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Abstract

As methodologies and tools for chip-level design
mature, design effort becomes focused on increasingly
higher levels of abstraction. We present a methodology
and tool for system-level specification, design and re-
finement that result in an executable specification for
each system component. The specification for each
component can then be synthesized into hardware or
compiled to software. We highlight advantages of the
proposed methodology compared to current practice.

1 Introduction

The focus of design effort on higher levels of
abstraction has led to the need for a system-level
methodology and supporting tools. There are two
main steps in system-level design. The first is func-
tionality specification, which is the task of describing
the desired system behavior in some form. The sec-
ond is system destgn, which is the task of implement-
ing this functionality with system components such
that design constraints are satisfied. Example sys-
tem components include standard processors and mi-
crocontrollers, memories, buses, and custom ASICs.
The domain of these two steps is shown in Figure 1.
The result of system design is a set of system compo-
nents, each with its own functional specification. Im-
plementation of each component follows. A standard
component requires software compilation of the func-
tional specification into machine code, whereas custom
components require synthesis of the specification into
register-transfer structure. The first task is accom-
plished with standard compilers while the second one
uses high-level and logic synthesis.

There are two very different system-level design ap-
proaches in current practice. In one approach, the
system’s functionality is first implemented with inter-
connected register-transfer or gate-level objects, and
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Figure 1: System-level domain

this structure is then partitioned among system com-
ponents. However, once structure is obtained only
minor changes can be made to the system’s perfor-
mance through introduction of redundant objects or
through repartitioning. More substantial changes re-
quire knowledge of high-level functional and timing in-
formation, but such information can not be discerned
from the structure. A second drawback to this ap-
proach is it doesn’t consider software implementations.

In the other approach, the system’s functionality is
first partitioned among system components, and each
component is then implemented as structure or as soft-
ware, depending on the component type. While over-
coming the drawbacks of the structure-first approach,
current practice of this approach involves mostly in-
formal and manual techniques. The functionality is
informally specified using a natural language such as
English, and system design is done manually using
mental or hand-calculated estimations for quality met-
rics such as performance, size, and power. Drawbacks
of such techniques include the lack of early functional
verification, the lack of good feedback with regards to
quality metrics that result from design decisions, the
lack of automated tools to reduce design time, and



the lack of good documentation of functionality and
design decisions to aid in concurrent design and in re-
design.

Several research efforts have focused on overcom-
ing one or more of these drawbacks. Simulation en-
vironments have been developed to encourage early
system simulation of hardware and software compo-
nents for functional verification [1, 2]. An architec-
tural template and tools environment for rapid proto-
typing have also been suggested [3]. Functional par-
titioning approaches have been introduced for multi-
ple custom chips [4, 5], and for multiple processors
[6]. Issues for functional partitioning among hardware
and software components have been discussed [7], and
prototype partitioning systems have been developed
[5, 8]. Frameworks have been proposed to support the
process of controlling and interfacing various system-
design tools [9].

The methodology and tool we present can be used
in conjunction with the simulation, prototyping, and
framework environments described above. Our work
differs from other previous efforts in several key points.

First, we handle exploration of various implemen-
tations of the three aspects of functionality, namely
behavior, data, and communication, rather than fo-
cusing on behaviors alone as in most previous work.

Second, our technique is applicable to a variety of
system-component technologies, not just a fixed set
of hardware or software components of one technol-
ogy. The above two points provide a seamless explo-
ration of system-design options, which includes hard-
ware/software codesign.

Third, the end result of our approach is a re-
fined specification in which interconnected system-
components are functionally specified, permitting fur-
ther verification and encouraging concurrent design.

Fourth, we use a new model (PSM) for specification
that can describe both hardware and software func-
tionality, at varying levels of abstraction, in a uniform
manner. This model differs from previous ones which
were well suited for either software or hardware but
not both.

In this paper, we present our system-level method-
ology. It is highlighted in Figure 2, where the boxed
items represent a replacement of informal and manual
techniques with well-defined and automatable ones.
We first describe system specification and introduce
our PSM model. We then define and describe the
major system-design tasks, as well as a suggested or-
dering of those tasks. We provide a real example, and
describe an environment to support the methodology.
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Figure 2: Proposed system-level methodology

2 Executable specification and
PSM

We use an executable specification rather than a
natural language to specify system functionality. An
executable specification is one which captures the
functionality of the system in a machine-readable and
simulatable form. It has several advantages over a
natural language. First, simulation enables early ver-
ification of the correctness of the system’s intended
functionality. Second, the specification may serve as
an input to synthesis tools, resulting in significantly
reduced design times. Third, the specification serves
as documentation by providing a precise description
of intended functionality.

Many languages have been used for executable
specification, including VHDL, Verilog, C, and Stat-
echarts. Such languages are used to capture com-
mon conceptual models such as finite-state machines
(FSM), FSMs with complex expressions, hierarchi-
cal and concurrent FSMs, dataflow diagrams, Petri-
nets, and communicating sequential processes. Un-
fortunately, these conceptual models are not adequate
for concisely describing all of the characteristics of a
common class of systems referred to as embedded
systems. These characteristics include: program-
ming constructs, state-transitions, sequential and con-
current behavior decompositions, and exceptions. To
overcome this limitation, we developed a new model
called program-state machines.

Program-state machines (PSM) [10] are essen-
tially a combination of the hierarchical finite-state ma-
chine and programming language paradigms. A sys-



tem is specified as a hierarchy of program-states, where
each program-state represents a mode of computation
and may include standard programming declarations
such as variables, types, and subroutines. At any given
time only a subset of program-states are active, i.e. are
actively carrying out their computations. A single
root program-state represents the entire system and
is always active.

A program-state may either be a composite
program-state or a leaf program-state. A compos-
ite program-state may be hierarchically decomposed
either into a set of concurrent program-substates
(all program-substates are active when the program-
state is active), or into a set of sequential program-
substates (only one of the program-substates is active
at a time when the program-state is active). A se-
quentially decomposed program-state contains a set
of transition arcs to represent the sequencing between
the program-substates. There are two types of tran-
sition arcs. A transition-on-completion arc (TOC) is
traversed when the source program-substate has com-
pleted its computation and the associated arc condi-
tion evaluates to true. A transition-immediaiely arc
(TI) is traversed immediately when the arc condi-
tion becomes true, regardless of whether or not the
source program-substate has completed its computa-
tion. A leaf program-state is at the bottom of the be-
havioral hierarchy and has its computation described
using programming language statements.

The PSM model supports all embedded-system
characteristics in an elegant manner. In addition, as
the system is refined, the programming constructs can
be used to describe portions destined for software im-
plementation while the state-transitions describe por-
tions destined for hardware implementation, all with a
single uniform representation that eliminates the need
for multiple languages. Since no language currently
exists that supports all the PSM characteristics, we
developed a VHDL front-end language called Spec-
Charts [11].

Our subsequent system-design methodology is not
strictly dependent on use of the PSM model and Spec-
Charts. Other languages may be used to capture the
PSM model, with some extra effort. However, PSM
and SpecCharts are in closest accord with our system-
design methodology, and yield the most concise and
readable specifications.

2.1 System design

System design is the task of mapping the function-
ality, as captured in an executable specification, to
some set of system components such that design con-
straints on parameters such as monetary cost, per-
formance, and power are satisfied. Our approach to
system design consists of three well-defined tasks on
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Figure 3: System-design tasks

three classes of functional objects, as summarized in
Figure 3. The three classes of functional objects that
comprise any executable specification are variables,
behaviors, and channels. Variables store data, be-
haviors transform data, and channels transfer data
between behaviors. In our terminology, a behavior
is a non-trivial algorithmic-level computation that to-
gether with other behaviors describe all system actions
(identical to the “task” concept described in [7]). It
corresponds to a block of statements in the specifica-
tion such as a loop body, procedure, or process. For
each of these objects there are three tasks to be per-
formed: allocation, partitioning, and refinement.

Allocation adds system components to the design.
One class of system component consists of memories,
such as RAMs, ROMs, register-files, and registers.
Memories are used to store scalar and array variables.
Another class of component consists of standard pro-
cessors and microcontrollers as well as custom ASIC
“processors”. These standard/custom processors are
used to implement behaviors. A third class of “com-
ponent” consists of physical buses. Buses are used to
implement communication channels.

Partitioning maps each class of functional objects
to allocated components. Variables are mapped to
memories, behaviors are mapped to standard/custom
processors, and channels are mapped to buses. Each
mapping is many to one. Standard partitioning algo-
rithms, such as clustering or simulated annealing, can
be applied. Clustering may use any of various close-
ness criteria [12]. For behaviors, common criteria in-
clude interconnection, communication, sequentiality,
and hardware sharability. For variables and for chan-
nels, common criteria include sequential access, com-
mon accessors, and width similarity.

Refinement adds new behaviors to maintain cor-
rect functionality for a given allocation and parti-
tioning. Variables partitioned among memories re-
quire memory address translation. Behaviors sepa-
rated among components must be modified to main-
tain correct communication. Channels mapped to
buses require interface synthesis to determine commu-
nication protocols, and arbiter synthesis to resolve any
simultaneous bus requests. A refined specification is
then generated consisting of a set of interconnected
system-components, each functionally specified.
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There is no fixed ordering of the system-design
tasks. One ordering which we have found leads to
good results is shown in Figure 4. After the function-
ality is specified, large variables are mapped to mem-
ories such that variables which satisfy closeness crite-
ria are mapped to the same memory. Channels are
mapped to buses in a similar manner. Then proces-
sor or ASIC components are allocated and behaviors
are partitioned among those components. Variable or
channel repartitioning may follow in order to further
improve the design. Interface and arbiter synthesis are
performed to complete the functional specification of
each component.

Throughout the entire process, allocation and par-
titioning tasks are guided by estimations of design
quality metrics such as area, performance, pins, and
power. Accurate yet fast estimation techniques are a
subject of intense research; some results for both hard-
ware and software implementations are described in
[13, 14, 15, 16]. The estimations are incorporated into
an objective function used for design evaluation. A
common objective function is one which favors designs
with the smallest amount of constraint violations.

To further evaluate design decisions, a refined spec-
ification can be generated and simulated between any
tasks during the design process.

The resulting system components can be imple-
mented with either automated or manual techniques.
Since the components are defined as an executable
specification, synthesis or compilation follow very nat-
urally.

3 Example

Let us consider as a design example an interac-
tive television processor (ITVP). The system captures
video frames and displays them as still pictures while
audio is played. A user can interact by selecting menu
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Figure 5: The ITVP’s environment

items via the TV remote control, resulting in an ap-
propriate new video frame and accompanying audio.
Such systems are common in hotels, stores, and more
recently in homes with cable TV. They can be used
to take a video tour of a hotel, shop through a video
catalog, or even to perform banking transactions or
make airline reservations. The system resides in a box
adjacent to a television set, similar to a box for cable
TV. A diagram of the overall system is found in Fig-
ure 5, with only certain data flows shown. The core of
the ITVP is a digital subsystem, the design of which
will be our focus.

The main behaviors and data objects for the digital
subsystem are shown in Figure 6. The actual system
consists of 32 behaviors and 69 data objects derived
from 860 lines of VHDL code, but only the large or
important objects are shown. The system contains
behaviors called CaptureAudio and GenerateAudio
to capture and then generate several thousand succes-
sive audio bytes (i.e. a frame), using two arrays audiol
and audio2. Likewise, the CaptureGenerateVideo be-
havior and video array capture and generate video
frames. A fonts array indicates which of the 16x16
pixels should be illuminated for each of the 128
supported ASCII characters. A screen_chars ar-
ray indicates which ASCII character, if any, should
be displayed in each of the 30x30 screen positions.
OverlayCharacters reads the screen-characters and
fonts arrays and indicates to the video generator when
to override a video pixel with a white pixel so that
a white character will appear on the screen. Behav-
ior Capture AVCmd and variable av_cmd capture an
encoded command that appears at the start of ev-
ery audio or video frame, where the command in-
dicates how to handle the frame. Finally, there
is a behavior Process Remote Buttons to respond to
buttons pressed on the remote control, a behavior
ProcessAVCmd to handle the encoded audio/video
command, and a behavior ProcessMainCmds to re-
spond to commands issued by the main computer.
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Figure 6: One possible design for the ITVP

After the specification and system-design steps of
our methodology, the system components are de-
fined and the system may be summarized in “block-
diagram” form, a form familiar to most design-
ers.  Such a block-diagram is shown in Figure 6
for our example. The system is implemented with
six components: three memories, two ASICs, and
a Pprocessor. Each of the behaviors and vari-
ables is mapped to exactly one of these compo-
nents. The Memoryl component stores both the
audiol and audio? arrays, while Memory2 stores
the video array. Memory3d stores both the fonts
array and the screen_chars array. ASIC1 imple-
ments the CaptureAudio and GenerateAudio be-
haviors, ASIC?2 implements CaptureGenerateVideo
behavior as well as the CaptureAVCmd behav-
ior and the av.cmd variable, and Processor im-
plements the ProcessAVCmd, ProcessMainCmds,
ProcessRemote Buttons and QverlayCharacters be-
haviors. Note that there is a single bus, bus1, to which
several channels have been mapped, including behav-
ior accesses to avemd, fonts and screen_chars.

Let us consider the decisions made in the example
design. The audio and video arrays were stored in sep-
arate memories because they must be output simulta-
neously. Storing them in the same memory would have
required multiplexing accesses to them which in turn
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would have violated minimum audio/video output-
rate constraints. The audio and video capture and
generate behaviors were implemented on ASICs be-
cause software implementations would not have met
input and output rate constraints. The audio and
video behaviors appear on different ASICs because
they would not both fit on a single ASIC containing
20,000 gates. An ASIC was used to store the av_cmd
variable because the command must be captured im-
mediately, and such immediate capture would have
been difficult to implement on the processor. The vari-
able could have been stored on either ASIC. The fonts
and screen_chars arrays are not accessed concurrently
so they were mapped to a single memory without loss
of performance. The behaviors in the processor do not
require very fast performance, so they can be imple-
mented in software without violating constraints, even
though the behaviors are specified as executing con-
currently but are implemented sequentially (actually
they are interleaved with one another).

The above block diagram represents just one of
many possible ITVP designs. For example, the two
ASIC components can be replaced by a single, larger
ASIC. Alternatively, we can use an ASIC technology
with different cost and performance characteristics.
We can even use a microcontroller rather than a pro-
cessor to lower costs. For each possible set of coni-
ponents, there are numerous alternative mappings of
behaviors and variables to those components.

To generate a specification for each component,
the processor behaviors must be refined into a single
sequential behavior, and interfaces must be synthe-
sized between each behavior and variable which re-
quire data transfer between components. The exam-
ple demonstrates the need and usefulness of the allo-
cation, partitioning, and refinement tasks as defined
in our methodology.

4 The SpecSyn environment

A set of tools to support our methodology is being
implemented as the SpecSyn system-design environ-
ment. It consists of partitioners [17] which support
several algorithms including clustering, group migra-
tion, and simulated annealing; estimators [13, 14] for
the quality metrics of execution-time in hardware or
software, hardware area, software instruction and data
memory size, and pins; and prototype tools to synthe-
size arbiters and interfaces [18]. The partitioners, es-
timators, and interface/arbiter tools are implemented
in C with 16000, 19000, and 8000 lines of code, re-
spectively. Routines for internal representation of the
specification require 30,000 lines of code. SpecSyn has
been released to over 10 companies and a new version
1s due for distribution in the first quarter of 1994.
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5 Conclusion

We have applied the methodology with the SpecSyn
environment on several examples, including a medi-
cal instrument for measuring bladder volume, a fuzzy-
logic controller, a RISC signal processor, an interac-
tive TV system, a microwave-transmitter controller,
and an answering machine. Design quality is compa-
rable with manual designs and design-time is up to
an order of magnitude less. Numerous manual alloca-
tions and partitionings and hundreds of automatically
generated ones can be evaluated in just minutes.

There are several advantages to using a system-level
methodology that refines an executable specification
through the system-design tasks of allocation, parti-
tioning, and refinement. First, early functional ver-
ification through simulation is possible, which min-
imizes the occurrence of time-consuming functional
changes later in the design process. Second, the result-
ing system-component executable specifications are
precise so they enable concurrent design and mini-
mize integration problems. Third, the specification
is machine-readable so automation tools can be used
to reduce overall design time and estimators used to
rapidly explore many more possible designs. Fourth,
the well-defined system tasks combined with the exe-
cutable specification lend themselves to excellent doc-
umentation of system-design decisions and intended
functionality, which is especially important for re-
design.

We envision a conceptualization environment that
allows designers to quickly explore and evaluate po-
tential designs. This requires work on three parts
of such an environment: (1) a component base with
VHDL models for different technologies, (2) fast es-
timators of quality metrics for different architectural
styles and technologies (e.g. custom layout, gate-
arrays, FPGA’s, and standard components), and (3)
an appropriate human interface for display of quality
metrics and different user views. The SpecSyn envi-
ronment is a first step in this direction.
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