzes the original assembly
program and the trace, from which it generates loop statistics
describing the hierarchy of subroutines and loops, and detailed

Figure 1: Basic architecture of dynamic loop cache (a) and
preloaded loop cache (b).

(a)

Processor

Basic
dynamic

loop
cache

L1 memory

Mux

(b)

Processor

Preloaded
loop

cache

L1 memory

Mux

profiling statistics such as the number of executions of a
particular loop, the number of dynamic instructions per loop
iteration, and the total contribution of each loop and subroutine
to the entire program execution. The loop statistics are fed to a
loop packer & script generator tool that selects the best loops to
store in a preloaded loop cache, and generates a script that will
explore all 72 possible loop cache configurations with
associated loop packings for the preloaded caches. We
developed a loop cache simulator, called lcsim, that the script
calls for each configuration. The simulator reads the program
instruction trace, and keeps an accurate count of important loop
cache operations, including the number of fill operations (for a
dynamically loaded cache), the number of instruction-memory
fetches, the number of loop cache fetches, the number of
address comparisons (for a preloaded cache), etc. lcsim
generates these loop cache statistics as a file. Finally, an lc
power calc tool reads these statistics, as well as technology
parameters, and the loop cache power information, to generate
loop cache power data.

We calculated power and energy based on the switching
activity of each operation and the relative capacitance of various
components. The switching activity for each operation was
measured by pre-implementing the various cache designs in
VHDL. Each design was synthesized using Synopsys Design
Compiler and simulated at the gate-level to determine the
average switching activity. The relative capacitance values
associated with the different components of each design were
factored out such that we could set these values to correspond to
different technologies. Using this approach, we can compare the
various cache configurations without limiting the results to a
given technology. A designer interested in determining how
each cache configuration performs for a specific technology can
simply set the performance value to the technology of interest.

The simulation-based approach mimics each loop cache
controller exactly (lcsim contains exactly the same state
machines as our VHDL loop cache controller models), and thus
yields completely accurate counts of all loop cache related
events (fills, fetches, compares, etc.). However, such an
approach took anywhere from a couple minutes for small
examples, to half an hour for medium sized examples. We also

ran several larger examples through lcsim (from MediaBench
[17]), which took tens of hours to complete. Most of the time
came from having to read the very large program trace files for
each configuration being examined.
3.2 Loop Cache Estimation Method
We sought to develop a faster method than loop cache
simulation for exploring the loop cache configuration space.
Note that lcsim follows the paradigm of traditional cache
simulators, like Dinero [5]. Thus, we could look into traditional
cache simulation speedup methods, like examining multiple
configurations per pass [30] or compacting the trace size using
statistical methods [34]. However, we found that due to the
nature of loop caches, a far faster and simpler estimation
method was possible. In short, we could apply simple equations
and algorithms to the loop statistics in order to generate very
accurate loop cache statistics.

Our estimation method is illustrated in Figure 2. LOOAN is
again used to generate loop statistics for a program. For our
estimations, the loop statistics we are interested in are the start
and end address of each loop, the loop size, the number of times
a loop is called, the average times a loop iterates once it is
called, and the total number of instructions executed by this
loop. LOOAN was further augmented to output the addresses at
which function calls were made to create a more complete
picture of the executing program. Once this data is generated,
we then use the various estimation techniques described below
to statically analyze each benchmark. The goal of each
estimation technique is to determine the loop cache statistics –
the number of instruction memory fetches, detection operations
(i.e. checking to see if we should execute from the loop cache or
not), number of instructions filled into loop cache, and the
number of instructions fetched from the loop cache – without
running the time-consuming lcsim at all.

To determine the number of various operations we take the
loop hierarchy provided by LOOAN and iterate through each
loop. Then, for each loop we accumulate the estimated number
of fills, fetches, detects corresponding to only the loop we are
currently investigating. The estimation method varies according
to the cache type being considered. We now discuss the
estimation strategy for each loop cache type.

Figure 2: Simulation and estimation based loop cache configuration synthesis methods.

Si
m

ul
at

io
n

to
ol

 c
ha

in

LOOAN loop packer
& script

generator

lcsim lc power
calc

loop
statistics

packed
loops &

exploration
script

loop cache
statistics

loop cache
power

program
instruction

trace

LOOAN estimator lc power
calc

loop
statistics

function

calls
loop cache
statistics

loop cache
power

Es
tim

at
io

n
to

ol
 c

ha
in

program
instruction

trace

loop packer packed

loops

~100 configs.

fast

technology
info

technology
info

3.2.1 Original Dynamically Loaded Loop Cache
In the original dynamically loaded loop cache, we are interested
in the number of times we fill the loop cache with an
instruction, the number of times we fetch an instruction from the
loop cache, and the number of instruction memory fetches.
Since the original dynamically loaded loop cache contains no
preloaded loops, there are no loop address registers we must
compare addresses with, thus no detect operations.

On the first iteration of each loop, the loop cache controller
sees a short backwards branch (sbb) that triggers filling the loop
cache on the second iteration. It will continue to fill the loop
cache until a control of flow is detected. Thus, to estimate the
number of fill instructions, we first see if the loop size is less
than or equal to the size of the loop cache we are interested in.
Next, we check whether this loop would iterate at least two
times, since otherwise the loop cache would never be filled with
this loop. We then want to see how many instructions from this
loop would be filled into the loop cache. We determine where
the first control of flow will occur. This control of flow can
originate from the sbb that trigged the fill, an sbb from a
subloop, or a function call. The control of flow may also
correspond to a jump, but this information is not provided in the
static analysis. If the current loop contains subloops, the loop
cache controller will fill to the end of the first subloop.
Similarly, if the loop contains a function call, the function call
map previously generated from LOOAN is used to determine
the exact instruction from which the function call originates.
The smallest of the three aforementioned addresses is
determined and from it we subtract the start address of the loop
we are interested in. This calculation is the number of
instructions that will be filled into the loop cache. Therefore,
each time this particular loop is called, it will fill that many
instructions, so we then multiply this number by the number of
times the loop is executed.

The original dynamic loop cache fetches instructions
starting with the third iteration of the loop. Once again, the loop
cache controller will stop fetching when a control of flow is
detected. To calculate the number of fetches, we again check to
see if the loop size is less than or equal to the size of the cache
we are interested in. In addition, we check to see that the
average number of iterations is greater than or equal to three. If
not, this loop will never be fetched from the loop cache. The
location of the first control of flow change within the loop is
determined using the same method as mentioned above. If this
control of flow change occurs at the end of the loop, the loop
will be fetched from the loop cache starting with the third
iteration. Thus, we multiply the number of instructions within
the loop by the iteration average minus two. Additionally, this
behavior occurs every time the loop is executed, hence, we
multiply the fetches per execution by the number of times the
loop is called.

Finally, we fetch an instruction from instruction memory
when it is not fetched from the loop cache. Using the output
from LOOAN indicating the total number of instructions
executed, we obtain the number of instruction memory fetches
by subtracting from the total number of instructions executed
the number of fetch operations we previously determined.

3.2.2 Flexible Dynamically Loaded Loop Cache
The estimation method for the flexible dynamically loaded loop
cache is similar to the estimation described for the original
dynamically loaded loop cache. However, in the flexible
dynamically loaded loop caches, loop size is not limited to less
than or equal to the loop cache size. Thus, in determining the
number of instructions fetched or filled we still determine the
first control of flow, whether it be an sbb from a subloop, a
function call, or the sbb corresponding to the end of this loop.
We then check to see if the start address minus the end address
is larger then the loop cache size. If it is, we set the number of
instructions fetched or filled on a given iteration to the loop
cache size. This value is still multiplied by number of times the
loop is called if we are calculating the number of fills or by the
number of times the loop is called and the number of iterations
minus two if we are calculating the number of fetches. As
before, the number of instruction memory fetches is equal to the
number of total instructions executed minus the number of loop
cache fetches.
3.2.3 Preloaded Loop Cache (SA)
The preloaded loop caching scheme requires that we select
loops beforehand via profiling. These loops are never replaced,
thus the number of dynamic fills for this type of caching scheme
is always zero (fills occur before regular program execution).
Depending on the number of loops allowed in the loop cache,
we have corresponding loop address registers that indicate
which loops have been preloaded. With this caching scheme, we
start fetching from the loop cache on the first iteration of the
loop.

To determine the number of instructions fetched from the
loop cache, we see if the current loop we are looking at was
selected for preloading. If so, every instruction corresponding to
that loop will always be fetched from the loop cache since the
preloaded loop will always remain in the loop cache. The output
from LOOAN indicates the number of instructions executed by
the loop, thus the number of fetches is equal to the number of
instructions executed by the current loop.

The start addresses of the preloaded loops are kept in the
loop address registers. This means we are not able to wait for an
sbb to detect if the current instruction is within the loop cache.
Instead, for every instruction not fetched from the loop cache,
we must compare its address with each of the loop address
registers to see if we should indeed fetch from the loop cache.
Thus, the number of detects is equal to the number of total
instructions executed minus the number of instructions fetched
from the loop cache. For each detect operation, we must
compare it with each of the loop address registers so we
multiply the aforementioned value by the number of loop
address registers. In addition, in order to start fetching from the
preloaded loop cache, we must initially check to determine if
the current instruction address is located within the loop cache.
To accommodate this behavior, we add to the number of detects
the number of times the current loop is called multiplied by the
number of loop address registers. Furthermore, each time the
loop makes a function call we must jump to the function then
jump back to the caller. When jumping to the function call we
must see if the function is preloaded, and when returning from
the function we must determine if the returning loop is
preloaded. Thus, each function call results in two detect

operations. Therefore, we search the loop hierarchy to see if any
of the instructions within the current loop make a function call.
If so, we add to the number of detect operations the number of
loop address registers times two for each function call.

To determine the number of instruction memory fetches, we
once again subtract from the total number of instructions
executed, as reported by LOOAN, the number of fetches from
the loop cache.
3.2.4 Preloaded Loop Caches (SBB)
The preloaded loop cache (sbb) scheme is almost identical to
the preloaded loop cache (sa) scheme. In this loop cache design,
the loops are again selected and loaded before hand.
Additionally, once the loops are loaded they do not change
during the course of the program. However, unlike the
preloaded loop cache (sa) scheme, the address of the sbb at the
end of each loop is stored in the loop address registers. The loop
cache controller will wait until a control of flow change to
determine if the address is in the loop cache. Therefore, we do
not fetch from the loop cache until the second iteration of the
loop.

Given that the loops are preloaded the number of
instructions filled into the loop cache is zero for the execution
of the program.

Since loops are preloaded, only those loops will contribute
to the number of fetches. In addition, we must wait for a control
of flow to trigger the controller to compare the address with the
loop address registers to see if the loop is preloaded. There are
two cases which we can determine statically when a control of
flow occurs. The first case is when the loop executes it’s first
iteration, when the loop reaches it’s sbb this will trigger a detect
and on the second iteration we fetch the corresponding
instructions from the loop cache. Thus, the number of fetches
contributed by this loop is equal to the number of times the loop
is executed, multiplied by the number of average iterations
minus 1. The second potential control of flow occurs when a
function is called from within the loop. There is a control of
flow to call the function and a control of flow to return from the
function. Upon returning to the loop from the function call, the
control of flow change will trigger fetching starting from the
location following the function call. Thus, in this situation the
number of fetches contributed by this loop is equal to the total

number of instructions executed. However, to account for the
above situation, the number of executions multiplied by the
difference between the function call address and the starting
address of the loop is subtracted from the total for this loop.

The number of detect operations corresponds to the number
of control of flows in the given program. There exists a control
of flow at the end of a loop, when calling a function, and when
returning from a function. Thus for every loop we find, we add
a detect operation to represent the sbb at the end of the loop. For
every function call we add two detect operations.

Once we have gathered the various statistics we are
interested in for each of the cache configurations considered, we
feed this information into another program, which calculates the
power of each loop cache design. The relative capacitance
values can be varied in this stage so that the power values
outputted correspond to the desired technology.

4. Results
Many times designers find a configuration that does relatively
well and use this particular configuration for all applications.
Figure 3 presents the percent power savings using a flexible 32
entry loop cache (configuration 11) versus the optimal loop
cache configuration for each benchmark. Although the flexible
loop cache performs fairly well for most examples, however, if
we had selected the optimal cache configuration on a per
application basis, an additional 70% power savings can be
achieved on average. This clearly demonstrates that simply
selecting a cache configuration that performs well and using it
for all applications leaves substantial room for improvement.
Thus, a tool for automatically determining the optimal loop
cache configuration provides a great advantage.

In evaluating our simulation- and estimation-based
approaches, we need to analyze the results for each with respect
to accuracy and fidelity between the two approaches. Due to the
number of loop cache configurations evaluated, in order to
facilitate plotting of so many configurations, we associate each
configuration with a numerical code, with Table 1 providing a
key, to show the mapping. For example, 1 represents the
original dynamic cache with 8 entries, 2 represents the original
dynamic cache with 16 entries, and so on. For the pre-loaded
loop cache using start address, an 8 entry cache with 2 loop
address registers is referred to with 17 and an 8 entry cache with
3 loop address register is configuration 18.

To determine the accuracy of the estimation method, we
first ran each of the benchmarks through the loop cache
simulator to obtain the power savings for each cache
configuration over a configuration without a cache. Next, each
benchmark was run through the loop cache estimator to obtain
the power savings of each cache configuration over a
configuration without a cache. Figure 4 compares the reported

Figure 3: Percent savings using a 32 entry flexible loop cache
(configuration 11) (left) versus using optimal cache configuration for

each benchmark (right).

Table 1: Corresponding code for various cache configurations

0

20

40

60

80

100

ad
pc

m

bc
nt

bi
na

ry bl
it

br
ev

co
m

pr
es

s

cr
c

de
s

en
gi

ne fir

g3
fa

x

in
se

rt

jp
eg

su
m

m
in

uc
bq

so
rt

v4
2

A
V

E
R

A
G

E

benchmark

%
 s

av
in

gs

Cache Type Size Num Loops/
Line Size Code

Original Dynamic 8-1024 N/A 1-8

Flexible Dynamic 8-1024 N/A 9-16

Pre-loaded Loop Cache (SA) 8-1024 2-3 loops 17-32

Pre-loaded Loop Cache (SBB) 8-1024 2-6 loops 33-72

power savings obtained through simulation versus the reported
power savings through estimation for the jpeg benchmark. By
simply looking at the graph, it is easy to determine that the
estimated results are very close to the simulation-based results.
Specifically, on average, the power savings reported by the
estimation method and the simulation method differ by less than
1%.

We then compared the average power savings reported for
each cache configuration over all benchmarks using the
simulation based method versus the average power savings

reported for each cache configuration over all benchmarks using
the estimation based method. This comparison is shown in
Figure 5. For the dynamic loop caches (original and flexible),
the estimation method reported approximately 15% more power
savings than reported by the simulation-based results. For the
preloaded loop caches (sa and sbb), the estimator reported –1%
to 3% difference in power savings. However, on average the
estimation methodology reported 2% more power savings over
the simulation based methodology.

While the relative accuracy of the estimated power savings
is important, in order for this approach to be viable, there must
be fidelity between the choices selected under each approach as
the best loop cache configuration. Therefore, to ensure any
inaccuracies from estimation do not compromise the fidelity, for
each benchmark we selected the loop cache configuration
chosen as the best by both the simulation-based approach and
the estimation-based approach. Figure 6 shows the power
savings for the cache configuration selected by the simulation-
based approach versus the power savings using the cache
configuration selected by the estimation-based approach across
all benchmarks. In most cases, the cache configuration selected
by the estimation method saves as much power as the cache
configuration selected by the simulation methodology. The
worst difference in performance of the loop cache obtain from
estimation versus simulation is for the summin benchmark,
where the estimation approach selects a cache configuration that

Figure 4: Percent savings for various cache configurations, savings using simulation (left) versus savings using estimation (right) for
the jpeg benchmark.

Figure 5: Percent savings for various cache configurations, savings using simulation (left) versus savings using estimation (right) for
averages over all benchmarks

Figure 6: Power savings using cache configurations from
simulation approach (left) versus estimation approach (right)

0

20

40

60

80

100

ad
pc

m
bc

nt

bin
ary bli

t
bre

v

co
mpre

ss crc de
s

en
gin

e fir
g3

fax
ins

ert jpe
g

su
mmin

uc
bq

so
rt

v4
2

benchmark

%
sa

vi
ng

s

0
10
20
30
40
50
60
70
80
90

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70
cache configurations

%
 s

av
in

gs

0

20

40

60

80

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70
cache configuration

av
er

ag
e

%
 s

av
in

gs

is 10% less than the optimal configuration. However, on
average the cache configuration obtained through estimation is
less than 1% away from the optimal reported by the simulation
method.

We have shown that through estimation we have good
accuracy and preserve fidelity. Now we describe the speedup
obtained by using estimation rather than simulation. Table 2
shows the breakdown of time spent in various areas of the
simulation based approach for each benchmark. In addition, the
breakdown of time spent in various areas of the estimation
based approach for each benchmark is also shown. All
simulations and estimations were executed on a 500 MHz Sun
Ultra60 workstation. From Table 2, it can be seen that the
majority of time for the simulation-based method is spent
running the loop cache simulator (lcsim). Thus, by decreasing
this time by using estimation, a significant speed up is
achievable. For the larger examples, jpeg, summin, and v42, the
simulation based approach required approximately 30 minutes,
15 minutes, and 21 minutes, respectively. However, by using
the estimation based method the time required were reduced to
approximately 17 seconds, 8 seconds, and 12 seconds,
respectively. While, many of the other benchmarks did not
require a very long time for simulation due to their small size,
the estimation approach still resulted in significant speed up.
Overall, the speedup using estimation ranges from 9 to 109
across various benchmarks, with an average speed up of 66. We
have begun to investigate even larger examples from
MediaBench, and are finding that the simulation based method
takes tens of hours, while estimation still requires only seconds
to minutes.

After we explore the design space, we know exactly which
loop cache configuration would yield the greatest savings. We
create a simple tool that generates synthesizeable VHDL code
corresponding to the desired cache configuration.

5. Conclusions
We have shown that synthesizing a custom loop cache yields
good energy savings for embedded applications and thus is an
important part of a core-based embedded system design flow.
We have implemented a simulation based tool that finds the
loop cache configuration yielding the best energy savings for a
given program. We have also implemented a fast estimation
based method that obtains nearly the same savings but in
seconds rather than hours.

Our future work includes investigating additional loop
cache structures and investigating a wider variety of
benchmarks.

6. Acknowledgments
This work was supported by a Department of Education
GAANN fellowship and by the National Science Foundation
(grant CCR-9876006).

7. References
[1] Aditya, S., B. Rau, V. Kathail. Automatic architectural

synthesis of VLIW and EPIC Processors. Int. Symp. on
System Synthesis, 1999.

Table 2: Speedup of simulation verses estimation (in seconds)

 Simulation Tool Chain Estimation Tool Chain

Benchmark
Number

Instr
Executed

LOOAN Script
Gen lcsim

lc
Power
Calc

Total
Simulation

Time
LOOAN Estimator

lc
Power
Calc

Total
Estimation

Time
Speedup

adpcm 63891 0.31 0.01 32.15 0.01 32.48 0.31 0.16 0.01 0.48 68

bcnt 1938 0.01 0.01 1.17 0.01 1.20 0.02 0.06 0.01 0.09 13

binary 816 0.01 0.01 0.87 0.01 0.90 0.01 0.08 0.01 0.10 9

blit 22845 0.07 0.01 7.26 0.01 7.35 0.07 0.06 0.01 0.14 53

brev 2377 0.01 0.01 1.20 0.01 1.23 0.01 0.06 0.01 0.08 15

compress 138573 0.85 0.01 82.50 0.01 83.37 0.85 0.14 0.01 1.00 83

crc 37650 0.15 0.01 16.03 0.01 16.20 0.15 0.07 0.01 0.23 70

des 122214 0.44 0.02 45.28 0.01 45.75 0.44 0.07 0.01 0.52 88

engine 410607 2.12 0.02 214.99 0.01 217.14 2.12 0.08 0.01 2.21 98

fir 16211 0.07 0.02 7.60 0.01 7.70 0.07 0.09 0.01 0.17 45

g3fax 1128023 3.54 0.02 385.44 0.01 389.01 3.54 0.09 0.01 3.64 107

insert 1942 0.01 0.01 1.18 0.01 1.21 0.01 0.06 0.01 0.08 15

jpeg 4594721 17.57 0.01 1837.28 0.01 1854.87 17.57 0.12 0.01 17.7 105

summin 1909787 11.42 0.01 903.73 0.01 915.17 8.25 0.09 0.01 8.35 110

ucbqsort 219978 0.93 0.01 82.62 0.01 83.57 0.89 0.09 0.01 0.99 84

v42 2442551 12.07 0.01 1252.48 0.01 1264.57 12.27 0.12 0.01 12.4 102

 AVERAGE 67

[2] Bahar, R., G. Albera, S. Manne. Power and Performance
Tradeoffs using Various Caching Strategies. Int. Symp.on
Low Power Electronics and Design, 1998.

[3] Benini, L., A. Macii, E. Macii, M. Poncino. Selective
Instruction Compression for Memory Energy Reduction in
Embedded Systems. Int. Symp. on Low Power Electronics
and Design, 1999.

[4] Benini, L., G. Micheli, E. Macii, D. Sciuto, C. Silvano.
Asymptotic Zero-Transition Activity Encoding for Address
Busses in Low-Power Microprocessor-Based Systems.
IEEE GLS-VLSI-97, 1997.

[5] Elder, J., M.D. Hill. Dinero IV Trace-Driven Uniprocessor
Cache Simulator.
http://www.cs.wisc.edu/~markhill/DineroIV.

[6] Fisher, J. Customized Instruction-Sets For Embedded
Processors. Design Automation Conference, 1999.

[7] Fisher, J., P. Faraboschi, G. Desoli. Custom-Fit Processors:
Letting Applications Define Architectures. Int. Symp. on
Microarchitecture, 1996.

[8] Gonzales, R. Xtensa: A Configurable and Extensible
Processor. Int. Symp. on Microarchitecture, 2000.

[9] Gordon-Ross, A., S. Cotterell, F. Vahid. Exploiting Fixed
Programs in Embedded Systems: A Loop Cache Example.
Computer Architecture Letters, Vol 1, 2002.

[10] Kalambur, A., M. J. Irwin. An Extended Addressing Mode
for Low Power. Int. Symp. on Low Power Electronics and
Design, 1997.

[11] Kavvadias, N., A. Chatzigeorgiou, N. Zervas, S.
Nikolaidis. Memory Hierarchy Exploration For Low Power
Architectures in Embedded Multimedia Applications. Int.
Conf. on Image Processing, 2001.

[12] Kienhuis, B., E. Deprettere, K. Vissers, P. van der Wolf.
An Approach for Quantitative Analysis of Application-
Specific Dataflow Architectures. Application-Specific
Systems, Architectures, and Processors, 1997.

[13] Kim, S., N. Vijaykrishnan, M. Kandemir, A.
Sivasubramaniam, M. Irwin, E. Geethanjali. Power-aware
Paritioned Cache Architectures. Int. Symp. on Low Power
Electronics and Design, 2001.

[14] Kin, J., M. Gupta, W. Magione-Smith. The Filter Cache:
An Energy Efficient Memory Structure. Int. Symp. on
Microarchitecture, 1997.

[15] Kirovski, D., J. Kin, W. Mangione-Smith. Procedure Based
Program Compression. Int. Symp. on Microachitecture,
1997.

[16] Ko, U., P. Balsara. Characterization and Design of A Low-
Power, High-Performance Cache Architecture. Int. Symp.
on VLSI Technology, Systems, and Applications, 1995.

[17] Lee, C., M. Potkonjak, W. Magione-Smith. MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and
Communication Systems. International Symposium on
Microarchitecture, 1997.

[18] Lee, L., B. Moyer, J. Arends. Instruction Fetch Energy
Reduction Using Loop Caches For Embedded Applications

with Small Tight Loops. Int. Symp. on Low Power
Electronics and Design, 1999.

[19] Lee, L., B. Moyer, J. Arends. Low-Cost Embedded
Program Loop Caching – Revisited. University of
Michigan Technical Report CSE-TR-411-99, 1999.

[20] Lekatsas, H., J. Henkel, W. Wolf. Code Compression for
Low Power Embedded System Design. Design Automation
Conference, 2000.

[21] Malik, A., B. Moyer, D. Cermak. A Low Power Unified
Cache Architecture Providing Power and Performance
Flexibility. Int. Symp. on Low Power Electronics and
Design. 2000.

[22] Mehta, H., R. Owens, M. Irwin. Some Issues in Gray Code
Addressing. IEEE GLS-VLSI-96, March 1996.

[23] Montanaro, J., et. al. A 160-MHz, 32-b, 0.5-W CMOS
RISC Microprocessor. IEEE Journal of Solid State Circuits,
1996.

[24] Nachtergaele, L., F. Catthoor, F. Balasa, F. Franssen, E.
DeGreef, H. Samsom, and H. De Man., Optimization of
Memory Organization and Hierarchy for Decreased Size
and Power in Video and Image Processing Systems. Int.
Workshop on Memory Technology, 1995.

[25] Panda, P., N. Dutt, A. Nicolau. Architectural Exploration
and Optimization of Local Memory in Embedded Systems.
Int. Symp. on System Synthesis, 1997.

[26] Shiue, W., C. Chakrabarti. Memory Design and
Exploration for Low Power, Embedded Systems. Journal of
VLSI Signal Processing – Systems for Signal, Image, and
Video Technology, Vol. 29, No. 3, pp. 167-178, 2001.

[27] Stan, M., W. Burleson. Bus Invert for Low Power I/O.
IEEE Transactions on VLSI, 1995.

[28] Su, C., C. Tsui, A. Despain. Cache Design Trade-offs for
Power and Performance Optimization: A Case Study. Int.
Symp. Low Power Design, 1995.

[29] Su, C., C. Tsui, A. Despain. Saving Power in the Control
Path of Embedded Processors. IEEE Test and Design of
Computers, Vol. 11, No. 4, 1994.

[30] Sugumar, R., and S. Abraham. Efficient Simulation of
Multiple Cache Configurations using Binomial Trees.
Technical Report CSE-TR-111-91, CSE Division,
University of Michigan, 1991.

[31] Vahid, F., T. Givargis, Platform Tuning for Embedded
Systems Design. IEEE Computer, Vol. 34, No 3, 2001.

[32] Villarreal, J., D. Suresh, G. Stitt, F. Vahid, and W. Najjar.
Improving Software Performance with Configurable Logic.
Design Automation of Embedded System, 2002.

[33] Villarreal, J., R. Lysecky, S. Cotterell, and F. Vahid. A
Study on the Loop Behavior of Embedded Programs.
Technical Report UCR-CSE-01-03, University of
California, Riverside, 2002.

[34] Wu, Z, and W. Wolf. Iterative Cache Simulation of
Embedded CPUs with Trace Stripping. International
Conference on Hardware/Software Co-Design, 1999.

