Procedure Exlining:
A New System-Level Specification Transformation

Frank Vahid
Department of Computer Science
University of California, Riverside, CA 92521
vahid@cs.ucr.edu

Abstract

We introduce a new system-level specification transfor-
mation called procedure exlining. Ezlining is the problem of
replacing sequences of statements by procedure calls, which
is the opposite problem of inlining. Procedures are used by
system synthesis and behavioral synthesis tools to guide ez-
ploration of various high-level implementations, so ezlining
can greatly improve the results of synthesis. We demon-
strate the usefulness of ezlining on several ezamples.

1 Introduction

The focus of system design is shifting to earlier stages
of design, as automatic tools mature for the later stages.
At the early stages, we focus on creating a functionally-
correct specification of the entire system, with VHDL be-
ing commonly used as the specification language. Func-
tional correctness means that we have specified correct sys-
tem output for every possible sequence of inputs, without
regard for how the system is eventually implemented. We
can simulate the specification extensively to verify correct-
ness, thus eliminating functional errors early and avoiding
lengthy changes at later design stages. We can then divide
the specification into pieces, and implement each piece as
software running on a standard processor, or as a custom-
hardware processor, with the aid of synthesis and compi-
lation tools. We may evaluate many possible implementa-
tions to tradeoff performance and cost. The various design
stages are illustrated in Figure 1.

Because creating a functionally-correct specification is
crucial for eliminating late changes, we would like to fo-
cus only on functional-correctness when creating the initial
specification. Unfortunately, the style in which one writes
a functional specification can greatly affect the runtime
and output of synthesis tools. For example, an encryp-
tion algorithm written in VHDL required over 10 minutes
to behaviorally synthesize when written as a single pro-
cess, but only 30 seconds when written as two processes
— the time differences were even more dramatic for logic
synthesis. In addition, the two process version synthesized
into 10% fewer gates. As a result of the effect of style on
synthesis, many specification writers focus on both correct-
ness and synthesis simultaneously. Because writing correct
specifications is an extremely difficult task, such simulta-
neous focus on two different issues usually results in a less
readable specification that contains more errors. In addi-
tion, the specification will be tuned towards one particular
synthesis tool, so it might not be suitable for other syn-
thesis tools or for software compilation. Alternatively, we

0-8186-7156-4/95 $4.00 © 1995 IEEE

508

[Specification HTtansfomlatio& .

Qpeciﬁcation

' Y
((compitation) (_synthesis)
! 1

]
| Process splitting
! Process merging

+ Procedure inlining
@ndard proc.1 LCustom proc.] i Procedure exlining

1

! VIRANS

Fig. 1: Exlining as one possible specification transfor-
mation before system partitioning or behavioral synthesis.

have observed designers rewriting the original functional
specification a number of times, tuning it for synthesis.
While this approach ensures a focus on correctness when
writing the initial specification, rewriting can be tedious
and time-consuming, meaning that functional errors may
be introduced.

Our solution to the above problems is to develop a tool
to partially automate VHDL transformations, which we
call VTRANS. Such transformations might include those
that split one process into two, merge two processes into
one, or inline a procedure call. A specification writer can
then focus on correctness, confident that the task of rewrit-
ing will be greatly simplified by the transformation tool.

In this paper, we describe a new transformation called
procedure exlining, which involves finding and replacing
sequences of statements by procedure calls. This transfor-
mation can significantly affect the results of system-level
partitioning and synthesis. In Section 2, we describe the
purpose of the transformation. In Section 3, we briefly
discuss two techniques for finding sequences of statements
suitable for exlining. In Section 4, we describe how to
replace such sequences by procedure calls. In Section 5,
we consider a simple example. In Section 6, we highlight
results of several examples. In Section 7, we provide con-
clusions and future work.

2 Exlining roles

Given a VHDL functional specification, exlining is de-
fined as: (1) Finding sets of sequential statements that
should be replaced by procedure calls, and (2) Replacing
those sets by procedure calls. We perform exlining at the
statement level, rather than decomposing the statements

into a control/dataflow graph representation and group-
ing arithmetic-level nodes, in order to maintain statements
similar to the original specification and thus maintain de-
signer interaction. Before describing techniques for the
two exlining steps, we must first understand the two roles
of exlining: to improve system-level partitioning, and to
improve synthesis.

2.1 Exlining for partitioning

Partitioning is the task of assigning pieces of the specifi-
cation to various implementation parts, like hardware and
software parts. Such partitioning requires that we first de-
compose the specification into a set of functional objects
(i.e., basic computations that cannot be divided across
parts), and that we then assign those objects to parts. We
can decompose a specification to various levels of granular-
ity, such as processes/procedures, basic blocks, statements,
or even arithmetic operations. Decomposing to the level
of arithmetic operations, as done in [1], has proven use-
ful during synthesis, but may be too fine-grained for the
system level. Decomposing to the statement level or basic
block level, as donein [2, 3, 4], may yield thousands of func-
tional objects for a VHDL specification possessing several
thousand lines. Decomposing to the process/procedure
level, as done in [5, 6, 7, 8, 9] yields tens or a few hun-
dred functional objects, which is approximately the level
at which designers can interact, and at which inter-object
communication times don’t dominate over object compu-
tation times. However, we have found that designers of-
ten write processes or procedures with a large number of
statements, meaning that processes and procedures might
be too coarse-grained for partitioning. For example, we
might not be able to fit an entire process onto a single
part, or we might not want to run synthesis on the entire
process (as illustrated by the encryption example in the
introduction). As another example, we might only need
to implement a time-critical piece of a process in custom
hardware, assigning the rest of the process to a cheaper
software implementation. The decomposition granularity
issue is illustrated in Figure 2, where the circles represent
functional objects, and the small rectangles represent pack-
age size constraints, synthesis-tool input-size constraints,
or timing constraints. Figure 2(a) shows that very coarse-
grained decomposition can lead to counstraint violations,
while Figure 2(b) shows that very fine-grained decomposi-
tion can lead to an excessive number of possible partitions
and to incomprehensible results.

Exlining provides one solution to this problem. Before
decomposing to the process/procedural level, we look for
processes/procedures with a large number of statements.
We then replace closely-related statements by a procedure
call, until no process/procedure has more than N state-
ments, or until some other criteria is satisfied. We can
then decompose to processes and procedures, yielding a
granularity well-suited for functional partitioning, as illus-
trated in Figure 2(b).

2.2 Exlining for synthesis

Procedures provide a variety of implementation options
to a synthesis tool. Specifically, synthesis tools can make

509

L Specification l l Specification } r Specification]

YY)
{
99 @

(a)

©

)

Fig. 2: Exlining for better functional decomposition: (a)
procedural-level decomposition, (b) statement level, (c)
procedural level with exlining.

better size/performance tradeoffs when presented with a
set of procedures than when presented with just a large set
of sequential statements without procedures [10]. First, a
procedure can represent a complex functional unit, which
should be used for some system computations {11, 12], thus
enabling reuse of predesigned complex units. Second, a
procedure can be used to represent a separate controller in
order to simpify the synthesized control logic [13, 14], or
to achieve more concurrent execution [15]. Third, a pro-
cedure can be implemented as a control subroutine [10].
Fourth, a procedure can be inlined. These options yield
implementations with different size and performance char-
acteristics.

Exlining thus permits better exploration during syn-
thesis, without incurring any penalty, since synthesis can
always just inline the procedures to obtain the same results
as would have been obtained without exlining.

3 Exlining techniques

There are two distinct procedure exlining problems. In
the first problem, we find redundant sequences of state-
ments, and replace those sequences by calls to a single
procedure; we call this redundancy exlining. In the sec-
ond problem, we divide a large sequence of statements into
several subsequences, where each subsequence performs a
distinct computation, and we replace each subsequence by
a call to a distinct procedure; we call this isolation exlin-
ing. Each problem requires a different solution technique.

3.1 Redundancy exlining

Instead of trying to solve the very hard problem of
finding sequences of statements with identical functional-
ity, we solve the problem of finding sequences with similar
statement types, letting the user determine when such se-
quences should actually be replaced by a procedure call.
At the heart of the solution is the use of an existing, pow-
erful pattern matching tool.

First, we encode the VHDL statements into an encoded
string, by replacing each VHDL statement with a single
character based on the statement type. One possible en-
coding character table is given in Figure 3. For example,
the first seven statements in Figure 5 might be encoded

Type _Encoding _ Type Encoding
assert a loop |
case [nuil n
else e procedure call p
elsif g return 4
endcase d signal assign. s
end if j variable assign. v
end loop m wait w
exit b when X
for loop f while loop y
if i

Fig. 3: Statement-type encoding characters for VHDL

as “fswvswm,” where ‘f’ represents the beginning of a for
loop, ‘s’ represents a signal assignment, and so on.

Second, we search for a designer-provided pattern in the
encoded string, using the agrep pattern matching tool [16],
and we display all the matching statements, or candidates.

Third, we reduce the number of candidates by requiring
target and/or source consistency. A target is the identifier
being updated in an assignment statement. Target consis-
tency means that if the pattern writes an identifier v with
its i’th and j’th statements, then a candidate must also
write some identifier u (possibly different than v) with its
i’th and j’th statements. Likewise, a source of a statement
is any identifier that is read by that statement. To extend
our encoding for target and source consistency, we first re-
place all targets and sources in the candidates by symbolic
identifiers. Each statement is encoded as ¢T'tzSls, where ¢
is the statement type, tz is the target’s symbolic identifier,
and Is is a list of source identifiers of the form sz_sy....sz.
If a statement does not have a target or any sources, then
the corresponding target or source part is omitted from
the encoding. As before, we concatenate the code for each
statement into an encoded string. We use agrep to find the
candidates that still match the pattern.

The use of pattern matching for redundancy exlining
has several advantages. First, pattern matching tools are
widely used and researched, and hence extremely fast. Sec-
ond, recent research has led to fast search time for ap-
proximate matching; agrep uses sub-linear time. Ap-
proximate matching allows us to find matches with minor
differences from the pattern, where those differences would
be accounted for by procedure parameters. Third, using
pattern matching gives us the ability to form patterns us-
ing regular expressions. Regular expressions permit a
powerful, concise method for describing possible variations
in the pattern; for example, we might want to search for
all for loops containing any number of variable and signal
assignments, followed by either a wait statement or pro-
cedure call. Regular expressions are heavily-used by the
Unix community and hence are familiar to many design-
ers.

3.2 Isolation exlining

For isolation exlining, we try to group very close state-
ments into a procedure. “Close” statements are those
statements that share much data among them, that are
executed in the same thread of control, and that can exe-
cute using the same hardware.

510

We first create a tree representation, where each node
represents a statement, and non-leaf nodes represent hier-
archical statements such as loops, if-then-else, cases, and
procedure calls; the root node of such a tree represents a
process. We extend the representation by adding sibling
edges between sibling nodes in the tree if and only if the
corresponding statements always occur in the same execu-
tion thread through the process. In general, the branches
of an if-then-else or a case statement will never have sibling
edges between them. The significance of the sibling edge
is as follows: only nodes with a sibling edge between them
can be merged into a procedure. By merging at the appro-
priate level of hierarchy, we can include entire if-then-else
statements or case statements into a procedure.

Qur problem is to insert procedure nodes into this tree
in a manner that results in the best decomposition of the
initial statements. The best decomposition is determined
using a cost function that is a weighted sum of several
terms. Procedure size is the variation from a designer-
specified number of statements per procedure, summed
over all procedures. Control transfer is the number of
transfers of control to procedures over the entire tree. Con-
trol transfer is computed from an execution frequency asso-
ciated with each node. Data interconnect is the size of the
data that must be transferred to or from each procedure.
Size is measured by encoding each data item into bits. Bits
for arrays are the address plus the data word bits. Data
transfer is the amount of data that must be transferred
to each procedure. It is equal to the data interconnect
size multiplied with the control transfer frequency. Hard-
ware size is the total synthesized hardware size assuming
each procedure is synthesized independently. This term
encourages groupings in which large hardware items, such
as multipliers, appear in the same procedure so can be
shared.

We have defined three techniques to solve the above
problem, spanning the spectrum of fast heuristics to com-
putationally intensive heuristics. The first technique, the
natve hueristic, simply inserts a procedure node for every
hierarchical statement. The second technique is a cluster-
ing heuristic, where we compute a closeness for all pairs
of nodes connected by a sibling edge, merge the closest
into a new procedure, and repeat. We prohibit merges
that would exceed the maximum procedure size, which
in turn provides a condition for terminating the cluster-
ing. Alternatively, we can terminate clustering based on a
closeness threshold; if no nodes are closer than some min-
imum threshold value, then we terminate clustering. The
third technique uses simulated annealing. Given an initial
tree with procedure nodes, we attempt to improve the cost
function value through a series of changes.

4 Creating the new procedures

Creating a new procedure for a given sequence of state-
ments requires attention in two areas. First, in the case
that a single procedure will replace several redundant se-
quences, we must add parameters and provide condition-
ally executed statements within the procedure to account
for variations among the sequences. Presently, such details

are handled manually.

Second, in the case there is just a single sequence being
replaced, we must determine the procedure’s parameters.
‘We now briefly discuss such parameters. Consider the ex-
ample of Figure 4(a). A process called Main is shown con-
sisting of three sequences of statements, labeled A, B and
C. Suppose that B is to be exlined into a new procedure,
B._Proc. To determine the parameters and local variables
of B_proc, we must examine the use of all symbols accessed
in B. We can distinguish two regions of Main: B, and C,A.
Note that C,4 both precedes and follows B, since the pro-
cess loops back to its beginning. We can distinguish four
types of accesses by either region to a given symbol s

e w_only means that the region only writes s.
e r.only means that the region only reads s.

o rbw means that the region might read s before writ-
ing to it.

e whbr means that the region always writes s before
reading it.

At first glance, the last two possibilities don’t seem to cover
all cases where a region both reads and writes s, but they
do. The opposite of rbw “might read before writing” is
“never reads before writing”, which is the same as “al-
ways writes before reading,” or wbr. Likewise, the oppo-
site of wbr is “sometimes writes before reading”, which is
the same as rbw.

Main
[l AC B Action

l’ ,l

: % A ronly r_only Iavalid -- report error

: : r_only w_only Move to B_Proc, out pann

) U

[~ r_only rbw Move to B_Proc, out pamm

B ! P

! QI;

N i r_only wbr Move to B_Proc, out parm

) g

1 T w_only r_only In parm

c A .

L — w_only w_only Dead variable -- delete
w_only bw In pamu
w_only wbr Move to B_proc

(@ tbw r_only In parm
hw w_only Out parm.
Mais tbw bw Tnout parm
R bw whbr Out parm

I i

! % A whr r_only In pamn

: ' wor w_only Dead variable in B - delete from B

t 1

! 3.:9 roc() whr 1w In parm

: ; whr wbr Duplicate in B_proc

] i

TR

! % c (c)

(b)

Fig. 4: Handling symbols during procedure creation: (a)
original Main process, (b) new process with B extracted,
(c) determining data parameters between B and Main.

Given those four access types, there are 16 possible com-
binations of accesses of a given symbol s by regions A4,C

511

-- Collect data for this x,y location
for iin 1ton loop
data_strobe <= '1’; wait until rdy="1"
M(i) := data;
data_strobe <= ’0"; wait until rdy="0";
end loop;
flat_level := (M(n-2) + M(n-1))*8 + 10;
-- Find anterior wall
foriin 1 to nloop
if (M(i) < flat_level) then
anterior_wall := 1;
exit loop;

end if;
end loop;

-- Find posterior wall
for i in anterior_wall to n loop
if (M(i) >= flat_level) then
posterior_wall := i;
exit loop;

end if;
end ioop;

-- Write data to disk for later analysis
for iin 1ton loop

diskport <= M(i);

write_disk <= ’1’; wait for 1 us;

write_disk <= 0’; wait for 1 us;
end foop;

Fig. 5: Example VHDL specification.

and B, as illustrated in Figure 4(c). The first row corre-
sponds to the situation where both regions only read the
symbol; such a situation is a specification error. The next
three rows correspond to B writing before A,C reads. In
this case, we prefer to move the symbol’s declaration into
B_proc, returning the written value as an output parame-
ter. The fifth and seventh rows correspond to A,C writing
and B reading the symbol, so the symbol becomes an input
parameter. The sixth row corresponds to a dead symbol
that is written but never read, so we can just delete all oc-
currences of it. The eighth row corresponds to the symbol
being dead in 4,C, so we move it to B_proc. The remain-
ing rows follow similarly. A particularly interesting row is
the last one, in which the symbol is written before being
read in both regions; in this case, we duplicate the symbol
declaration within B_proc.

5 Example

We now consider a simple example, which is trivially
small and is used simply to demonstrate the exlining tech-
niques. The example is a small portion of a VHDL be-
havioral description of a volume-measuring medical instru-
ment, shown in Figure 5.

We choose to initially perform redundancy exlining.
The exlining tool would encode the statements, using the
encoding characters given in Figure 3, as: fswvswmufivb-
jmfivbjmfsswswm . Noting that the wall-search statements
are similar, we search for fivbjm — the exlining tool finds
two matches, corresponding to the statements that find
the anterior wall and the posterior wall. We use the exlin-
ing tool to see if these two matches are target consistent.
The first match would be encoded as: fT%t1 1 vTt2 b 7 m,

-- Collect data for this x,y location
for iinlton loop
data_strobe <= '1’; wait until rdy="1"
M(i) = data;
data_strobe <= '0’; wait until rdy="0";
end loop;
flat_level := (M(n-2) + M(n-1))*8 + 10;
FindWall
(M, 1,n,flat_level,ant,ant_wall);
FindWall
(M,ant_wall,n,flat_level,post,post_wall),
-- Write data to disk for later analysis
for iin 1 ton loop
diskport <= M(i);
write_disk <="’1"; wait for 1 us;
write_disk <= '0"; wait for 1 us;
end loop;

Fig. 6: After redundancy exlining.

CollectData(M,n);
flat_level := (M(n-2)+M(n-1))*8 + 10;

FindWall
(M.,1n,flat_level,ant,ant_wall);
FindWall
(M,ant_wall,n,flat_level,post,post_wall);

WriteData(M,n);

Fig. 7: After isolation exlining.

where t1 and 2 correspond to ¢ and anterior_wall. The
second match would be encoded identically, meaning the
two matches are target consistent. We then decide to re-
place the two matches by a procedure call, as shown in
Figure 6.

Next, we perform isolation exlining. We might instruct
the exlining tool to create procedures with no more than
7 statements. The exlining tool would build a tree rep-
resentation and apply one of the partitioning heuristics.
The result would be a suggested procedure for the first for
loop and another procedure for the last for loop. These
procedures yield the fewest control transfers. If we had
specified a smaller maximum size of 5 statements, then
the tool would have grouped each loop’s inner statements
into its own procedure also; likewise for the loop inside the
FindWall procedure. The final result is shown in Figure 7.

6 Results

We have implemented a prototype procedure exlining
tool, and incorporated it with a VHDL transformation tool
(VTRANS) consisting of 26,000 lines of C code. VTRANS
reads VHDL and displays a graphical tree, where each
node represents a process, procedure or data declaration
from the VHDL, and edges represent the declaration hier-
archy. The user can quickly view the contents of a node
by clicking on that node. Another command highlights the
accessor or accessee nodes of any given node. Commands
exist to convert a procedure to a process, and to inline a

512

procedure. The exlining command can be performed on
a particular process/procedure or on the entire specifica-
tion. The exlining tool displays candidates, and prompts
the designer to exclude candidates or change matching cri-
teria or cost functions. Presently, new-procedure creation
is manual.

We have applied redundancy exlining on an image pro-
cessing example and the 18251 high-level synthesis bench-
mark, both written by outside sources. In the former, we
introduced 4 new procedures and replaced statement se-
quences by 18 procedure calls (in turn reducing the over-
all code size by 57 lines). The entire process of scan-
ning the specification, selecting patterns, and searching
for candidates took only 10 minutes with the assistance of
VTRANS. In the latter example, we introduced five pro-
cedures and eleven procedure calls (and reduced the code
size by 40 statements). In addition, the process of exlin-
ing caused us to find an error in which two redundant
sequences had a minor unintentional variation.

We applied isolation exlining on a number of procedures
from an image processing example and an MPEG decoding
example, both obtained from outside sources. The naive
heuristic averaged one second, clustering averaged twenty
seconds, and simulated annealing averaged eight minutes.
Simulated annealing yielded the lowest-cost results, and
the naive heuristic yielded the highest-cost results.

In the image processing example, two exlined proce-
dures were converted to forked processes, leading to a re-
duction from 87 clock cycles down to 31 cycles for a part
of the specification. Such coarse parallelism would have
been difficult to find by a synthesis tool alone. In the
MPEG example, the introduced procedures increased the
granularity of functional partitioning from 8 procedures to
48 procedures, leading to a hardware/software functional
partitioning with 30% less hardware (27000 gates reduced
to 16250 gates) and 10 less pins that still satisfied per-
formance constraints. It is interesting to note that if we
had chosen an even finer granularity of statements, as in
many other hardware/software codesign environments, the
number of partitions examined by an n’log(n) algorithm
would have increased from 13824 (for the 48 procedures) to
6,400,000 (for 800 statements). The latter makes designer
interaction almost impossible.

We also experimented with a 700-line encryption exam-
ple in VHDL. We exlined eight additional procedures in
a process that originally used only four procedures, parti-
tioned the twelve procedures among two parts, and applied
a behavioral synthesis tool to each part. The improve-
ments over synthesizing the original 700-line example were
substantial: exlining and partitioning reduced the total
runtime of a particular behavioral synthesis tool from 1166
seconds down to 230 seconds (with even greater savings in
logic synthesis), and reduced the resulting hardware size
from 79,000 gates down to 65,000 gates.

Several other uses of exlining have been suggested. One
is to search a specification for statement sequences that
could be replaced by a predesigned complex functional unit
of the type described in [12]. Another is to reduce software
size when there is limited program memory. A third is to

search large numbers of software files to determine if a
procedure has already been written, without knowing the
name of that procedure.

7 Conclusion

We have shown that exlining is an important part of a
VHDL system-level design tool. Exlining is necessary to
decompose large processes and procedures into a suitable
size for functional partitioning, and to provide behavioral
synthesis tools with the ability to explore various high-level
implementation options. Given an exlining tool, the writer
of a system’s initial specification can focus on describing
the system in the most natural manner possible, using pro-
cedures only when necessary for readability. The designer
need not consider how procedures will be used for func-
tional partitioning or in behavioral synthesis; instead, the
exlining tool can be used to help easily convert an initial
specification written for readability into one suitable for
partitioning or synthesis. Tools that provide such a trans-
formation ability, and those that provide unique views of
the specification, will likely become increasingly important
as design effort shifts to the specification level.

References

[1] E. Lagnese and D. Thomas, “Architectural partition-
ing for system level synthesis of integrated circuits,”
IEEE Transactions on Computer-Aided Design, July
1991.

R. Ernst, J. Henkel, and T. Benner, “Hardware-
software cosynthesis for microcontrollers,” in IEEE
Design & Test of Computers, pp. 64-75, December
1994.

R. Gupta and G. DeMicheli, “Hardware-software
cosynthesis for digital systems,” in IEEE Design &
Test of Computers, pp. 29-41, October 1993.

X. Xiong, E. Barros, and W. Rosentiel, “A method
for partitioning UNITY language in hardware and
software,” in Proceedings of the European Design Au-
tomation Conference (EuroDAC), 1994.

D. Thomas, J. Adams, and H. Schmit, “A model
and methodology for hardware/software codesign,” in
IEEE Design & Test of Computers, pp. 6-15, 1993.

P. Gupta, C. Chen, J. DeSouza-Batista, and
A. Parker, “Experience with image compression chip
design using unified system construction tools,” in
Proceedings of the Design Automation Conference,
pp. 250-256, 1994.

F. Vahid and D.Gajski, “Specification partitioning for
system design,” in Proceedings of the Design Automna-
tion Conference, pp. 219-224, 1992.

D. Gajski, F. Vahid, S. Narayan, and J. Gong, Speci-
fication and design of embedded systems. New Jersey:
Prentice Hall, 1994.

P. Eles, Z. Peng, and A. Doboli, “VHDL system-level
specification and partitioning in a hardware/software

@l

(8]

[4]

(6]

Y

8

513

[10]

[11]

2]

(13]

(14]

18]

[16]

co-synthesis environment,” in International Work-
shop on Hardware-Software Co-Design, pp. 49-55,
1992.

L. Ramachandran, S. Narayan, F. Vahid, and
D. Gajski, “Synthesis of functions and procedures in
behavioral VHDL,” in Proceedings of the European
Design Automation Conference (EuroVHDL), 1993.

P. Gutberlet and W. Rosentiel, “Specification of in-
terface components for synchronous data paths,” in
Proceedings of the International Workshop on High-
Level Synthesis, pp. 134-139, 1993.

A. Jerraya, 1. Park, and K. O'Brien, “Amical: An
interactive high-level synthesis environment,” in Pro-
ceedings of the European Conference on Design Au-
tomation (EDAC), pp. 58-62, 1993.

R. Camposano, L. Saunders, and R. Tabet, “VHDL
as input for high level synthesis,” IEEE Design & Test
of Computers, pp. 43—49, March 1991.

R. Camposano and R. Brayton, “Partitioning before
logic synthesis,” in Proceedings of the International
Conference on Computer-Aided Design, 1987.

R. Walker and D. Thomas, “Behavioral transforma-
tion for algorithmic level IC design,” IEEE Trans-
actions on Computer-Aided Design, pp. 1115-1128,
October 1989.

S. Wu and U. Manber, “Fast text searching allowing
errors,” Communications of the ACM, vol. 35, no. 10,
pp. 83-91, 1992.

