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Abstract 
Synthesizing common sequential algorithms, captured in a 
language like C, to FPGA circuits is now well-known to provide 
dramatic speedups for numerous applications, and to provide 
tremendous portability and adaptability advantages over circuit 
implementations of an application. However, many applications 
targeted to FPGAs are still designed and distributed at the circuit 
level, due in part to tremendous human ingenuity being exercised 
at that level to achieve exceptional performance and efficiency. A 
question then arises as to whether applications for FPGAs will 
have to be distributed as circuits to achieve desired performance 
and efficiency, or if instead a more portable language like C 
might be used. Given a set of common synthesis transformations, 
we studied the extent to which circuits published in FCCM in the 
past 6 years could be captured as sequential code and then 
synthesized back to the published circuit. The study showed that a 
surprising 82% of the 35 circuits chosen for the study could be re-
derived from some form of standard C code, suggesting that 
standard C code, without extensions, may be an effective means 
for distributing FPGA applications.   

Categories and Subject Descriptors 
D.1.4 [Software]: – Programming, Sequential programming 

B.5.2 [Hardware]: – RTL,  Automatic Synthesis 

General Terms 
Algorithms, Design, Languages, Performance 

1. INTRODUCTION  
It is now well-established that many sequential algorithms 
captured in a language like C can be synthesized to exceptionally 
fast circuits on field-programmable gates arrays. Numerous FPGA 
synthesis tools exist [13][18][20][40], with commercial offerings 
beginning to appear [10][11][32], and commercial computing 
platforms increasingly supporting FPGAs [27][43]. Capturing 
algorithms in C code (or a similar sequential language, which for 
simplicity we’ll refer to as C code henceforth) provides 
tremendous portability advantages, as code can be compiled to a  
 
 

 
 
microprocessor, or synthesized entirely or partially to FPGAs 
available on a computing platform. Yet, designers still often 
conceptualize and capture applications as circuit designs, rather 
than as C code. While this situation is partly explained by the 
relatively nascent state of FPGA compilation tools, a significant 
contributor is also the radically different computation model 
provided by C than by circuits. The sequential instruction model 
of C is oriented to time-ordered execution of instructions, while 
circuits are oriented to spatial connectivity of concurrently-
executing components.  

In contrast to the advent of compilers causing assembly 
coding to be almost entirely replaced by C coding, where both 
coding styles were temporally oriented, the sharp distinction 
between temporal and spatial models likely means that spatial 
models will persist in some form despite continued maturation of 
C-based FPGA synthesis. Spatial models, such as circuits, possess 
tremendous degrees of design freedom. Much human ingenuity 
often underlies the design of both custom circuits and what are 
known as “hardware algorithms,” which often look radically 
different from sequential code algorithms designed to solve the 
same problem. (Because “hardware algorithms” is a misnomer in 
the era of FPGAs, which implement circuits as software, we use 
the term “circuit-based algorithms”). Figure 1 shows that while a 
standard synthesis tool might be able to generate a number of 
different circuits based on the temporally-oriented Quicksort 

Figure 1:  Although temporally-oriented algorithms in C can be 
synthesized to a variety of circuits trading off size and performance, 
many clever circuits representing spatially-oriented algorithms are 

not reasonably derivable from temporally-oriented algorithms. 
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algorithm, no amount of transformations would be likely to 
discover a systolic array circuit implementation for fast sorting. 

Although circuits represent an important application capture 
method, capturing applications as circuits suffers from limited 
portability. A circuit, captured at the netlist level or even at the 
register-transfer level, cannot readily be adapted to FPGAs 
differing in their capacities or hard core resources, nor be 
compiled to execute on a microprocessor. Improved portability 
could increase the present usefulness of an application across 
platforms, while also increasing its longevity. In contrast to a 
circuit, an algorithm captured in C code has much portability. C 
code can be synthesized to FPGAs of differing capacities and 
hard core resources, through transformations like loop unrolling 
and through scheduling, allocation, binding, and technology 
mapping. C code can even be partitioned among a microprocessor 
and FPGA, or run on a microprocessor (or several 
microprocessors) without any FPGAs at all.  

We therefore asked the following question: 

To what extent can human-designed circuit 
implementations of an application be captured in a 
form of C code that can be expected to be synthesized 
back to the same human-designed circuit?  

Note that this question has a subtle but critical difference from 
most past research that instead seeks to convert an existing 
sequential algorithm to a circuit [13][16][18][28][40][46][47] – 
research that clearly has much utility. To the best of our 
knowledge, the above question has not been directly addressed by 
the codesign or synthesis communities.  

Several previous works are related to the question. Stitt [48] 
provides guidelines for C coders to yield improved circuits. 
Haubelt [24] formally analyzes a high-level description’s 
flexibility, meaning the extent to which the description can be 
synthesized to a wide variety of circuits.  

Other works are also related. Work on reverse engineering of 
circuits [14][22] has focused on obtaining low-level behavioral 
models, like Boolean equations or finite-state machines, for 

retargeting to different silicon technologies. Those works are not 
intended for targeting microprocessors. Early hardware/software 
partitioning work moved non-critical circuit functionality from 
circuits to microprocessor code [21]. SystemC [17], involving 
libraries and macros added to C++, allows for temporal and 
spatial concepts to be captured in a single C++ description.  

Of course, circuit designers who use synthesis tools regularly 
use knowledge of synthesis techniques when writing behavioral 
(e.g., register-transfer-level) descriptions, such as writing a for 
loop that can easily be unrolled. Likewise, parallel architecture 
programmers write simpler code (e.g., loops) they know 
compilers will transform to parallel code. The question we seek to 
answer takes circuit techniques to a higher level, and differs from 
parallel programming techniques in the finer granularity of 
parallelism offered by FPGAs compared to more standard parallel 
architectures.  

None of the above works explicitly addresses whether 
existing circuits can be captured in a temporal language. 
Answering this question is relevant to the FPGA and codesign 
communities, to determine the extent to which C code can be used 
to distribute circuit-based algorithms to different compute 
platforms – algorithms that today are commonly captured and 
distributed as circuit or register-transfer-level designs. 

2. A MOTIVATING EXAMPLE- SORTING 
There are numerous factors a designer must consider when 
implementing a sorting algorithm, including data set size, data 
ordering, and now more recently, the platform on which the 
algorithm will run.  

A software designer targeting a microprocessor platform 
might use a classic temporal sorting algorithm, such as 
Quicksort[30], which recursively divides the data into sets greater 
than and less than a selected pivot. In contrast, a designer 
targeting an FPGA might approach the problem differently, 
instead relying on spatial constructs to capture the notion of 
sorting.  The designer might use a systolic Mergesort [57] or 
Bitonic sort [7], representing highly-parallel, pipelined sorting 

Figure 2: C is for circuits:  Some circuits might still be captured in a form of C code that is synthesizable back to the original circuit; such 
C code would provide tremendous portability advantages over other circuit representations 
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methods, which cannot reasonably be expected to be derived from 
a Quicksort algorithm by any FPGA compiler (Figure 1). Those 
methods are radically different than the temporal Quicksort 
algorithm, even though they accomplish the same task.  

Unfortunately, a systolic Mergesort circuit representation is 
typically not portable, often distributed as a bitstream or at best, 
some form of netlist. The lack of portability forces distributors to 
design not only different circuits for different data set sizes, but 
also for different FPGA sizes and families, which could easily 
number in the hundreds. Figure 2 illustrates the portability 
benefits of capturing circuits as C code, showing that if we can 
capture the systolic Mergesort circuit in some form of C code that 
could be synthesized to the original circuit, we would have a more 
robust distribution format, capable of being run on a wide range 
of platforms. 

3. STUDY METHODOLOGY 
To investigate whether circuits designed for FPGAs might be 
captured and synthesized from C code, we examined all papers 
from the last six years of the IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2001-2006), 
a forum for presentation of clever human-designed circuits for 
FPGAs (among other topics). We found 70 papers that focused on 
description of new circuit-based algorithms or clever circuit 
implementations of standard algorithms for some application. 
After estimating that each example would require 2-3 days of 
investigation, we decided to investigate in-depth half of those 
circuits. We pseudo-randomly chose the subset of 35 circuits to 
investigate by sorting the 70 circuit papers according to their 
appearance in the proceedings, starting from oldest to newest. We 
chose every other paper for investigation – we explain this to 
make clear that the circuits were not handpicked based on their 
suitability for C code representation.  

We then strove to find C code descriptions for the circuits that 
would compile back to the same circuit. The goal of the study was 
to find any C description that would compile to the human-
designed circuit. Specifically, the claim is not that all functionally 
equivalent C algorithms would compile to that circuit. Only one is 
needed, and that one would be used to distribute the circuit-based 
algorithm. Furthermore, the goal is not to automate the derivation 
of the C code from the circuit, but merely to determine if a 
competent designer could capture his/her circuit in C code if 
necessary.  

If we were able to capture the circuit in C code that would 
synthesize back to the same circuit, we classified the circuit as 
“re-derivable from C”.  

Note that if we failed to classify the circuit as re-derivable 
from C, another C algorithm for the application likely exists that 
would synthesize to some other circuit with the same 
functionality, just not the same circuit as the human-designed one. 
That other circuit would likely have slower performance. 

We further sub-categorized the circuits that we found to be re-
derivable from C as either synthesizable from “temporally-
oriented C” or “spatially-oriented C”. We define “temporally-
oriented C” as the obvious algorithm that most simply captured 
the desired behavior of the application (e.g., what we feel is the 
most “natural” algorithm).  If we failed to find such a C 
algorithm, we next tried to capture the circuit’s unique spatial 
features, through careful use of subroutines and loops, such that a 
reasonable FPGA synthesis tool should yield the original circuit 
again. While noting whether circuits were captured in temporally-

oriented and spatially-oriented C was not the main point of the 
study, the distinction does provide some notion of the effort 
required by designers to capture their circuit in C code, with 
spatially-oriented C being harder to write. Furthermore, the 
distinction also shows the extent of the cleverness of the human-
designed circuit, with those derivable from the spatially-oriented 
C rather than temporally-oriented C likely exhibiting more 
complex or novel circuit design features.  

3.1 Standard Synthesis Transformations 
Because FPGA synthesis tools are still maturing and presently 
differ widely, we did not simply run the C algorithm through one 
particular tool. Instead, we defined the transformations and 
optimizations that could be expected in a mature “standard” 
synthesis tool. The reader may thus determine for him/herself 
whether the transformations are “standard” enough to be applied 
by synthesis tools. To perform synthesis, we followed the 
methodology shown in Figure 3. If we were able to capture the 
circuit in C, we converted that C code into a control/data flow 
graph. We optimized the graph by performing the following 
optimizations in the order shown: function inlining, loop 
unrolling, predication, constant propagation, dead code 
elimination, and code hoisting – straightforward optimizations 
that could be reasonably implemented in any compilation tool. 
We performed definition-use analysis to verify that regions of a 
circuit could be pipelined straightforwardly. We performed 
resource allocation by allocating a resource for every operation in 
the dataflow graph. We could have used a more conservative 
resource allocation, but most of the circuits we investigated were 
pipelined, and therefore would not allow sharing of resources. We 

Figure 3: Study methodology. We modeled each circuit in C (when 
possible). We then performed the following transformations and 

optimizations in the order shown, representing a “standard” synthesis 
tool, and observed whether the original circuit was recovered.  
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scheduled the graph using resource-constrained list scheduling, 
inserting registers between each stage of the dataflow graph. 
Again, we could have used a more conservative pipelining 
approach to save area, but we were interested in maximizing 
clock frequency. Next, we converted the scheduled graph into a 
structural VHDL representation that we then synthesized using 
Xilinx ISE.  

 

3.2 Memory Interfacing  
Designers typically define a custom memory interface to best 
serve the custom circuit, yet our defined standard synthesis tool 
does not involve synthesis of custom memory interfaces.  Since 
this work concentrates on capturing the compute aspect of custom 
circuits in C, and not the memory interface, we assume that the 
synthesis tool is provided with information for each circuit from 
which the tool can synthesize a custom interface similar to that in 
the custom circuit. Future work will involve developing 
mechanisms for providing custom interface information as well as 
synthesis transformations to generate custom interfaces. 

Most of the custom circuits used a standard memory interface 
consisting of one dual-ported memory, which allows one port for 
reading and one for writing. This kind of memory interface allows 
for block transfers and single transfers, similar to many DMAs. 
Some circuits implemented streaming data from off-chip 
memories, while others did not use external memory. 

3.3 Miscellaneous 
For each example, we targeted the specific FPGA used for each of 
the custom circuits in their original papers. Although we could 
have compared both the original circuit and synthesized circuit on 
newer FPGA fabrics, we felt such comparison might be unfair if 
the custom circuits were designed based on the characteristics of 
the original FPGA fabric. 

Due to space limits, we describe only a few examples in 
detail, and summarize results of the other examples.  

4. GAUSSIAN NOISE GENERATOR 
Figure 5 shows the custom circuit in [36] for a Gaussian noise 
generator. The circuit consists of four pipeline stages. The first 
stage utilizes linear feedback shift registers (LFSRs) to generate a 

32-bit and 18-bit random number, corresponding to u1 and u2. 
Stage 2 uses the random numbers from the previous step as input 
to the illustrated functions, which consist of square root, sine, 
cosine, and log functions. Stage 3 adds every two consecutive 
results from stage 2. The circuit implements this functionality by 
delaying one input for a cycle using a register and then adding the 
output of the register with the output from the previous stage. 
This buffering results in a delay to the pipeline, potentially 
causing an output to be generated every 2 cycles. Stage 4 
multiplexes the results from stage 3 to the output of the noise 
generator. By adding a register to the right input of the 
multiplexor, the circuit generates an output every cycle, instead of 
two outputs every two cycles. 

We first tried to determine if the circuit was re-derivable from 
temporally-oriented C. The natural temporal C uses a loop that 
executes the behavior of stages 1 and 2 twice to generate two 

Figure 4: Spatial C code for Gaussian noise generator. Figure 5: Circuit for a Gaussian noise generator. 
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inline float rand0_1() { 
  return rand()/((float) RAND_MAX+1); 
} 
 
inline Stage1 doStage1() { 
  Stage1 result; 
  result.u1 = rand0_1(); 
  result.u2 = rand0_1(); 
  return result; 
} 
 
inline Stage2 doStage2( float u1, float u2 ) { 
 
  Stage2 result; 
  float f_u1, g1_u2, g2_u2; 
 
  f_u1  = sqrt( -log( u1 ) ); 
  g1_u2 = sin( 2*M_PI*u2 ); 
  g2_u2 = cos( 2*M_PI*u2 ); 
  result.x1 = f_u1*g1_u2; 
  result.x2 = f_u1*g2_u2; 
  return result; 
} 
 
inline Stage3 doStage3( float x1, float x2 ) { 
 
  static float acc1=0.0, acc2=0.0; 
  Stage3 result; 
 
  result.x1 = acc1 + x1; 
  result.x2 = acc2 + x2; 
  acc1 = x1; 
  acc2 = x2; 
  return result; 
} 
 
inline void doStage4( int i, int j, 
                float x1, float x2 ) { 
 
 noise[i] = stage3.x1; 
 noise[j] = stage3.x2; 

} 
 
int main() { 
 
  Stage1 stage1; Stage2 stage2; Stage3 stage3; 
  unsigned int i=0; 
 
  while (1) { 
      stage1 = doStage1(); 
      stage2 = doStage2( stage1.u1, stage1.u2 );
      stage3 = doStage3( stage2.x1, stage2.x2 );
      doStage4( i, i+1%NUM_SAMPLES,  

 stage3.x1, stage3.x2 );  
      i = (i+2)%NUM_SAMPLES; 
    } 
 
  return 0; 
} 



  

samples for the accumulate step in stage 3. FPGA synthesis tools 
would replicate the circuit used in each iteration of the loop, 
increasing the area of the circuit without improving performance. 
We next tried to determine if the circuit was re-derivable from 
spatially-oriented C. Figure 4 shows a portion of the C code to 
model the Gaussian noise generator circuit in Figure 5. The C 
code utilizes a single function to describe each pipeline stage of 
the custom circuit. The output is stored into the array noise[]. To 
handle outputting to an array, we modified the code for stage 4 to 
store the two noise samples to two memory locations, as opposed 
to multiplexing the output to a single location. As we will show, 
this code is synthesized to the same stage 4 circuit shown in 
Figure 5. For simplicity, the C code uses floating point arithmetic 
as opposed to the fixed-point arithmetic in the custom circuit. The 
fixed-point code is similar, with the main difference being that the 
code uses logical and operations to remove unused bits of the 
random numbers, essentially specifying the width of each number 
to be 32 bits for u1 and 18 bits for u2. 

The control and data flow graphs generated during synthesis 
for each function of the C code are shown in Figure 6. Figure 6(a) 
shows the control flow graph for main(), where each function call 
has a corresponding node in the graph. For simplicity, we have 
omitted the control flow node for the code used to update the 
variable i. Figure 6(b) shows the data flow graph for function 
doStage1(). We omit the control flow graph for this function, and 
all other functions, because the corresponding graphs consist of 
only a single node. The data flow graph for stage 1 assigns 
random numbers to the two outputs of the function.  Although not 
shown, the data flow graph also contains operations to constrain 
the random numbers to values between 0 and 1. Figure 6(c) and 
Figure 6(d) show the data flow graphs for the doStage2() and 
doStage3() functions. The data flow graph for doStage4(), shown 
in Figure 6(e), produces two outputs instead of the single output 
from Figure 5. 

Figure 7 shows the circuits for each data flow graph for each 
C function after synthesis performs scheduling, resource 
allocation, and binding. For stage 1, shown in Figure 7(a), 
synthesis maps the random number generators to LFSRs. Figure 
7(b) shows the circuit for stage 2, for which synthesis utilizes 
approximation techniques to map the functions in stage 2 onto the 
same resources used to approximate these functions in the custom 
design. Unlike in the custom circuit, scheduling during synthesis 

is likely to insert registers between the approximation circuits and 
the multipliers in order to reduce the critical path length. For stage 
3, shown in Figure 7(c), synthesis maps acc1 and acc2 onto 
registers because the outputs from this stage are used again as 
inputs. Stage 4, shown in Figure 7(d), multiplexes the two outputs 
from the data flow graph for this stage. Synthesis adds the 
multiplexor because the outputs from the data flow graph are 
written to memory, which in this case is a shared resource with 
only a single port. To allow both inputs to be written to memory, 
synthesis delays input x2 one cycle using a register while the 
circuit stores x1.  

To optimize the circuit, synthesis can inline all of the 
functions for each stage into the main function and then perform 
code hoisting to move the code for each stage into a single control 
flow node, which is possible since there exists no control in each 
function. The resulting data flow graph for this single control 
node is shown in Figure 7(e). During scheduling, synthesis will 
insert a register at each level of the data flow graph, as shown in 
Figure 7(f). Note the similarity of the circuit in Figure 7(f) with 
the custom circuit shown in Figure 5. The only difference in the 
synthesized circuit is the addition of registers before the 
multipliers – an addition that may actually improve performance 
compared to the custom circuit. 

The throughput of the synthesized circuit is identical to the 
custom circuit, with each circuit producing a noise sample each 
cycle. The latency of each pipeline is different, but this latency 
only determines when the initial output from the circuit is valid. 
We point out that under certain situations, the two circuits are 
likely to differ in other ways. For example, if the target 
architecture utilizes a dual-ported memory or a memory with 
sufficient bandwidth to simultaneously store two results, then 
stage 4 of the synthesized circuit will not contain the multiplexor 

Figure 6: Control/data flow graph for C-level Gaussian noise 
generator functions (a) main, (b) doStage1, (c) doStage2, (d) 

doStage3, and (e) doStage4. 

Figure 7: Datapaths after scheduling, resource allocation, and 
binding for (a) doStage1, (b) doStage2, (c) doStage3, (d) 
doStage3, (e) main before pipelining, and (f) main after 

pipelining. Note the similarity with Figure 5. 
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or buffer register. This architectural difference does not affect 
throughput, but does affect timing, resulting in two noise samples 
every two cycles. To our knowledge, synthesis cannot guarantee 
the same timing as the custom circuit due to the lack of timing 
information in the C code. However, the timing difference after 
synthesis does not appear to be critical. 

Thus, we classify this circuit as re-derivable from (spatially-
oriented) C. 

5. MOLECULAR DYNAMICS 
SIMULATOR 
Scrofano [42] creates a custom FPGA accelerator for molecular 
dynamics simulations. The authors identify the nonbonded-forces 
calculations as the most time consuming region of the simulation 
and provide a custom circuit for those calculations. 

Figure 8(a) shows the pseudocode implemented by the custom 
circuit. For each atom, the inner loop calculates the forces from 
each neighbor of the atom. The code stores the forces in the array 
forceRAM, which the following loop stores into the forceOBM 
array.  

Figure 8(b) shows a high-level view of the custom circuit for 
the inner loop. Scrofano utilizes two separate on-board memories 
(OBM) to store the positionOBM array and the forceOBM array. 
Utilizing two memories allows the circuit to simultaneously 
stream position and force data without stalling, therefore 
achieving a maximum throughput of one force calculation per 
cycle. Scrofano implements the forceRAM array in on-chip 
memory to minimize the amount of read/write mode switches that 
would be required if the forces were stored back immediately to 
the forceOBM array. To optimize the datapath, the authors 
divided the pipeline into two pipelines separated by a FIFO. 
Dividing the pipeline reduced the latency penalty that was 
incurred every time the inner loop executed. The first pipeline 
generates output faster than the second pipeline and therefore only 
the latency of the second pipeline has a significant effect on 
performance. 

If we used C code based on the pseudocode in Figure 8(a) to 
try and model the custom circuit, the inner loop becomes a fully 
pipelined circuit that streams in the force and position data. 
Synthesis maps the forceRAM array onto block RAMs, which is 

possible due to the small size of the array, resulting in a single 
pipeline that performs the same operations as the two pipelines in 
the custom circuit. To our knowledge, there is presently no 
common synthesis technique that automatically divides a pipeline 
as is done in the custom circuit. Such a technique may be 
possible, requiring analysis to best determine the placement and 
size of the buffer. By using a single pipeline, the synthesized 
circuit incurs a larger latency penalty each time the inner loop 
executes, as shown in Figure 8(c).  The designer might instead 
direct the FPGA synthesis tool by altering the C code in Figure 
8(a) to model the buffer that separates the two pipelines. This 
might be accomplished by inserting a function call to enqueue the 
intermediate result of the first pipeline and dequeuing a result to 
the input of the second pipeline. Of course, this relies on a model 
of a buffer the FPGA compiler can recognize. By modeling the 
spatial constructs of the circuit, an FPGA tool would be able to 
effectively recover the original circuit. 

Another important difference when using the temporally-
oriented code in Figure 8(a) is that the synthesized circuit uses a 
single memory for input. When synthesizing code to a specific 
architecture, the synthesis tool must use the appropriate memory 
architecture, which we assume to be a single off-chip memory. 
Therefore, the synthesized circuit must read the position and force 
arrays from a single memory, which does not provide sufficient 
bandwidth to execute the pipeline without stalls. Therefore, the 
synthesized circuit has a lower throughput, outputting a force 
calculation every two cycles. If enough on-chip RAM existed to 
store both arrays, or the synthesis tool could stream data into two 
on-chip memories fast enough, then the synthesized circuit could 
perform similarly to the designer-specified circuit. 

Thus, we classify the molecular dynamics circuit as re-
derivable from (spatially-oriented) C. 

6. CELLULAR LEARNING AUTOMATA-
BASED EVOLUTIONARY COMPUTING 

In [23], Hariri et al. proposed a custom architecture for 
cellular learning automata based evolutionary computing (CLA-
EC). This architecture consists of a ring of cells, each of which 
stores a genome. The architecture for each cell is shown in  

Figure 8: Molecular dynamics accelerator. (a) Code for calculating nonbonded forces. (b) Custom circuit utilizing a divided pipeline to 
reduce latency penalty. (c) The synthesized pipeline differs from the custom circuit by utilizing a single pipeline. The synthesized circuit 

must stall due to a single memory, reducing throughput. 
foreach atom i do 
  ri = positionOBM[i] 
  fi = forceOBM[i] 
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         rj = positionOBM[j] 
         fij = calcNBF( ri, rj ) 
         fi = fi + fij 
         fj = forceOBM[j] 
         forceRAM[n] = fj – fij 
         n = n+1 
      end 
   end 
   forceOBM[I] = fi 
   foreach fj in forceRAM do 
      forceOBM[j] = fj 
   end 
end 

Pipeline1 

Pipeline2 
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Pipeline1 
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(a) (b) (c) 
Max throughput: 
1 output per cycle 

Max throughput:  
1 output every 2 cycles 
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p2 
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Latency penalty: p2  
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Figure 9(a). Each cell consists of multiple learning automata 
(LA) that determine a new genome. The update circuit replaces 
the existing genome with the new genome if the fitness value of 
the new genome is better. The majority function uses the genome 
of the left and right neighbor cells to generate reinforcement 
signals that guide the learning automata. 

An abbreviated version of the C code we used to model the 
CLA-EC is shown in  

Figure 9(b). This code iterates over some maximum possible 
number of cells, which is based on the input size. For each cell, 
generateNewGenome() implements the behavior of the majority 
function, learning automata, and the update function. The 
generateNewGenome() function updates the new genome if the 
new genome is better, otherwise the function sets new genome 
equal to the old genome. Because generateNewGenome() only 
modifies a single cell, the loop containing the 
generateNewGenome() function has no loop-carried 
dependencies, allowing synthesis to parallelize the function calls 
by performing function inlining, loop unrolling, predication, and 
code hoisting. 

After the generateNewGenome() loop completes, 
updateGenomes() updates the genome for each cell with the new 
genome determined by the generateNewGenome() function calls. 
By modifying the genome of each cell, the updateGenomes() 
function creates a dependency with the generateNewGenome() 
function, which uses the genome as input. To handle this 
dependency, synthesis stores the genome in a register. The 
resulting circuit is almost identical to the custom circuit. The only 
difference is the addition of a multiplexor before the new genome 
register that either selects the output of the learning automata or 
the output of the genome register. 

The simplicity of the C code in Figure 9(b) suggests that this 
implementation may also be the most natural way of writing the 
application in C. We classify the cellular automata circuit as 
readily re-derivable from (temporally-oriented) C.  

7. RESULTS 
We described three examples from the FCCM literature and our 
attempts to capture those designs in some form of standard C 
code. Due to space constraints, we now briefly highlight several 
other randomly selected examples before summarizing results for 
the entire examined set. 

Tripp [50] designed a circuit to implement a large 
metropolitan traffic simulation (Road Traffic). Each cell 
computed car velocities and positions based on a specific rule set 
imposed by the designers which reflected real world traffic 
conditions. When we focused on the computational aspect of each 

cell in the network, we found the traffic design to be readily 
derivable from (temporally-oriented) C.  

Bogdonav [8] designed a systolic array structure to solve 
matrix calculations using Gaussian elimination (Elimination). The 
authors in fact modified a temporally-oriented algorithm to 
achieve their circuit design.  We also found the circuit to be re-
derivable from C code. We decided to model the Gaussian 
elimination calculation with spatially-oriented C code to ensure 
synthesis transformations would recover the original systolic 
array structure.  

Krueger [35] designed a floating point unit to add two 
streaming numbers. The design incorporated variable delays, 
which we were not able to capture in either temporal or spatial C. 
We classified their design as not re-derivable from C. We again 
point out that there do exist C algorithms for this application that 
would synthesize to some circuit – just not to the particular 
published circuit.  

Figure 10 summarizes all the designs studied. As described 
earlier, we identified 70 custom circuit designs published in the 
last six years of the IEEE Symposium on Field-Programmable 
Custom Computing Machines, of which we chose every other 
circuit to study in depth, totaling 35 custom circuit designs. Of the 
35 designs, 29 of the designs, or 82%, were found to be re-
derivable from C. Of the 29 circuits re-derivable from C, 9 of 
those, or 25% of all 35 circuits, were captured in temporally-
oriented C. Again, this means these designs could have been 
written in natural high level code, and we could have reasonably 
expected a synthesis tool to recover the circuit, without much 
human effort at the circuit level. We note that a benefit of being 
able to capture the circuit as temporally-oriented C is that if the 
platform on which the circuit runs happens to be a 
microprocessor, the code may be able to run at or near its best 
performance, because the algorithm may be the same algorithm 
one would have written if initially targeting a microprocessor. 

20 of the circuits, or 57%, were re-derivable from C were 
captured in spatially-oriented C code. There were several 
common reasons why a design had to be described in spatially-
oriented C as opposed to the more natural temporally-oriented 
algorithm. Custom circuit designs often employed a combination 
of spatial techniques, including intricate pipelining, custom 
buffering, advanced memory hierarchies, and systolic array 
connectivity, none of which could reasonably be re-derived from 
the standard synthesis techniques.  

For 17% of the circuits, we were unable to capture the circuit 
in any form of C code that would be synthesized back to that 
circuit.  James-Roxby et. al [33] proposed logic-centric systems in 
which they added microprocessors to the design to make effective 
use of the cache hierarchy, a technique not reasonably describable 

 

Figure 9: The proposed custom CLA-EC circuit consisting of a ring of (a) custom CLA-EC cells and (b) C pseudocode that 
synthesizes to an almost identical parallel circuit (code for cell internals is omitted). 
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using standard C constructs. Several circuits [35][55] utilized low 
level cores that made re-deriving from C difficult. Others [53] 
implemented circuits that relied on precise timing, which is also 
difficult to capture in C. One circuit [34] took advantage of the 
dynamic reconfigurability of the FPGA to implement dynamic 
routing, a technique clearly not supported by standard C 
constructs.   

In summary, 82% of the circuit designs published in a forum 
for circuit-based algorithms could be captured in some form of 
standard C such that a synthesis tool supporting a basic set of 
transformations could recover the circuit from that C code.   

7.1 Comparison of Custom and Synthesized 
Circuits 
 

Figure 11(a) compares the performance of the custom-
designed circuits and the circuits synthesized from the C code for 
several of the examined circuits. All performances are normalized 
to the performance of the custom-designed circuits. For each 
example shown, the performance of the synthesized circuit was 
either identical to the custom circuit or slightly slower than the 
custom circuit. Had we modeled the molecular dynamics circuit 
with the original temporal pseudocode shown in Figure 8(a), the 

synthesized circuit would have been 2.3x slower. This 
performance decrease would have been caused by the inability of 
synthesis to split a pipeline into smaller pipelines that 
communicate using FIFOs. By modeling the molecular dynamics 
circuit with custom spatially-oriented C code, synthesis is able to 
generate a nearly identical circuit. 

Figure 11(b) compares the area, in slices, of the synthesized 
circuits and the custom circuits. On average, the synthesized 
circuits required only 6% more slices. This extra area was used by 
multiplexors and other glue logic that synthesis was unable to 
remove, and by additional pipeline registers. 

8. PORTABILITY  
One important advantage of describing a circuit in C is that the C 
can be distributed to different platforms having different amounts 
of FPGAs, and an FPGA synthesis tool could thus allocate more 
or less resources for the application without requiring a designer 
to distribute a new circuit. In this section, we estimate the changes 
in performance for each application when being implemented on 
both a smaller and larger FPGA than the ones used in the previous 
section. 

A larger FPGA for the Gaussian noise generator would not 
improve the performance of calculating a single noise sample, but 

Figure 10:  82% of the studied circuits published in FCCM were re-derivable from C, meaning they could be captured in some form of C 
such that a synthesis tool could be expected to synthesize the same or similar custom design.  

 Year of Publication  Design            Re-derivable from C? Method/Reason    

 2001  3D Vec. Normalization[31] Yes  Spatial, if online algorithms can be specified  
 2001  Efficient CAM[34]   No  Uses dynamic FPGA routing 
 2001  Automated Sensor[37] Yes  Temporal, floating point -> fixed point 
 2001  Regular Expression[44] Yes  Spatial, creative connections of one-bit flip flops 
 2002  Hyperspectral Image[19] Yes  Spatial, data reordering 
 2002  Machine Vision[58]  Yes  Spatial, custom pipelining 
 2002  RC4[51]   Yes  Temporal, straightforward implementation 
 2002  Set Covering[41]  Yes  Spatial, data structures for easy hw implementation 
 2002  Template Matching[29] Yes  Spatial, heavy modifications to original algorithm 
 2002  Triangle Mesh[38]  Yes  Spatial, custom encoding scheme 
 2003  Congruential Sieves[54] Yes  Temporal, straightforward translation 
 2003  Content Scanning[39]  Yes  Temporal  
 2003  F.P and Square Root[55] Yes  Spatial 
 2003  Gaussian Noise[36]  Yes  Spatial, requires the use of spatial C constructs 
 2003  TRNG[52]   No  Requires sampling a high frequency clock for noise 
 2004  3D FDTD Method[15] Yes  Spatial 
 2004  Deep Packet Filter[12] No  Requires knowledge of underlying FPGA  
 2004  Online Floating Point[35] No  Online algorithm, variable length buffers 
 2004  Molecular Dynamics[2] Yes  Spatial 
 2004  Pattern Matching[45]  Yes  Spatial 
 2004  Seismic Migration[25] Yes  Spatial 
 2004  Software Deceleration[33] No  Use a uP for its cache 
 2004   V.M Window[53]  No  Specific timing schemes implemented 
 2005  Data Mining[4]  Yes  Spatial 
 2005  Cell Automata[23]  Yes  Temporal 
 2005  Particle Graphics[6]  Yes  Spatial 
 2005  Radiosity [3]  Yes  Temporal 
 2005  Transient Waves[26]  Yes  Spatial 
 2005  Road Traffic[50]  Yes  Temporal 
 2006  All Pairs Shortest Path[9] Yes  Spatial 
 2006  Apriori Data Mining[5] Yes  Spatial 
 2006  Molecular Dynamics[42] Yes  Spatial, define separate memories, custom pipeline 
 2006  Gaussian Elimination[8] Yes  Spatial 
 2006  Radiation Dose[56]  Yes  Temporal 
 2006  Random Variates[49]  Yes  Spatial 
----------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 Totals:     82% of the circuits were re-derivable from C 



  

would allow for more samples to be generated per cycle by 
replicating the circuit several times. While the ability to replicate 
a circuit is not unique to writing the circuit in C, it certainly 
makes the task easier. Alternatively, a larger FPGA could be used 
to improve the accuracy of the approximation circuits. 

For the molecular dynamics simulator, a larger FPGA could 
potentially eliminate the memory bottlenecks of the synthesized 
design. If a large portion of the input could be stored in on-chip 
memory, then synthesis could create the same, or even an 
improved memory architecture compared to the custom circuit. 
Increased on-chip memory could provide sufficient bandwidth to 
read multiple positions and forces, improving the throughput of 
the pipeline to several force calculations per cycle.   

For a larger FPGA, CLA-EC potentially would achieve 
significant performance improvements compared to software, due 
to the ability to implement more cells on the same device. In [35], 
the authors show an approximately linear speedup compared to 
software when increasing the number of cells. Based on their 
results, an FPGA with twice the capacity would result in an 
approximate 2x speedup. Alternatively, a larger FPGA for CLA-
EC would allow the circuit to determine an improved result for a 
given run time.  

For the Gaussian Elimination circuit, a larger FPGA would 
not improve the performance of the custom circuit for existing 
matrix sizes. However, a larger FPGA would enable circuits for 
larger matrices, improving performance by at least 2x for a matrix 
that would not fit in a smaller FPGA. 

Similarly, a larger FPGA size for the metropolitan traffic 
simulation would enable simulations of larger road networks. 

For the online floating point unit, additional resources would 
not improve performance because the parallelism of the hardware 
is limited by non-constant bounded loops that cannot be unrolled. 

For smaller FPGAs, the C code for each application could be 
synthesized by the FPGA to use fewer resources. In fact, every 
example except the Gaussian noise generator could be 
implemented with a datapath consisting of only a multiplier, an 
adder, a register file, and a corresponding amount of steering 
logic. The performance of these smaller circuits would be slower 
than the pipelined implementations of the original circuits, but the 
C representation would still provide a correct implementation. For 
the Gaussian noise generator, the C representation would 
synthesize to a circuit as long as the FPGA had enough resources 
to implement the sine, cosine, square root, and log functions. 

Furthermore, every example could be implemented entirely 
on a microprocessor, at the obvious cost of slowdown. We leave 
examining the extent of that slowdown, and partitioning among 
microprocessor and FPGA, for future work. However, because  
25% of the examined circuits could be captured in temporally-

oriented C code, the microprocessor performance of these 
captured circuits is likely comparable to corresponding software-
oriented implementations, since these implementations are likely 
to be similar.   

9. CONCLUSIONS 
As FPGAs become more common in mainstream general-purpose 
computing platforms, distributing high-performance 
implementations of applications on FPGAs will become 
increasingly important. Even in the presence of C-based synthesis 
tools for FPGAs, designers continue to implement applications as 
circuits, due in large part to allow for capture of clever circuit-
level implementation features leading to superior performance 
and efficiency. We sought to determine whether those circuits 
could still be captured in some form of standard C code, such that 
standard synthesis transformation would re-derive the same 
circuit.   

For the 35 circuits studied, we found that 82% were indeed re-
derivable from C. The main conclusion of this study is that 
standard C code, without extensions for concurrency or clocking, 
when coupled with straightforward synthesis tools incorporating 
well-known transformations and optimizations, can serve as an 
effective distribution format for a large percentage of applications 
targeting FPGAs. This conclusion is significant because C code is 
tremendously portable, not only allowing for synthesis to FPGAs 
differing in their capacities and hard-core resources, but also 
allowing for partitioning among microprocessors and FPGAs, and 
even for microprocessor-only implementation. Distributing a 
circuit using C code thus expands the range of target platforms 
and the longevity of an application, compared to distributing it 
using a hardware description language or a netlist format.  
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