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Abstract 
The advent of sensor networks presents untapped opportunities 
for synthesis. We examine the problem of synthesis of behavioral 
specifications into networks of programmable sensor blocks. The 
particular behavioral specification we consider is an intuitive 
user-created network diagram of sensor blocks, each block 
having a pre-defined combinational or sequential behavior. We 
synthesize this specification to a new network that utilizes a 
minimum number of programmable blocks in place of the pre-
defined blocks, thus reducing network size and hence network cost 
and power. We focus on the main task of this synthesis problem, 
namely partitioning pre-defined blocks onto a minimum number 
of programmable blocks, introducing the efficient but effective 
PareDown decomposition algorithm for the task. We describe the 
synthesis and simulation tools we developed. We provide results 
showing excellent network size reductions through such synthesis, 
and significant speedups of our algorithm over exhaustive search 
while obtaining near-optimal results for 15 real network designs 
as well as nearly 10,000 randomly generated designs.  

1. Introduction 
The availability of low cost, low power electronics has made 
ubiquitous monitoring and control realizable through the advent 
of sensor networks. Monitoring and controlling various aspects of 
a home, office, store, school, factory, or public spaces can result 
in improved personal comfort and safety, as well as public 
security. However, today’s monitor/control systems are largely 
specialized, factory-programmed and configured to perform a 
specific application, such as home automation or intrusion 
detection. Though the applications of monitor/control systems are 
voluminous, high design cost has restricted all but the most 
commercially viable products from entering the market, resulting 
in an unfulfilled void of useful applications. For example, a 
homeowner may want notification of a garage door open at night 
or of a sleepwalking child; an office worker may want to know 
whether mail exists for him in the mailroom, a copy machine is 
free, or if conference rooms are in use. These applications are 
useful but lack the volume to justify producing dedicated products 
to address them, or results in high-priced dedicated products such 
that contracting a customized system would be cost prohibitive. A 
generalized set of building blocks that could be combined to 
perform a broad range of functions while maintaining ease of use 
would therefore serve a great need for non-programmer, non-
engineer users to construct a variety of monitor/control systems. 

Technological advances in miniaturization, wireless 
communication, and power efficiency have recently made feasible 
the development of low-cost, intelligent, and configurable 
networks of devices, known generally as sensor networks 
[2][11][17][19]. Returning to a previous example, instead of a 
dedicated garage open at night product, a user can connect a set of 
inexpensive reusable electronic blocks to build a system that 

accomplishes the same task. A garage open at night system would 
require a contact switch block, a light sensor block, a logic block, 
and an output block (e.g. buzzer or LED (light-emitting diode)) 
placed perhaps in a bedroom. A sleepwalk detector would utilize 
a motion sensor block, light sensor block, logic block and output 
block. A copy machine use detector might use just a motion 
sensor and output block. A conference room in-use detector might 
use motion and sound sensor blocks, logic blocks, and output 
blocks. Notice that the same blocks are usable in a variety of 
applications, enabling mass production and hence commercially 
viable low-cost blocks. 

While many types of sensor networks utilize general-purpose 
programmable blocks [11][19], others have proposed using blocks 
with pre-defined functions and communication protocol 
[6][13][15][16][20]. Such pre-defined blocks enable unskilled 
people (in this case, people with no programming or hardware 
experience) to still build basic but useful systems, and may even 
reduce design time for skilled designers. However, while pre-
defined blocks have ease of use advantages, they may result in 
more blocks in a network, resulting in larger network size, higher 
cost, and increased power consumption.  

Therefore, we have developed capture, simulation and 
synthesis tools that enable a user to specify a network using pre-
defined blocks (representing a behavioral description) and to 
simulate that network to verify correct behavior, and that 
automatically synthesize an optimized network using 
programmable blocks with automatically generated software.  

We found a challenging part of the development of these tools 
to be the design of the algorithm for partitioning the behavioral 
description onto a minimum set of programmable blocks. 
Although we originally assumed the partitioning problem would 
be equivalent to standard partitioning problems or to existing 
technology mapping problems, we found that particular 
differences made impossible the use of existing algorithms – 
hence, we developed a new decomposition algorithm to solve the 
problem.  

In the following section, we discuss background work, and 
provide justification for our work in this area. In Section 3, we 
discuss the specification, the simulator, and the code generation 
aspect of the system synthesis. Section 4 focuses on the 
partitioning aspect of the synthesis process and introduces our 
algorithm for partitioning. Section 5 provides the experimental 
results on real designs, as well as on large randomly generated 
designs. We conclude in Section 6. 

2. Background 
Much of the previous work in sensor networks relates to 
development of general-purpose sensor nodes [11][19]. Synthesis 
related works focus largely on analysis or exploration 
[1][10][18][21] of communication issues for networks having 
large numbers (thousands) of irregularly structured networked 
wireless nodes.  



Our focus is instead on smaller-scale networks whose nodes 
have particular functions and whose connectivity explicitly 
carries out a particular task [6][13][15][16][20], such as a garage 
open at night detector. In particular, we focus on eBlocks [6][7]. 
eBlocks feature four classes of “blocks,” categorized by function, 
communicating with a standard protocol. Sensor blocks detect 
environmental stimuli, such as motion or the press of a button. 
Output blocks interact with the environment, such as emitting a 
beep or turning on an appliance via an electric relay. Though 
blocks normally connect directly to each other using wires, 
communication blocks allow for wireless communication or other 
methods (such as X10 [22]). Compute blocks perform a (typically 
pre-defined) function on inputs and generate output. A special 
type of compute block is a programmable block, which features a 
finite number of inputs and outputs and which can be 
programmed to implement custom functionality (including 
functionality of multiple pre-defined blocks). Pre-defined 
compute functions include combinational functions, such as a two 
or three input truth table, AND, OR, and NOT, and basic 
sequential functions, like a toggle, trip, pulse generate, and delay. 
Figure 1 shows a garage open at night eBlock system built from 
physical eBlocks.  

We developed a simulator for all four classes of eBlocks and 
their behavioral interaction. The synthesis procedure, including 
that of design partitioning, can then reduce the total number of 
eBlocks by combining the predefined compute blocks into a 
smaller number of programmable compute blocks. 

Design partitioning is a critical aspect for successful system 
level synthesis. During partitioning, we seek to replace clusters of 
eBlocks with programmable eBlocks and minimize the total 
number of eBlocks. This partitioning problem cannot be solved 
using approaches developed for the classic bin-packing problem 
or the knapsack problem, as we must mind at least two constraints 
when “packing” a programmable block: the number of inputs 
used and the number of outputs used. Solutions to the two-
dimensional bin-packing problem, commonly manifested in the 
cutting stock problem [3], are also not applicable to our problem. 
The input and output constraints of the programmable blocks are 
mutually independent, the number of inputs used in a 
programmable block has no effect on the number of outputs 
available, and vice versa, and thus our problem cannot be restated 
as a cutting stock problem. 

 Our partitioning problem is similar to the problem of 
synthesizing behavioral specifications to FPGAs (Field 
Programmable Gate Arrays). Specifically, our problem is closest 
to that of DAG (Directed Acyclic Graph) covering. DAG 
covering, as it relates to our problem, has been shown to be NP-
hard [12]. However, algorithms developed for finding solutions to 
DAG covering, particularly algorithms that map Boolean 
networks to LUTs (look-up tables), are not applicable to our 

problem for a number of reasons. First, we do not require that all 
nodes in our network graph be covered (i.e. not all blocks need to 
be replaced by a programmable block). In fact, circumstances in 
which a partition contains a single node are undesirable, as there 
is no net reduction in the size of the design with a one-to-one 
mapping of a pre-defined block to a programmable block. This 
relaxation of the problem increases the search space significantly 
as we must now consider partitions in which one or more nodes 
are not covered. Second, we define our optimal solution as a 
cover that covers the most number of blocks with the fewest 
number of partitions, analogous to the goal of minimum-area 
DAG covering. However, many DAG covering algorithms focus 
on finding minimum-delay solutions or approximations 
[4][5][14]. Third, many existing DAG covering algorithms permit 
replication of nodes in each LUT/programmable block [9], but 
duplicating code in the programmable blocks runs contrary to the 
need to minimize power usage in sensor networks.  

Thus, we contend that a partitioning algorithm targeted to the 
problem of partitioning pre-defined compute blocks to a minimum 
number of programmable compute blocks with limited 
input/output solves a new and useful problem. 
3. Design Framework 
We have written a number of tools that enable the specification, 
simulation, partitioning, and code generation of eBlock systems. 
Figure 2 illustrates our tool chain. 
3.1 Design Entry/Simulation 
We developed a Java-based graphical user interface (GUI) and 
simulator for the design entry and simulation of an eBlock 
system, illustrated in Figure 3. A user can drag a block from a 
library of blocks, situated on the right edge of the simulator, to the 
workspace and connect the blocks together by drawing lines 
between circular representations of their input/outputs. The 
simulator incorporates eBlocks that sense or interact with their 
environment with an accompanying visual representation of their 
environmental stimuli/interaction (e.g. clicking on a light sensor 
will toggle a light bulb icon on and off). 

The simulator contains behavioral representations of all 
available eBlocks. It also understands the underlying 
communication protocol and all the restrictions on the model of 
computation. The simulation is behaviorally correct and obeys 
general high-level timing, but no detailed timing characteristics 
can be inferred. Given that all communication between blocks is 
done serially using packets and hence globally asynchronous, and 
because the blocks deal with human-scale events rather than fast 
timing, such lack of timing detail is generally not a problem.  
3.2 eBlock Partitioning 
After completing a design in the simulator, the user can instruct 
the framework to minimize the number of computation eBlocks 

Figure 1: Garage-open-at-night system built using eBlock 
prototypes. 

 

Figure 2: Design framework. 
 

Design Entry/ 
Simulation 

Interpreter 

GUI 

Synthesis 

Partitioning Code Generation
contact switch 

sensor 
light sensor

2-input logic LED 



needed by implementing them with a minimum number of 
programmable eBlocks. The simulator passes the design into our 
partitioning tool, which produces a list of partitions based on our 
partitioning algorithm. The partitioning tool subsequently passes 
each partition to the code generation tool, which translates the 
interaction between the partition’s inputs and component blocks 
into sequential code that can run on a programmable block.  

Using the eBlock Design Framework, we can utilize different 
partitioning algorithms for different designs. Detailed discussion 
of the partitioning problem and the algorithms used will be 
presented in Section 4.  
3.3 Code Generation 
Each partition generated by the partitioning tool utilizes the code 
generation tool. The tool assigns each block within a partition a 
level, defined as the maximum distance between the block and 
any sensor block (analogous to the primary input-based level 
definition in circuit partitioning). The code generation tool assigns 
levels by tracing the paths in the network, beginning with sensor 
blocks, and marking each block visited with an appropriate level. 
Blocks visited multiple times retain the greatest level value 
assigned to them. eBlock networks do not contain loops, so the 
levels for eBlocks in a network are well-defined. 

The simulator maintains the behavior of each block, defined 
in a Java-like language that is automatically transformed to a 
syntax tree. The code generator attaches the syntax trees of every 
block in the partition so that the tool can evaluate trees in 
succession. Syntax trees are ordered in non-decreasing order and 
determined by the level of each block. The ordering of the syntax 
trees ensures that the tool does not evaluate a block’s tree before 
any of its input blocks have produced output. As the tool merges 
each block’s tree into the new programmable block’s tree, the tool 
changes tree nodes that access a block’s input or output into a 
variable access, where appropriate. Communication between two 
blocks in a partition will occur internally in a programmable 
block via variables. In the event that two or more blocks share 
variable names in their internal behavior code, the conflict is 
resolved through variable renaming. 

The newly merged syntax tree specifies the behavior of the 
programmable block that will replace the partition. The 
simulator’s interpreter evaluates the tree in the same manner as a 
non-programmable block. A user can select a programmable 
block and instruct the simulator to translate the syntax tree into C 
code for downloading and use in a physical block. 

Since we have implemented physical programmable eBlock 
system prototypes, we were able to compile and download the 
generated code and use the output of the synthesis tool chain in 

real-world systems. The programmable eBlock prototype utilizes 
a Microchip PIC16F628 microcontroller (www.microchip.com) 
with 2 Kbytes of program memory and is available for under $2. 
Given that amount of program memory, the small size of each 
program describing a pre-defined block’s function, and the scale 
of real eBlock systems, we make the practical assumption that a 
programmable block’s program size constraint will not be 
violated by any partition. Making such violation even less likely 
is the fact that the block-partitioning problem is actually 
input/output limited, not size limited. However, even if a 
programmable block’s memory size were exceeded, we could 
easily utilize a PIC with a larger memory, or extend our algorithm 
with size constraints. 

4. Partitioning 
As mentioned in Section 2, the general aim of the partitioning 
phase is to minimize the total number of blocks by replacing the 
greatest number of pre-defined compute blocks with fewer 
programmable blocks. Pre-defined compute blocks have identical 
internal components and thus have equal cost. A programmable 
compute block has slightly higher cost due to the programmability 
hardware, but less cost than two pre-defined compute blocks.  

A more precise statement of the problem is as follows. We 
represent an eBlock system as a directed acyclic graph G = (V, E) 
where V is the set of nodes (blocks) in the graph and E is the set 
of edges (connections) between the nodes. We define sensor 
eBlocks as primary inputs, and output eBlocks as primary outputs. 
The objective of the partitioning phase is to find a set of 
subgraphs of non-primary input and non-primary output nodes 
(hereafter referred to as inner nodes) of G such that 1) each 
subgraph has at most i inputs and o outputs, where i and o 
correspond to the number of inputs and outputs available in a 
programmable block, 2) each subgraph must be replaceable by a 
programmable block that can provide equivalent functionality, 
and 3) the number of inner blocks after replacement is minimized. 
We assume a subgraph containing only a single node to be 
invalid, as it is undesirable to replace a pre-defined compute block 
with a programmable compute block due to slightly higher cost of 
the latter.  
4.1 Exhaustive Search 
Initially, we implemented an exhaustive search algorithm to see 
whether an exhaustive approach was reasonable with respect to 
computation time, and to provide optimum results for small 
problem instances. The search space consists of every 
combination of n blocks into n programmable blocks (a 
combination need not use every block). We utilized a simple 
pruning mechanism in which all “empty” programmable blocks in 
a combination are indistinguishable, and portions of the search 
tree removed accordingly. For example, if at a given point in the 
search tree we are able to assign a block to one of three empty 
programmable blocks, we only consider one such branch. 

The run time of partitioning by exhaustive search naturally 
increased exponentially. With designs featuring fourteen inner 
blocks, the search did not conclude after four hours. Such run 
time of exhaustive search is not acceptable for designs with as 
few as eleven inner blocks, where a user must wait for about one 
minute. An exhaustive search is therefore overly prohibitive as 
eBlocks designs with eleven or more inner blocks are common, 
and thus a different approach is needed. 

Figure 3: eBlock graphical capture and simulator tool. 
 



4.2 Decomposition Method – The “PareDown” 
Heuristic 
We first implemented a heuristic that clusters nodes into 
subgraphs through aggregation. From a list of inner nodes 
connected to a primary input, the aggregation method repeatedly 
selects a node that fits within a programmable block as a partition. 
Though the aggregation method concludes quickly for cases in 
which the exhaustive search is impractical, the aggregation 
method is not capable of taking advantage of convergence and 
thus we found it often produced non-optimal results.  

We sought to avoid the pitfalls of the aggregation method’s 
lack of look-ahead capabilities, by utilizing a decomposition 
method heuristic we call PareDown, to detect convergence but not 
be constrained by a particular “depth” at which our heuristic looks 
ahead. Thus, the PareDown approach, shown in Figure 4, begins 
by selecting all internal blocks of a design as a candidate 
partition, and then removes blocks from the partition until input 
and output constraints are met, hence the moniker “decomposition 
method.” If the algorithm finds a valid partition, the algorithm 
repeats on the remaining blocks and continues until no new 
partitions remain. 

The choice of which block to remove from an invalid 
candidate partition is determined by computing a rank for all 
border blocks in the candidate partition and removing the block 
with the lowest rank. We define a border block as a block in 
which every output or every input connects to a block outside of 
the candidate partition. The block’s rank is defined as the net 
increase or decrease in the combined indegree and outdegree of a 
candidate partition if that block is removed from the candidate 
partition. For blocks that have the same rank, removal priority is 
given to the following criteria, in order: 1) The block with the 
greatest indegree 2) The block with the greatest outdegree 3) The 
block with the highest level. 

The decomposition method benefits from fast run times and 
produces results well beyond the practical range of the exhaustive 
search. A worst-case design would feature inner blocks that can 

fit into a partition by themselves but cannot form a valid partition 
when combined with any other block or blocks. A design of this 
form containing n inner blocks would therefore require n 
iterations through the algorithm’s main loop. In the first iteration, 
the PareDown heuristic would check for a valid partition n times 
before eventually isolating a single block as a partition (an invalid 
result). Subsequent iterations check for valid partitions n-1 times 
and so forth. Accordingly, the total iterations through the 
decomposition method is n*(n+1)/2, or the sum of 1 to n. This 
total yields a time complexity of O(n2). 
4.2.1 Example 
As an example, we will demonstrate the PareDown heuristic 
partitioning of an example eBlock design, the Podium Timer 3 
design from [8]. The podium timer utilizes a set of eBlocks to 
build a system that can notify a person that his/her talk time is 
nearing the end, and that time has ended. The design consists of 
some buttons, output LEDs, and several internal pre-defined 
compute nodes, including combinational and sequential nodes.  

We begin with the DAG representation of the design, shown 
in Figure 5(a). For ease of reference, we number each block. 
Figure 5(a) shows the initial selection by the PareDown heuristic 
of every interior block as a candidate partition, indicated by the 
shaded area, and the rank values for the border nodes 2, 8, and 9. 
We assume that the programmable block available features two 
inputs and two outputs. 

Since the shaded partition in Figure 5(a) requires three 
outputs, the partition is invalid. The PareDown heuristic removes 
node 9, the node with the least rank value, as shown in Figure 
5(b). The partition remains invalid and nodes 2 and 8 are 
considered for removal, being the border nodes (node 6 and 7 are 
not border nodes since one or more of their outputs connects to a 
block inside the candidate partition). The two border nodes have 
the same rank but node 8 has a greater indegree and is removed, 
as shown in Figure 5(c). 

With a requirement of four outputs, the partition shown in 
Figure 5(c) is invalid. Subsequent steps remove nodes 7 and 6 
from the partition, and the partition becomes valid, as indicated 
by the solid outline in Figure 5(d). 

The algorithm is repeated on the remaining node(s): 6, 7, 8, 
and 9. The PareDown heuristic removes node 7 from the new 
candidate partition, and the new partition becomes valid. Again, 
the heuristic runs on the un-partitioned node(s), which consists 
only of node 7. Though the partition fits in a programmable block, 

Figure 4: Decomposition method pseudocode. 
 

Figure 5: Decomposition method example. 
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the partition is invalid for containing only a single block. The 
heuristic halts, returning the result visualized in Figure 5(e).  

Thus, the heuristic reduces the internal compute nodes from 
the initial user-defined 8 nodes to only 3 programmable nodes.  

5. Experiments 
5.1 Setup 
We executed the decomposition and exhaustive search algorithms 
on a variety of designs of varying depths (maximum block level) 
and size on a 2GHz AMD Athlon XP PC. The designs included 
15 actual eBlock systems appearing at [8], designed 
independently of our work for purposes other than synthesis. 
Some of those systems were intentionally designed to be small by 
avoiding multiple identical sensors whenever possible to 
maximize user-comprehension of the systems, whereas eBlock 
systems can easily involve several dozen nodes. Thus, we also 
developed a randomized eBlock system generator able to generate 
eBlock networks of varying sizes. We implemented both 
exploration algorithms, exhaustive and PareDown, in Java within 
the framework provided by the eBlocks simulator, with the two 
implementations each representing less than 100 lines of code, 
including the code to extract experimental data. We assumed the 
existence of a programmable block having two inputs and two 
outputs.  

Table 1 summarizes the data collected during the experiments 
for the library-based designs. The Inner Blocks (Original) column 
indicates the number of inner blocks corresponding to the design 
specified by the Design Name column. The Inner Blocks (Total) 
column indicates the number of inner blocks in a given design 
after partitioning by either the exhaustive search or PareDown 
heuristic algorithm. The Inner Blocks (Prog.) column specifies, of 
the number of inner blocks after partitioning listed in the Inner 
Blocks (Total) column, the number of programmable blocks in the 
partitioned design, which is essentially the number of partitions 
found. The Time column specifies the execution time for either of 
the algorithm utilized. The Block Overhead column indicates the 
number of additional inner blocks required after partitioning by 
the heuristic algorithm compared to optimal results of the 
exhaustive search algorithm. The % Overhead indicates the 
percent increase in the final design when the heuristic is utilized 
compared to the optimal results of the exhaustive search 
algorithm. 

In addition to the library of designs used in our experiments, 
we ran the exhaustive search and heuristic algorithms on a sample 
of randomly generated designs. Table 2 shows the corresponding 
results. The random designs’ inner block count varied between 
three and forty-five inner blocks as illustrated in the Inner Blocks 
(Original) column. The Number of Designs column specifies the 
number of designs considered for a given inner block counts.  
5.2 Runtime Performance 
The decomposition algorithm achieves significant speedup over 
the exhaustive search throughout the entire range of inner block 
values. Though exhaustive search maintains a reasonable runtime 
up to ten inner blocks, adding more inner blocks has a dire effect 
on the exhaustive search’s computation time. Inner block sizes of 
thirteen or more yield unacceptable wait times for a user.  

Beyond thirteen inner blocks, the decomposition method 
continues to process large designs in a reasonable amount of time 
and is therefore a good replacement for the exhaustive search. 
Though not displayed in Table 2, the decomposition method 
produced a result for a design with 465 inner nodes in 80 seconds. 
We note that it is highly unlikely that a real-world eBlocks design 
would feature 465 inner nodes. Thus, our method should be 
sufficiently fast for all practical eBlock designs.  
5.3 Optimality 
The decomposition method achieves excellent results that are 
optimal or within 15% of an optimal solution for every inner 
block size in which data was available from the exhaustive search. 
As indicated in Table 1 and Table 2, the solution generated by the 
decomposition method for the displayed range of inner block 
sizes is within one block of an optimal solution, on the average.  

6. Conclusions and Further Work 
We have demonstrated a working system for synthesizing 
behavioral models of eBlock networks into code and connectivity 
for physical eBlocks. We focused on the partitioning aspect of 
synthesis and introduced the PareDown heuristic. We have shown 
that PareDown is an effective method for rapidly finding optimal 
or near-optimal solutions to eBlock partitioning for both real-
world designs and generated ones. 

We plan to extend the PareDown heuristic to consider 
multiple types of programmable blocks (having different number 
of inputs and outputs) and varying compute block costs, and to 

Table 1: Results for exhaustive search and PareDown decomposition using design library. 
  Averages for Exhaustive Search Averages for “PareDown” Decomposition 

Inner Blocks 
(Original) Design Name Inner Blocks 

(Total) 
Inner Blocks 

(Prog.) Time Inner Blocks 
(Total) 

Inner Blocks 
(Prog.) Time Block 

Overhead % Overhead

2 Ignition Illuminator 1 1 <1ms 1 1 <1ms 0  0 % 
2 Night Lamp Controller 1 1 <1ms 1 1 <1ms 0 0 % 
2 Entry Gate Detector 1 1 <1ms 1 1 <1ms 0 0 % 
2 Carpool Alert 1 1 <1ms 1 1 <1ms 0 0 % 
3 Cafeteria Food Alert 1 1 <1ms 1 1 <1ms 0 0 % 
3 Podium Timer 2 1 1 <1ms 1 1 <1ms 0 0 % 
3 Any Window Open Alarm 3 0 <1ms 3 0 <1ms 0 0 % 
3 Two Button Light 3 1 <1ms 3 1 <1ms 0 0 % 
5 Doorbell Extender 1 5 0 <1ms 5 0 <1ms 0 0 % 
6 Doorbell Extender 2 6 0 9ms 6 0 <1ms 0 0 % 
8 Podium Timer 3 3 3 125ms 3 2 <1ms 0 0 % 

10 Noise At Night Detector 6 4 4.79 s 6 4 <1ms 0 0 % 
19 Two-Zone Security -- -- -- 10 3 <1ms -- -- 
19 Motion on Property Alert -- -- -- 19 0 <1ms -- -- 
23 Timed Passage -- -- -- 14 5 <1ms -- -- 

                                                                                                                -- = no data available 



extend our methods to map to an existing underlying network of 
sensor nodes. 
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Table 2: Results for exhaustive search and PareDown decomposition using randomly generated designs. 
  Averages for Exhaustive Search Averages for “PareDown” Decomposition 

Inner Blocks 
(Original) Number of Designs Inner Blocks 

(Total) 
Inner Blocks 

(Prog.) Time Inner Blocks 
(Total) 

Inner Blocks 
(Prog.) Time Block 

Overhead 
% Overhead

3 1531 1.83 0.81 <1ms 1.87 0.79 <1ms 0.04 2 % 
4 982 2.24 1.22 <1ms 2.33 1.10 <1ms 0.09  4 % 
5 542 2.51 1.52 1.33ms 2.62 1.32 <1ms 0.11 4 % 
6 432 3.08 1.74 6.56ms 3.36 1.49 <1ms 0.28 9 % 
7 447 3.77 2.00 25.52ms 4.09 1.73 <1ms 0.32 8 % 
8 350 4.11 2.32 122.97ms 4.56 1.93 <1ms 0.45 11 % 
9 340 4.67 2.60 719.90ms 5.24 2.17 <1ms 0.57 12 % 

10 199 5.04 2.93 4.53s 5.76 2.45 <1ms 0.69 14 % 
11 170 5.47 3.20 31.77s 6.29 2.59 <1ms 0.82 15 % 
12 31 4.58 3.23 3.67min 4.87 2.58 <1ms 0.29 6 % 
13 6 6.84 3.17 29.93min 7.83 2.83 <1ms 0.99 14 % 
14 1311 -- -- -- 8.11 3.05 <1ms -- --
15 1184 -- -- -- 8.67 3.32 <1ms -- --
20 928 -- -- -- 11.09 4.70 <1ms -- --
25 691 -- -- -- 13.93 5.97 1.86ms -- --
35 354 -- -- -- 19.63 8.26 4.82ms -- --
45 165 -- -- -- 25.43 10.62 13.28ms -- --

                                                                                                                     -- = no data available 


