SLIF: A Specification-Level Intermediate Format for System Design

Frank Vahid
Department of Computer Science
University of California, Riverside, CA 92521

Abstract

As methodologies and tools for chip-level design mature,
design effort becomes focused on higher abstraction levels.
Presently, much effort is focused on system-level design,
where the key tasks include system component allocation,
functional partitioning and transformation, and coarse es-
timation. However, commonly-used internal formats of
functionality, such as the control-dataflow graph, are too
fine-grained for the system level. We introduce a more ab-
stract format, and we demonstrate its order-of-magnitude
more efficient support of system design tasks and its sup-
port of practical designer interaction. The format is used
by the SpecSyn system design environment, and can be ez-
tended to handle many new system design problems.

1 Introduction

The maturation of behavioral synthesis tools, which
generate a register-transfer structure for a given behavior,
has lead to new system-design research efforts. System
design involves several highly-interdependent tasks, which
must be performed before behavioral synthesis or software
development take place, including: (1) Allocation of sys-
tem components, such as processors, ASICs, memories and
buses, to the design; (2) Partitioning of the functional
specification among those components; (3) Transformation
of the specification into one more suited for synthesis or
compilation, such as sequentializing processes for imple-
mentation with a single processor; (4) Coarse estimation
of constrained design metrics, including performance, size,
pins, power, design time, modifiability, and cost. After
completing these tasks, the result is an interconnection of
functionally-specified system components. The function-
ality assigned to each ASIC or processor component can
be implemented through behavioral synthesis or software
design, respectively.

In current practice, system design tasks are vaguely de-
fined, decisions are based on mental or hand-calculated es-
timations, and documentation of decisions is scarce. These
shortcomings have led researchers to propose starting from
a simulatable functional specification, which is then par-
titioned among system components with the aid of tools.
Most such approaches first convert the specification to an
internal format, on which system design tasks are then
applied.

By describing the SLIF internal format in this paper,
we hope to encourage comparison of various formats, to
encourage new solutions to system design tasks, and to
enable uniform comparison of research results. SLIF is
unique from existing formats due to its orientation around
accesses among computations rather than around depen-
dencies, its representation of the assignment of function-
ality to structure, and its higher abstraction level. These
features will be discussed throughout the paper. SLIF has

1066-1409/95 $4.00 © 1995 IEEE

Daniel D. Gajski

Department of Information and Computer Science

185

University of California, Irvine, CA 92717

proven to be an efficient format for system design tasks,
as verified by several years of use in the SpecSyn system-
design tool.

The paper is organized as follows. In Section 2, we
provide a SLIF definition and an example. In Section 3,
we demonstrate SLIF’s usefulness for system design tasks.
In Section 4, we discuss related research. In Section 5,
we demonstrate SLIF’s efficiency. In Section 6, we discuss
strengths and limitations of SLIF. In Section 7, we provide
conclusions and future work.

2 SLIF definition

After providing a simple example to introduce SLIF’s
basic organization, we provide a set of annotations for es-
timation, and a more formal SLIF definition.

2.1 Basic organization

As a simple example, consider the partial VHDL spec-
ification of a fuzzy-logic controller in Figure 1. Inputs n!
and in2 must be converted to output out! using fuzzy logic.
The main process FuzzyMain first samples input values by
writing them into variables inlval and in2val. It then calls
procedure EvaluateRule twice, once for each input, and
that procedure fills an array (tmrl or tmr2) based on the
input and on another predefined array (mrl or mr2). Af-
ter convolving the tmr arrays, a centroid value is computed
and output. The process repeats after a time interval.

We represent this specification as the directed graph in
Figure 2. Each node of the graph represents a behav-
ior or a variable from the specification, where a behavior
is a process or procedure, though for finer granularity we
can consider statement blocks like loops. Each directed
edge of the graph represents a communication channel
from the specification, where a channel represents a pro-
cedure call, a variable/port read or write, or a message
pass specified using send/receive constructs. For example,
process FuzzyMain, procedure EvaluateRule and variable
inlval are each represented by a node. The write of infval
in FuzzyMain translates to a single edge, while the two calls
of EvaluateRule by FuzzyMain translate to another single
edge. Nodes representing processes are tagged to distin-
guish them from procedure nodes (hence the FuzzyMain
node is shown in bold).

We refer to the representation as the Specification-
level intermediate format, or SLIF, since its granular-
ity is that of behaviors and variables explicit in the spec-
ification. We refer to the part of SLIF shown so far as
an access graph, or AG, since the relations between the
functional objects are defined by the accesses among those
objects. The AG is similar to a procedure call-graph com-
monly used for software profiling, where an edge represents
an access rather than a flow of data; the AG is more gen-
eral since it also includes variables. (Since there may be

entity FuzzyControilerE is
pdort(im, in2 : in integer; outl: out integer),
end;

FuzzyMain: process

variable intval, in2val : integer;

type mr_array is array (1 to 384) of integer;

variable mr1, mr2: mr_array; -- membership rules

type tmi_array is array (1 to 128) of integer;

variable tmrt, tmr2: tmr_array; -- truncated memb. rules

begin

in1val :=in1; in2val := in2;
EvaluateRu|e$1 ;
EvaluateRule(2);
Convolve;

out1 <= ComputeCentroid;
wait until ...

end process;

procedure EvaluateRule(num : in integer) is
variable trunc : integer; -- truncated value

begin
it (num = 1) then
trunc := Min{mr1{inival), mr1(128+in1val));
elsif (num = 2) then
trunc ;= Min(mr2(in2val}, mr2(128+in2val)),

end if;
foriin 1to 128 loop
if (num = 1) then
tmr1 (i) := Min(trunc, mr1(256+i));

elsif (num = 2) then
tmr2(i) := Min{trunc, mr2(256+i));
end if;
end loop;
end;

Fig. 1: Partial fuzzy-controller VHDL specification.

a large number of variables, we usually include only array
variables and global variables, treating each remaining lo-
cal scalar variable as part of the behavior in which it was
declared).

Note a unique feature of SLIF: SLIF is oriented around
accesses rather than dependencies. Such an orientation re-
sults in fewer nodes and more closely reflects the likely
implementation style of each procedure. For example, if a
procedure is called many times throughout the specifica-
tion, the SLIF-AG would use only one node for the proce-
dure; in contrast, a dependency graph would use multiple
nodes, one per access, since the dependencies with other
behaviors would differ for each access. Multiple nodes are
useful in behavioral synthesis when the node represents
an arithmetic operation, since the main design task is to
map many identical operations to a single functional unit.

int in2 outt
‘7
[intvar] [in2val
Lcomvove | [centroia

]

Fig. 2: Basic SLIF-AG for the example.

186

However, multiple nodes are often unnecessary in system
design, since each node represents a more complex com-
putation that we may implement as a single custom con-
troller/datapath, a single custom control subroutine, a sin-
gle functional unit, or a single software subroutine; there
is no complicated binding stage of multiple identical nodes
to a single unit. In case we do decide to replicate the pro-
cedure, it will likely be through inlining, which would still
not require multiple nodes. In the cases where we actually
want multiple nodes, then we can provide an automatic
transformation to replicate the node for each access.

Continuing with the SLIF definition: SLIF represents
structural system components and the assignment of func-
tional objects to those components. Returning to the fuzzy-
logic example, suppose we decide to implement Evalu-
ateRule on an ASIC, Convolve on a standard processor,
and mr! and mr2 in their own memory. We represent this
information by adding structural components and assign-
ing graph nodes to those components. A structural com-
ponent may be a custom or standard processor, which
implements behaviors and variables; a memory, which
implements variables; or a bus, which implements chan-
nels. For example, Figure 3 illustrates the assignment of
several functional objects to an ASIC, a processor, two
memories, and one bus.

Note a second unique feature of SLIF: SLIF represents
not only functionality, but also implementation structure,
and the assignment of functionality to structure. There-
fore, we can represent system-design results in the same
format, thus supporting iterative specification refinement,
and we can also include structure in the initial input spec-
ification, thus handling partial implementation decisions
already made by the designer.

Processor1: 80us
ASIC1: 10us

sizes

Processor1: 60 instr
ASIC1: 9000 gates

Fig. 3: SLIF after allocation, partitioning, annotation.

2.2 Annotations for estimations

We now consider annotating SLIF with preprocessed
information for performance, I/O and size estimation.

We first consider performance. We annotate each edge
with an access frequency, accfreq, indicating the num-
ber of accesses by the edge’s source behavior to the edge
(channel) during one start-to-finish execution of the be-
havior. Since execution may be data-dependent, we use
an average execution, based on a (manually or automati-
cally generated) branch probability file. Likewise, we can
associate maximum and minimum frequencies; for brevity,
though, we consider only averages in this paper.

We also annotate each edge with a bits number, indi-
cating the number of bits transferred during an access. For
access to a scalar, this is the number of bits into which the
scalar would be encoded. For access to an array of scalar
elements, this is the number of bits to encode an array
element, plus the number of address bits needed to spec-
ify an element’s address. For a more complex data item,
such as a three-dimensional array, the data item is first
transformed to an array of scalars. For access to another
behavior, this is the number of bits needed to transfer all
(if any) parameters, where the number of bits for each pa-
rameter is computed as for variables. For a message pass,
this is the number of bits into which the message would be
encoded. Note that an edge’s bits number is independent
of physical bus width; if the bus width is smaller than the
bits, then multiple transfers will be required.

We annotate each behavior node with its internal com-
putation time, or ict, indicating the behavior’s execution
time excluding communication time. Since a behavior exe-
cutes at different speeds on different components, we anno-
tate each behavior node with a set of ict’s, one ict for each
component type. A behavior’s ict is determined during
preprocessing, using synthesis for ASIC components, com-
pilation for processor components, or designer-provided
numbers. We also annotate each variable node with an ict
set, representing the times to read or write various memo-
ries/processors in which the variable may be implemented.

We annotate each bus with a ts (time-same) number,
which is the time to transfer data entirely within the same
system component, and a td (time-different) number, which
is the time to transfer data between two different system
components. The td is usually much larger than the ts.
(We could even use more extensive annotations with a
unique ts value for each component type, and a unique
td value for each pair of component types).

We now turn to I/O (input/output), which is the num-
ber of pins required on a system component for a given
partition. To determine I/O, we need bus width informa-
tion. Thus, we annotate each bus with a width number,
which represents the number of physical bus wires. We can
also annotate each system component with a constraint,
iocon, on the maximum I/O that the component can im-
plement. For an ASIC, this number might be the number
of pins excluding power and ground, whereas for a stan-
dard processor, it might be the size of the bus.

Finally, we consider size information. For behaviors
and variables assigned to a processor, size is measured by
the number of program and data bytes after compilation,
whereas on a custom processor, size is the number of gates,
cells, transistors, or combinational logic blocks after syn-
thesis. For variables assigned to a memory, size is the
number of words. Because size means something different
for each component type, we annotate each behavior and
variable node with a size set, one size for each component
type, obtained by synthesizing or compiling each behav-
ior into the appropriate technology. We can also annotate
each component with a size constraint, sizecon.

Several annotation examples are shown in Figure 3. The
edge from EvaluateRule to inlval is annotated with a bits
value of 8 (assuming an 8-bit integer encoding) and an
access frequency of 1, while the edge to array mr! has

187

15 bits (7 address bits plus 8 data bits) and an access
frequency of 65. The ict set for Convolve shows 80 us on
the processor and 10 us on the ASIC, while the size set
shows 60 processor instructions and 9000 ASIC gates.
Note a third unique feature of SLIF: SLIF represents a
specification at a high abstraction level of procedural-level
objects, rather than the detailed level of arithmetic-level
operations. This means that there are far fewer functional
objects (tens or hundreds rather than thousands), result-
ing not only in faster run-times and less memory from
automated algorithms, but more importantly, in a rep-
resentation that is comprehensible to designers. Hence,
SLIF supports interactive design, fitting well with current
system-design methodologies, which deal with procedural-
level functions. In addition, it means that we can perform
extensive estimation preprocessing for each procedural-level
object, and then quickly combine values without too much
loss of accuracy from unconsidered inter-procedural opti-
mizations. In contrast, the arithmetic-level does not per-
mit such preprocessing; e.g., we cannot estimate a be-
havior’s time or size as the sum of its operations’ times
and sizes, since those operations will be combined to share
hardware in a complex and unpredictable manner.

2.3 Formal definition

Figure 4 provides a formal definition of SLIF with an-
notations. Note that F_objs is the same as the SLIF-AG.

Item Definition

SLIF < F_objs,S_objs >

Foobjs < 10411, BVau, Cou > (Functional objects)
10,1 {io1, 102, ...} (Input/output ports)
BV, Bou U Van

B.u {b1,b2,...} (Behaviors)

Vou {v1,v2, ...} (Variables)

bi,vi < icts, sizes,process >

icts {icty,icta, ...}, icty =< cmp,val >
sizes {sizei,sizes,...}, sizex =< cmp,val >
cmp € Pann U Mgy

Caul {c1,¢€2,...} (Channels)

¢ < src,dst,accfreq,bits >

sre € Bgy (Accessor behavior)

dst € BV, UIO.; (Accessee object)
S_objs < Pau, May, Lo > (Structural objects)
I.n {31,12, ...} (Buses)

ik < C,width,ts,td >,C C Caut

M.y {m1,m2,...} (Memories)

mg < V,sizecon >,V C Vg

P,y {p1,p2, ...} (Processors, custom or standard)
Pk < BV, sizecon,iocon >, BV C BVyy

Fig. 4: Formal SLIF definition
3 Using SLIF for system design

In this section, we provide examples of how SLIF ef-
ficiently supports the system design tasks of allocation,
partitioning, transformation, and estimation.

3.1 Allocation, partitioning, transformation

Allocation is easily supported since system components
are represented in the format. Figure 3 illustrated the
SLIF representation after an ASIC, a processor, two mem-
ories, and a bus were allocated. To add a system compo-
nent, we simply add a member to I.i, Mo, or Pau.

Partitioning of functional objects among system com-
ponents is also directly represented, as shown in Figure 3.
To represent assignment of functional objects among com-
ponents, we simply modify ix.C,m;.V, or px.BV.

Many transformations are also easily supported. For
example, inlining a procedure into a behavior would be
supported by eliminating the behavior’s access edge to that
procedure, and recomputing the behavior’s annotations af-
ter inlining the procedure. As another example, process
merging would be supported by merging two process nodes
into one, and once again updating the annotations. Con-
verting a procedure to a process would be achieved by tag-
ging the procedure node as a process, and replacing edges
to that node by edges to new global variable nodes. In gen-
eral, system-level transformations require a modification of
the graph and a recomputation of affected annotations.

3.2 Estimation

From the earlier annotations, we can straightforwardly
obtain coarse estimates for execution time, bitrate, soft-
ware size, hardware size, memory size, and I/0.

We can estimate a behavior’s execution time as the sum
of the behavior’s internal computation time (ict) and com-
munication time. We use a procedure GetBvComp(bv)
that returns the component pm to which bv is assigned.
Procedure GetBuvlIct(bv,pm) finds the icty in the bv.icts
for which ictx.cmp equals the given component pm, and
returns ictg.val. Procedure GetBehChans(b) returns all
channels C accessed by behavior b (i.e., c.src = b). Proce-
dure GetChanBus(c) returns the bus ¢ to which channel
c is mapped. Execution time is then computed as follows:

Ezectime(b) = GetBuvlct(b,p) + Commtime(b) (1)
P = GetBvComp(b)
Commtime(b) = Zc,,ecetsehChans(b) cr-accfreqx

(TTime(ck,p) + Exectime(ck.dst))
= [bdt.time x (ci.bits+
GetChanBus(ci).width))
= GetChanBus(c).ts
if GetBuComp(ck.dst) = p,
= GetChanBus(ck).td otherwise.

TTime(ck, p)

bdt_time

In other words, a behavior’s execution time equals its
ict on the current component (GetBuvlct(b,p)), plus its
communication time (Commtime(b)). The communica-
tion time equals the data-transfer time over a channel for
each accessed object (T'Time(ck,p)), plus the execution
time of each accessed object (Erectime(ck.dst))), times
the number of such accesses (cx.accfreq). The data-transfer
time over a channel is determined from the bus data trans-
fer time (bdt_time) and the width of the channel’s bus; if
the data bits exceeds the bus width, then multiple trans-
fers are used (as computed by the division). The bdt_time
is less when the communication is within one component.

We now compute bitrate, or the rate that bits are trans-
ferred over a channel or bus. A channel’s bitrate can be
computed as the number of bits transferred during the ex-
ecution time of the source behavior. Using Ezxectime(b)
defined above, we compute channel bitrate as follows:

c.accfreq x c.bits

ChanBitrate(c) = “Ezectime(c.sc)

2

188

A bus bitrate is the sum of that bus’ channel bitrates.
For more sophisticated bitrate estimation techniques de-
rived from SLIF, see [18].

We now focus on size estimation. Estimating software
size for a standard processor component, hardware size
for a custom component, and memory size for a memory
component each requires adding the precomputed weights
of each functional object for the given component.

Finally, we consider I/O estimation. I/O is the number
of wires crossing the boundary of a system component.
Usually relevant for ASICs, I/O can be computed as:

1.0(p) = Z ix.width (3)
i €ECutBuses(p)
CutBuses(p) C I,ix € CutBuses(p) iff

ix [} CutChans(p) # 0,

C C, ¢ € CutChans(p) iff
c.src € p and ci.dst € p or
ci.dst € pand ¢;.src € p

CutChans(p)

In other words, the wires crossing a component bound-
ary equals the total width of the buses crossing that bound-
ary (CutBuses(p)), which in turn are those buses that im-
plement at least one channel crossing the boundary.

4 Related work

Many projects focus on partitioning functionality among
hardware or hardware/software components. The need for
coarse-grained procedural-level partitioning was stressed
in [2], as well as in [3, 4]. Approaches in [5, 6, 7] parti-
tion at the finer-grained statement level (or statement se-
quence). Other approaches, such as those in [8, 9, 10, 11,
12, 13], partition at the fine-grained arithmetic-operation
level. Additional research has focused on functional trans-
formation, at a procedural level of granularity in [14, 15], at
a loop and statement level in [16], and at an operation-level
in {17]. (Details on several of these efforts can be found
in [18]). SLIF is best-suited for the procedural-level parti-
tioning and transformation approaches described above.

5 Results

SLIF serves as the internal format for the SpecSyn sys-
tem design tool. SpecSyn takes VHDL as input, creates
an internal SLIF representation, and then permits rapid
exploration of various allocations (including processors,
ASICs, memories and buses), partitions and transforma-
tions, providing rapid estimates of size, I/O, and perfor-
mance metrics. The SLIF creation software consists of
12,200 lines of code, and it is integrated with hardware
and software size and performance estimators; it provides
each estimator with a procedure and a technology type,
and the estimator returns the metric value. The estima-
tors are distinct from the SLIF creation program, so we
can replace any estimator by another estimator, or even
by a synthesis or compilation tool, to gain more accuracy
at the expense of longer estimation times.

We measured the SLIF creation time and estimation
time for four examples: an answering machine, an eth-
ernet coprocessor, a fuzzy-logic controller, and a volume-
measuring medical instrument. To indicate the examples’

complexities, we note that the examples had an average of
554 lines, 58 behavior and variable functional objects, and
68 channels. The SLIF creation time averaged only 3.35
seconds. In addition, once the SLIF was created, estima-
tion times were on the order of milliseconds.

To demonstrate SLIF’s efficiency compared with lower-
granularity formats, we compared SLIF with two other for-
mats for the fuzzy-logic controller. The SLIF-AG required
35 nodes and 56 edges. The ADD format [19], which is sim-
ilar to the Value Trace format, required over 450 nodes and
400 edges. The CDFG format required over 1100 nodes
and 900 edges. The difference in complexity greatly af-
fects the design algorithms (e.g., partitioning) that can be
applied. For example, if an n® algorithm is to be applied,
then the SLIF-AG, VT or ADD, and CDFG formats would
require 1225, 202500, and 1210000 computations, respec-
tively. Clearly, the latter two are not practical for an in-
teractive tool.

6 Strengths and limitations

We have discussed several strengths of SLIF, including
its orientation around accesses, its representation of both
functionality and structure, and its high level of abstrac-
tion. There are also some limitations. First, SLIF does not
represent fine-grained operations, so cannot be used for
fine-grained scheduling. However, we can associate a fine-
grained representation with each SLIF node, such as a con-
trol/dataflow graph, to address this problem. In fact, we
may associate a hierarchical transition graph [15] with each
node to support process merging transformations. Second,
SLIF is not simulatable. However, with the popularity of
the VHDL standard, we see no need for developing a sim-
ulator based on SLIF. Third, hardware estimation for a
set of procedures can not always be estimated accurately
by summing the procedure sizes. For this reason, we have
developed sophisticated annotations that consider hard-
ware sharing among procedures [20]. Fourth, SLIF asso-
ciates only one average (and minimum/maximum) execu-
tion time with each procedure; however, execution time
often depends on the calling location, so one might want
to extend SLIF to incorporate such call-dependent infor-
mation. Fifth, SLIF doesn’t describe forked procedures
since they are not supported by VHDL. However, we can
extend SLIF to represent such parallel calls by associat-
ing tags with each channel; channels with the same tag
would be considered concurrent. Finally, we may wish to
extend SLIF to handle multiport memories, explicit com-
ponent pin definitions (e.g., interrupt pins on a standard
processor), and hierarchical system components.

7 Conclusions and future work

We have presented the SLIF specification-level inter-
nal format, shown that its unique features make it well-
suited for the system design tasks of allocation, parti-
tioning, transformation and estimation, and demonstrated
that its abstraction-level is appropriate for designer inter-
action. SLIF has proven to be an efficient internal format
in the SpecSyn system design tool, which has been released
to over 20 companies and universities and has been used
experimentally in several industry designs.

189

We hope to continue to improve estimation accuracy by
linking with more accurate estimators during preprocess-
ing and by tuning our estimation equations based on SLIF
for various technologies; there are currently several efforts
with industry partners in this direction. We also plan to
develop an environment for functional VHDL transforma-
tion, using SLIF as the core representation. Finally, if
there is sufficient interest, we may create a textual version
of SLIF for communication among system design tools, as
well as a standalone form of our current VHDL-to-SLIF
software for use by other system-design tool developers.

References

[1] S. Narayan and D. Gajski, “Synthesis of system-level bus
interfaces,” in EDAC, 1994.

[2] F. Vahid and D.Gajski, “Specification partitioning for sys-
tem design,” in DAC, pp. 219-224, 1992.

[3] D. Thomas, J. Adams, and H. Schmit, “A model and

methodology for hardware/software codesign,” in IEEE

Design & Test, pp. 6-15, 1993.

P. Gupta, C. Chen, J. DeSouza-Batista, and A. Parker,

“Experience with image compression chip design using uni-

fied system construction tools,” in DAC, pp. 250-256,

1994.

R. Gupta and G. DeMicheli, “Hardware-software cosynthe-
sis for digital systems,” in IEEE Design € Test, pp. 29-41,
October 1993.

R. Ernst, J. Henkel, and T. Benner, “Hardware-software
cosynthesis for microcontrollers,” in IEEE Design & Test,
pp. 64-75, December 1994.

X. Xiong, E. Barros, and W. Rosentiel, “A method for
partitioning UNITY language in hardware and software,”
in EuroDAC, 1994.

R. Gupta and G. DeMicheli, “Partitioning of func-
tional models of synchronous digital systems,” in ICCAD,
pp. 216-219, 1990.

E. Lagnese and D. Thomas, “Architectural partitioning
for system level synthesis of integrated circuits,” IEEF
Trans. on CAD, July 1991.

K. Kucukcakar and A. Parker, “CHOP: A constraint-
driven system-level partitioner,” in DAC, 1991.

Z. Peng and K. Kuchcinski, “An algorithm for partitioning
of application specific systems,” in EDAC, pp. 316-321,
1993.

Y. Chen, Y. Hsu, and C. King, “MULTIPAR: Behavioral
partition for synthesizing multiprocessor architectures,” in
IEEE Trans. on VLSI, pp. 21-32, 1994.

C. Gebotys, “An optimization approach to the synthesis
of multichip architectures,” IEEE Trans. on VLSI, vol. 2,
no. 1, pp. 11-20, 1994.

T. Ismail, K. O'Brien, and A. Jerraya, “Interactive system-
level partitioning with Partif,” in EDAC, 1994.

J. Hagerman and D. Thomas, “Process transformation for
system level synthesis.” TR CMUCAD-93-08, 1993.

H. Samsom, L. Claesen, and H. DeMan, “Synguide: an
environment for doing interactive correctness preserving
transformations.” In VLSI Signal Processing VI, IEEE
Press, New York, 1993.

R. Walker and D. Thomas, “Behavioral transformation for
algorithmic level IC design,” IEEE Trans. on CAD, Octo-
ber 1989.

D. Gajski, F. Vahid, S. Narayan, and J. Gong, Specification
and design of embedded systems. New Jersey: Prentice
Hall, 1994.

V. Chaiyakul and D. Gajski, “High-level transformations
for minimizing syntactic variances,” in DAC, 1993.

F. Vahid, S. Narayan, and D. Gajski, “Constant-time

cost evaluation for behavioral partitioning.” UCI TR 92-
29,1992.

[4]

(3]

(7]

(8]

(9}

(10]

(11]

(12]

(13]

(14]
(15]

(16]

