
Two-Level Microprocessor-Accelerator Partitioning 

Abstract
The integration of microprocessors and field-programmable gate 

array (FPGA) fabric on a single chip increases both the utility 

and necessity of tools that automatically move software functions 

from the microprocessor to accelerators on the FPGA to improve 

performance or energy. Such hardware/software partitioning for 

modern FPGAs involves the problem of partitioning functions 

among two levels of accelerator groups – tightly-coupled 

accelerators that have fast single-clock-cycle memory access to 

the microprocessor’s memory, and loosely-coupled accelerators 

that access memory through a bridge to avoid slowing the main 

clock period with their longer critical paths. We introduce this 

new two-level accelerator-partitioning problem, and we describe 

a novel optimal dynamic programming algorithm to solve the 

problem. By making use of the size constraint imposed by FPGAs, 

the algorithm has what is effectively quadratic runtime 

complexity, running in just a few seconds for examples with up to 

25 accelerators, obtaining an average performance improvement 

of 35% compared to a traditional single-level bus architecture.

1. Introduction 
Platforms incorporating both a microprocessor and FPGA (Field-

Programmable Gate Array) fabric on a single chip are becoming 

an increasingly popular software implementation platform in 

embedded computing systems. Some such platforms include hard-

core processors, which are physically designed onto the chip 

alongside the FPGA fabric. Other platforms utilize soft-core 

processors, which are synthesized onto the FPGA fabric itself. 

Incorporating both a microprocessor (hard or soft core) and FPGA 

fabric on a single chip provides several advantages over multi-

chip solutions, including reduced part counts, faster 

communication between the microprocessor and the logic mapped 

to the FPGA, and potentially reduced system costs.  

The close proximity of FPGA fabric to a microprocessor 

encourages movement of a microprocessor program’s critical 

computations from microprocessor execution to custom processor 

circuit execution on FPGA fabric, to obtain substantial speedups 

ranging from 2x to 100x, as well as energy savings [1][5] 

[10][18]. Such hardware/software partitioning takes two forms, 

one multi-processing oriented, the other sequential processing 

oriented. The multi-processing oriented form, sometimes referred 

to as system synthesis, maps a task graph to a set of concurrently-

executing communicating microprocessors and custom processors 

[4][11]. The sequential processing oriented form creates custom 

circuits to execute commonly-executed functions (or sequences of 

instructions) found in a single sequential program of one 

microprocessor [8][10][15][18]. Several commercial tools 

supporting the sequential processing form of partitioning have 

recently appeared [3][16]. ASIP (application-specific instruction- 

set processing) approaches[21] may also be viewed as a 

sequential form of partitioning.  

We focus on the sequential form of partitioning. In that form, 

the custom circuits may be viewed as accelerators, standard 

forms of which include floating point accelerators and graphics 

accelerators. In stark contrast to the multi-processing form of 

partitioning in which processors execute concurrently and contend 

for resources, the accelerators in the sequential processing form 

typically execute as microprocessor slaves, thus greatly 

simplifying communication and synchronization issues.  

Previous partitioning work has assumed a single clock 

frequency for all of a microprocessor’s accelerators, or ignores 

clock frequencies entirely. However, modern FPGA technologies 

support the use of dozens of different clock frequencies on a 

single device. Thus, a new aspect of the partitioning problem 

consists of determining which accelerators should be tightly-

coupled to the microprocessor, and which should be loosely-

coupled. Tightly-coupled accelerators have direct access to the 

microprocessor memory or cache, and thus should operate at a 

single clock frequency, which will necessarily be the lowest 

frequency of any of those accelerators. Loosely-coupled

accelerators instead access the memory through a bridge, and 

thus may have individually optimized clock frequencies. For 

example, a Xilinx Microblaze soft-core processor utilizes a dual-

port block RAM for memory (or cache), as shown in Figure 1. 

Tightly-coupled accelerators and a bridge access the second port 

of that RAM using a single frequency. Mapping a given function 

to the tightly-coupled group provides single-cycle access but at 

the expense of running at a possibly slower frequency, versus 

mapping to the loosely-coupled group to run at the fastest 

possible individual frequency, but requiring multiple cycles 

through the bridge for memory accesses. Thus, a new partitioning 

problem exists that seeks to determine the best mapping of 

functions among tightly-coupled and loosely-coupled groups to 

achieve best overall performance – a problem we refer to as the 

Figure 1: Target two-level coupled architecture, derived from 

Xilinx’s Microblaze base architecture 
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two-level accelerator partitioning problem.

Although modern FPGA architectures motivated our work on 

the problem, as multiple clock domains are becoming common in 

ASIC technology also [1], the problem may therefore also exist 

for ASIC microprocessor/accelerator architectures supporting 

multiple clock domains.  

 Figure 3 illustrates the benefits of considering two-levels of 

accelerators under the above clock frequency constraints, for an 

application with 10 accelerators, with the 1024 possible 

partitionings along the x-axis, and the application’s runtime on 

the y-axis.  The figure shows that making all accelerators either 

tightly-coupled or loosely-coupled results in significantly slower 

performance than the best two-level partition. Figure 2 further 

highlights that a two-level partitioning of an application with 

varying numbers of accelerators results in superior execution 

times over partitioning all accelerators tightly or all loosely. 

Previous hardware/software partitioning work does not 

consider two-levels of coupling and in particular does not 

consider the clock frequency interactions among tightly-coupled 

accelerators, instead assuming all accelerators have single-cycle 

access [9][15][17][18], assuming all accelerators have multiple 

cycle access [12][20], or simply associating an execution time 

with functions without considering details of clock frequency 

[4][10].  

We present two contributions in this paper. We define the 

two-level accelerator partitioning problem and show the 

performance benefits achievable by solving the problem. Also, we 

introduce a fast optimal algorithm that scales well for even large 

problem sizes. The key to the algorithm is to map the problem to 

a series of 0-1 knapsack problems, and then to solve each 

knapsack problem using a dynamic programming solution having 

a pseudo-polynomial runtime, resulting in polynomial (effectively 

quadratic) runtime. A fast optimal algorithm not only ensures the 

best results, but potentially enables repeated use of the algorithm 

as part of higher-level exploration approaches without 

accumulated decision errors due to sub-optimal partial solutions. 

To our knowledge, our algorithm is novel and might be applied to 

number of different problems not previously explored. Many 

modern systems implement a two-level bus structure very similar 

to the architecture in Figure 1, and thus our problem solution is 

applicable to many systems that require performance gains. 

2. Two-level Accelerator Partitioning Problem 

Definition
The two-level accelerator partitioning problem takes as input a set 

of functions to be implemented as accelerators, determined by a 

previous hardware/software partitioning decision (note that our 

problem and hence algorithm may actually be a sub-problem of a 

higher-level exploration technique, and thus hardware/software 

partitioning and two-level accelerator partitioning may be done 

iteratively). Each accelerator is annotated with four numbers, 

determined from the synthesized circuit generated for the 

function: the number of memory accesses, the total number of 

computation cycles, the synthesized area, and the maximum 

possible clock frequency. These numbers are straightforwardly 

obtained using simulation and synthesis [18][19]. The number of 

memory accesses and computation cycles may represent averages 

or worst-case numbers, depending on whether the designer seeks 

to optimize for overall average or worst-case performance.   

The number of extra cycles introduced by the bridge is also 

given. This memory access penalty is an architectural feature of 

the bridge, and not a per-application number, so the number is 

fixed for all applications. A loosely-coupled accelerator would 

incur this latency penalty each time it made an access to memory, 

since the accelerator is connected to the memory through the 

bridge.

All tightly-coupled accelerators, having single-cycle access to 

memory or cache, must run at a single clock frequency – this 

assumption matches several modern commercial FPGAs that 

incorporate microprocessors. Because all those accelerators must 

run at one clock frequency, they all must run at the frequency of 

the slowest tightly-coupled accelerator in the group. The tightly-

coupled accelerators’ frequency need not be the same as the 

microprocessor’s frequency. Loosely-coupled accelerators, in 

contrast, each run at their unique fastest clock frequency. Modern 

FPGAs support multiple clock frequencies on the same platform. 

For instance, the Xilinx Virtex II Pro supports eight unique clock 

frequencies, and the trend is towards more frequencies per device. 

Formally, the problem takes as input a set F of n functions {f0,

f1, … fn}, and each function requires accelerator implementation. 

Each function f has four attributes: fi.comp_cycles,

fi.mem_accesses, fi.clk_freq, and fi.area. The problem definition 

involves two initially empty sets, TC, which represents tightly-

coupled accelerators, and LC, which represents loosely-coupled 

Figure 2: The need for a two level coupling architecture. In all 

applications examined, two-level accelerator partitioning 

resulted in improvement, sometimes quite substantial.
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Figure 3: Complete two-level accelerator partition solution 

space for a 10-accelerator example, showing the benefit of 

finding the best two-level accelerator partition vs. making all 

processors tightly-coupled or all processors loosely-coupled.
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accelerators. Each function in F must be mapped to exactly one of 

the sets TC or LC.

The objective function is to minimize the total execution time 

of all the accelerators, computed as follows: 
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min_clock is the minimum clock frequency within the TC set. d is 

the memory delay from the bridge for the loosely coupled 

accelerators.  Figure 1 showed a sample architecture and 

mapping. The architecture is based on standard two-level 

architectures with both a local processor bus and peripheral bus, 

both of which have access to a shared memory (cache).  

A size constraint exists for the tightly-coupled accelerator 

group, due to FPGA congestion issues relating to providing 

multiple accelerators with single-cycle access to memory or 

cache. In the completely performance-driven problem where no 

such constraint exists, we simply utilize a constraint larger than 

all accelerators to match our formulation. No size constraint exists 

for the loosely-coupled accelerators, as we assume that the 

previous hardware/software partitioning ensured that the functions 

mapped to accelerators fit on available FPGA resources. 

However, in the case where a size constraint does exist for the 

loosely-coupled accelerators, a second FPGA could be added, 

which would also communicate through a bridge.

The above problem definition has the limitation of not 

considering the situation where the number of frequencies 

available to the loosely-coupled processors is less than the 

number of such processors. We plan to consider that situation, 

along with architectures having more than two levels of 

accelerators, in future work.     

3. NKDP Algorithm- N 0-1 Knapsacks and 

Dynamic Programming

3.1 Exhaustive and greedy solutions 
To solve the above problem, we first developed an exhaustive

search algorithm. Exhaustive search finds the optimal solution in 

a few seconds for problems involving up to about 15 accelerators. 

Larger problems require minutes or hours, and the algorithm does 

not complete in any reasonable time for problems larger than 20 

functions.

We also developed a greedy heuristic. The heuristic starts 

with all functions mapped to the loosely-coupled group. It orders 

the functions according to their contribution to total execution 

time. It then considers each function in that order, and moves a 

function to the tightly-coupled group if such a move improves the 

application runtime and if the function fits in the remaining 

available size of the tightly-coupled group. This heuristic is fast, 

but we found that the heuristic yielded solutions 15% worse on 

average compared to optimal. 

3.2 NKDP solution 
We sought to develop a solution that would yield closer-to-

optimal solutions in reasonable runtime. Upon investigating such 

a solution, we came upon an idea that would actually yield 

optimal solutions, yet in effectively polynomial time. (The 

partitioning problem is known to be NP-complete [14], so a truly 

polynomial-time solution is not possible.) 

The key idea to our solution approach is that the two-level 

accelerator partitioning problem with n functions can be 

decomposed into n 0-1 knapsack problems. In the classic 0-1 

knapsack problem, the goal is to choose a subset of the items 

whose total value is maximized while at the same time the sum of 

the weights does not violate the constraint on the overall capacity 

given the value and the weight of n items to be stored, and the 

capacity of the knapsack S. This problem is NP-complete, but can 

be solved optimally with a dynamic programming approach in 

pseudo-polynomial time.  

We refer to our solution as the n-knapsack dynamic 

programming, or NKDP, solution. The pseudo code is presented 

in Figure 4. The inputs to our algorithms are S: the total area 

constraint of the tightly coupled group, n: the number of 

accelerators, d: memory access penalty for the bridge, and A: an 

array of n accelerators. The output from the algorithm is the 

optimal set of accelerators to be tightly coupled.  

To the best of our knowledge, our solution approach to the 

two-level accelerator partitioning problem is novel. The idea 

behind our algorithm is that if we “would know” the slowest 

accelerator in the tightly-coupled set (let the accelerator be X), we 

can optimally map all the functions to the tightly and loosely 

coupled sets as follows: 

1) Map X to the tightly-coupled set, since based on our 

assumption, X is in the tightly-coupled set. 

2) Map all functions whose accelerators have a slower

frequency than X to the loosely-coupled set, because 

otherwise mapping that function to the tightly-coupled set 

would violate our assumption that X is the slowest 

accelerator in the tightly-coupled set. 

3) Let the set of functions whose accelerators have the same 

frequencies as or higher frequencies than X be the set 

S_FAST. For each function in S_FAST, calculate the 

reduction in the function’s execution time should that 

function be mapped to the tightly-coupled set as opposed to 

the loosely-coupled set. This calculation can be done because 

the function’s execution time as a tightly-coupled accelerator 

is known (because we know the function will run at the same 

Figure 4: NKDP algorithm 
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frequency as that of X), and because the function’s execution 

time as a loosely-coupled processor is known (because we 

know the function’s accelerator clock frequency and the 

memory access penalty). Note that the reduction in execution 

time can be negative, which means mapping the function to 

the tightly-coupled set will lengthen its execution time. If 

that happens, the function is mapped to the loosely-coupled 

set immediately, and is removed from S_FAST.  

4) Now the problem of mapping the functions in set S_FAST is 

reduced to the classic 0-1 knapsack problem, where S_FAST 

contains the set of items to be chosen, the weight of each 

item is just the size of the corresponding accelerator, the 

value of each item is the reduction of the function’s 

execution time that was calculated in the previous step, and 

the capacity of the knapsack is the area constraint of the 

overall tightly coupled group minus the area of X. We seek a 

subset of S_FAST that maximizes the overall reduction in 

the execution time while still satisfying the total area 

constraint of the tightly-coupled set.  

5) The 0-1 knapsack problem that is induced in the previous 

step can be solved optimally by dynamic programming, as 

we showed in line 4.2 in the pseudo code, which has a time 

complexity of O(Sn), where n is the number of items in set 

S_FAST and S is the capacity of the knapsack. The optimum 

solution to the above 0-1 knapsack problem corresponds to 

the sub-set of accelerators in S_FAST that should be mapped 

as tightly coupled. The rest of the accelerators should all be 

mapped as loosely coupled. 

The above steps will yield the optimum solution if X is 

known. Of course, we do not know X in advance, but that does 

not matter since we can try all the possible choices of X. For each 

function, we assume the function is X, and we run the above five 

steps to obtain a locally-optimal solution. Among all the locally-

optimal solutions thus obtained, the one that has the minimum 

overall execution time must be globally optimal. 

In our earlier algorithm pseudo-code, we first sort the 

functions in decreasing order of their frequencies (line 2 of the 

pseudo-code), such that the set S_FAST that corresponds to the 

current choice of X can be easily identified, which are just the 

functions that precede X in the list. 

3.3 NKDP complexity  
Since our algorithm decomposes the original problem into n 0-1 

knapsack problems, and solves each optimally via dynamic 

programming (which has a time complexity of O(Sn) as we 

mentioned earlier), the overall time complexity becomes O(Sn2).

In practical applications, the number of functions n will rarely be 

higher than fifty, while the size of the knapsack S will usually be 

on the order of thousands (of combinational logic blocks or 

lookup tables) for FPGA technology and typical numbers of 

functions mapped to accelerators. These figures allow us to claim 

that our algorithm is in practice computationally efficient, and at 

the same time the solution it computes is globally optimal.  

3.4 NKDP Quantization 
We observe that our dynamic programming formulation relies on 

the value of the area constraint input in order to achieve fast 

algorithm runtimes. We briefly mentioned in the last section that 

the area constraints of typical FPGAs are on the order of 

thousands, which could potentially make the dynamic 

programming algorithm run very slow. The steady increase in the 

amount of configurable logic on typical FPGAs exacerbates the 

situation. However, since we are mainly concerned with 

application runtime, and area constraints are usually a soft 

constraint, especially in the early design stage when such a 

decision is made, we can reduce the area constraint by dividing by 

a quantization factor, and still achieve near-optimal configuration, 

as long as we quantize the areas of the accelerators by the same 

factor.  Quantizing the area inputs by a factor of ten would result 

in filling in a dynamic programming table one-tenth its original 

size; quantizing by 100 would yield a table one-hundredth its 

original size. Such optimizations would result approximately in 

algorithm speedups of 10x and 100x. The proposed quantization 

technique makes NKDP suitable for an even larger design space 

exploration and/or a dynamically tuned environment.  

4. Experiments and Results 
This section presents results of applying the NKDP algorithm to a 

standard benchmark, a commercial quality H.264 video decoder, 

as well as to several synthetic examples.   

To evaluate both the quality and performance of our 

algorithm, we implemented NKDP, greedy, and exhaustive 

solutions. We wrote our implementation with several hundred 

lines of C. We ran our experiments on an Intel Celeron 2.5 GHz 

machine running with 512 MB RAM.

We first examine NKDP using various levels of quantization, 

particularly to determine the returns we achieve for larger 

quantization factors, and whether or not those have any effect on 

the solution found. Figure 5 shows our findings from applying 

quantization factors to NKDP of ten and hundred to three 

applications.  We observe from Figure 5(a) that moving from no 

quantization to a factor of ten results in a much larger difference 

in algorithm execution time than moving from ten to hundred. 

This suggests there are diminishing returns in applying 

quantization to NKDP, at the risk of altering the area constraint 

too much. We recall that for every order of magnitude of area 

Figure 5: Quantizing area on three applications (labeled 1, 2, and 3) to improve NKDP algorithm runtime: (a) Algorithm runtime for 

quantization factors of 10 and 100, and (b) resulting application runtimes found by the algorithm. Quantization factors of 10 and 100 

improve runtimes with little impact on quality of results.
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quantized, we lose that much accuracy in how much area was 

actually used for the tightly couple accelerator group. Figure 5(b) 

shows both quantization factors still achieve the same application 

execution time, but this may not be the case if we start to quantize 

too much. Through similar experiments with other benchmarks, 

we felt a quantization factor of ten achieves both an optimal 

partition as well as a fast algorithm runtime, suitable for even the 

largest of partitioning problems. 

  We next begin examining a benchmark derived from the 

Pegwit decoder benchmark of MediaBench [13]. Figure 6 shows, 

for the most critical four functions of the benchmark, the compute 

cycles, number of memory accesses, clock frequency, and area for 

the accelerators that would be synthesized for each function.  We 

obtained these figures from both a Xilinx synthesis tool and hand 

analysis of the Pegwit C code.  

Figure 8 shows the benchmark execution time achieved by 

partitioning using the NKDP solution, compared with a software-

only solution. The greedy solution is also shown. While the 

greedy solution was also able to find the optimal for this 

benchmark, it fails to do so in later examples.  Both NKDP and 

the greedy heuristic partitioned functions one and two as tightly 

coupled accelerators, and functions three and four as loosely 

coupled. This partitioning makes sense, as partitioning either 

function three or four would result in a large clock penalty on the 

tightly coupled set. Also, since functions one and two spend a 

significant portion of their time accessing the memory, 

partitioning either function loosely would have resulted in a large 

latency penalty through the bridge to the memory (cache). Figure 

7 further expands our findings on Pegwit to show that the two-

level partitioning of the accelerators results in a superior 

execution time over mapping all functions tightly or all loosely. 

Figure 9 shows the partitioning results obtained by the NKDP 

algorithm under different area constraints imposed on the tightly-

coupled accelerator set. The results indicate that the algorithm 

readily handles a variety of area constraints. The optimal 

partitioning of the four accelerators for Pegwit with no size 

constraint would be to tightly couple functions one and two, and 

loosely couple functions three and four. However, when we 

introduce an area of constraint of one thousand LUTs for the 

tightly coupled accelerators, we observe that the optimal solution 

is to tightly couple functions one and four, and loosely couple the 

other two. If we restrict the Pegwit decoder to only 750 LUTs, 

then tightly coupling only function one yields the best mapping. It 

would have been possible to tightly couple functions three and 

four instead, but because coupling function three tightly would 

have resulted in a clock speed of 40 MHz, the overall application 

runtime would have taken a significant hit. Finally, if we restrict 

the decoder to 600 LUTs, tightly coupling only function two 

becomes the only real choice since it is the only significant 

accelerator to be able to fit within the constraint.  

We also tested our two-level partitioning algorithm on a 

proprietary H.264 video decoder, part of the MPEG-4 standard. 

H.264 consists of a number of functions suitable for hardware 

implementation. In our experiments, we chose to implement the 

eight most critical functions through results we obtained from 

profiling and synthesis. The functions are primarily targeted at the 

frame conversion stage of the decoding process, and supplied 

ample opportunity for hardware acceleration. Through synthesis 

and hand analysis of the C code, we were able to extract estimates 

of the number of computation cycles, memory accesses, clock 

frequency, and area associated with each function. The results of 

running our greedy heuristic and NKDP algorithm are also shown 

in Figure 7.  An exhaustive search is shown for comparison 

purposes to show that NKDP was able to find the optimal 

configuration. We also show that a two-level partitioning results 

in almost half the execution time than mapping all functions 

tightly or all loosely. For the eight functions we looked at, NKDP 

partitioned seven of the functions tightly and one loosely. Closer 

inspection of the functions’ respective clock frequencies revealed 

that the seven functions coupled tightly all had very similar clock 

frequencies, while the loosely coupled accelerator had a much 

lower frequency. Such a mapping is intuitive since the seven 

coupled tightly together would not incur a large penalty because 

their frequencies were similar, while the eighth function would 

have caused the group to suffer a large clock frequency penalty.  

We present results for seven different synthetic benchmarks 

of increasing numbers of functions, shown in Figure 10. Figure 

Figure 6: Pegwit partitioned functions for accelerator generation. Figure 7: Comparing NKDP to all tightly coupled, all loosely 

coupled, optimal (exhaustive), and greedy heuristic.
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10(a) shows that NKDP and a quantized version achieves the 

optimal results, verified by exhaustive search, as expected 

because NKDP is designed to find the optimal. That figure also 

shows that the greedy heuristic defined earlier sometimes does not 

find the optimal, and in a few cases is significantly inferior to the 

optimal. Figure 10(b) shows that the NKDP runtime scales quite 

reasonably with problem size, unlike exhaustive search, whose 

exponential growth becomes evident at around 20 functions.  

Furthermore, NKDP_quantized runs in under 1 second even for 

25 functions, with no change in solution quality.  

5. Conclusions and Future Work 
We introduced the two-level accelerator partitioning problem, and 

presented a novel and efficient solution, NKDP, based on a 

decomposition of the problem into a series of 0-1 knapsack 

problems. NKDP has pseudo-polynomial runtime, and executes in 

just seconds for practical-sized examples. The solution produced 

optimal two-level partitions outperforming a single level 

accelerator architecture by an average of 35%, and outperforming 

a greedy two-level partitioning heuristic by an average of 15%. 

We also showed that quantizing accelerator sizes could yield 

more than 20x algorithm runtime improvements with no 

noticeable degradation of partition quality, yielding algorithm 

runtimes under 1 second for even large examples.  We plan to 

extend our techniques to consider more complex exploration 

spaces, such as considering a finite number of clock frequencies, 

multiple frequencies for tightly-coupled processors, 

multidimensional resource constraints that consider hard-core 

resources like multipliers and block RAMs, handling memory 

accesses that don’t all take the same amount of time, and 

architecture with more than two levels of accelerators.  
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Figure 10:  Results for applications of increasing numbers of functions, comparing exhaustive, greedy,  NKDP, and NKDP Quantized solutions: (a) 

application runtimes, (b) algorithm runtimes (greedy and NKDP Quantized were less than one second and are thus not shown). 
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