
System Synthesis for Networks of Programmable Blocks
Ryan Mannion, Harry Hsieh, Susan Cotterell, Frank Vahid*

Department of Computer Science and Engineering
University of California, Riverside

{rmannion, harry, susanc, vahid}@cs.ucr.edu
*Also with the Center for Embedded Computing Systems at UC Irvine

Abstract
The advent of sensor networks presents untapped opportunities
for synthesis. We examine the problem of synthesis of behavioral
specifications into networks of programmable sensor blocks. The
particular behavioral specification we consider is an intuitive
user-created network diagram of sensor blocks, each block
having a pre-defined combinational or sequential behavior. We
synthesize this specification to a new network that utilizes a
minimum number of programmable blocks in place of the pre-
defined blocks, thus reducing network size and hence network cost
and power. We focus on the main task of this synthesis problem,
namely partitioning pre-defined blocks onto a minimum number
of programmable blocks, introducing the efficient but effective
PareDown decomposition algorithm for the task. We describe the
synthesis and simulation tools we developed. We provide results
showing excellent network size reductions through such synthesis,
and significant speedups of our algorithm over exhaustive search
while obtaining near-optimal results for 15 real network designs
as well as nearly 10,000 randomly generated designs.

1. Introduction
The availability of low cost, low power electronics has made
ubiquitous monitoring and control realizable through the advent
of sensor networks. Monitoring and controlling various aspects of
a home, office, store, school, factory, or public spaces can result
in improved personal comfort and safety, as well as public
security. However, today’s monitor/control systems are largely
specialized, factory-programmed and configured to perform a
specific application, such as home automation or intrusion
detection. Though the applications of monitor/control systems are
voluminous, high design cost has restricted all but the most
commercially viable products from entering the market, resulting
in an unfulfilled void of useful applications. For example, a
homeowner may want notification of a garage door open at night
or of a sleepwalking child; an office worker may want to know
whether mail exists for him in the mailroom, a copy machine is
free, or if conference rooms are in use. These applications are
useful but lack the volume to justify producing dedicated products
to address them, or results in high-priced dedicated products such
that contracting a customized system would be cost prohibitive. A
generalized set of building blocks that could be combined to
perform a broad range of functions while maintaining ease of use
would therefore serve a great need for non-programmer, non-
engineer users to construct a variety of monitor/control systems.

Technological advances in miniaturization, wireless
communication, and power efficiency have recently made feasible
the development of low-cost, intelligent, and configurable
networks of devices, known generally as sensor networks
[2][11][17][19]. Returning to a previous example, instead of a
dedicated garage open at night product, a user can connect a set of
inexpensive reusable electronic blocks to build a system that

accomplishes the same task. A garage open at night system would
require a contact switch block, a light sensor block, a logic block,
and an output block (e.g. buzzer or LED (light-emitting diode))
placed perhaps in a bedroom. A sleepwalk detector would utilize
a motion sensor block, light sensor block, logic block and output
block. A copy machine use detector might use just a motion
sensor and output block. A conference room in-use detector might
use motion and sound sensor blocks, logic blocks, and output
blocks. Notice that the same blocks are usable in a variety of
applications, enabling mass production and hence commercially
viable low-cost blocks.

While many types of sensor networks utilize general-purpose
programmable blocks [11][19], others have proposed using blocks
with pre-defined functions and communication protocol
[6][13][15][16][20]. Such pre-defined blocks enable unskilled
people (in this case, people with no programming or hardware
experience) to still build basic but useful systems, and may even
reduce design time for skilled designers. However, while pre-
defined blocks have ease of use advantages, they may result in
more blocks in a network, resulting in larger network size, higher
cost, and increased power consumption.

Therefore, we have developed capture, simulation and
synthesis tools that enable a user to specify a network using pre-
defined blocks (representing a behavioral description) and to
simulate that network to verify correct behavior, and that
automatically synthesize an optimized network using
programmable blocks with automatically generated software.

We found a challenging part of the development of these tools
to be the design of the algorithm for partitioning the behavioral
description onto a minimum set of programmable blocks.
Although we originally assumed the partitioning problem would
be equivalent to standard partitioning problems or to existing
technology mapping problems, we found that particular
differences made impossible the use of existing algorithms –
hence, we developed a new decomposition algorithm to solve the
problem.

In the following section, we discuss background work, and
provide justification for our work in this area. In Section 3, we
discuss the specification, the simulator, and the code generation
aspect of the system synthesis. Section 4 focuses on the
partitioning aspect of the synthesis process and introduces our
algorithm for partitioning. Section 5 provides the experimental
results on real designs, as well as on large randomly generated
designs. We conclude in Section 6.

2. Background
Much of the previous work in sensor networks relates to
development of general-purpose sensor nodes [11][19]. Synthesis
related works focus largely on analysis or exploration
[1][10][18][21] of communication issues for networks having
large numbers (thousands) of irregularly structured networked
wireless nodes.

Our focus is instead on smaller-scale networks whose nodes
have particular functions and whose connectivity explicitly
carries out a particular task [6][13][15][16][20], such as a garage
open at night detector. In particular, we focus on eBlocks [6][7].
eBlocks feature four classes of “blocks,” categorized by function,
communicating with a standard protocol. Sensor blocks detect
environmental stimuli, such as motion or the press of a button.
Output blocks interact with the environment, such as emitting a
beep or turning on an appliance via an electric relay. Though
blocks normally connect directly to each other using wires,
communication blocks allow for wireless communication or other
methods (such as X10 [22]). Compute blocks perform a (typically
pre-defined) function on inputs and generate output. A special
type of compute block is a programmable block, which features a
finite number of inputs and outputs and which can be
programmed to implement custom functionality (including
functionality of multiple pre-defined blocks). Pre-defined
compute functions include combinational functions, such as a two
or three input truth table, AND, OR, and NOT, and basic
sequential functions, like a toggle, trip, pulse generate, and delay.
Figure 1 shows a garage open at night eBlock system built from
physical eBlocks.

We developed a simulator for all four classes of eBlocks and
their behavioral interaction. The synthesis procedure, including
that of design partitioning, can then reduce the total number of
eBlocks by combining the predefined compute blocks into a
smaller number of programmable compute blocks.

Design partitioning is a critical aspect for successful system
level synthesis. During partitioning, we seek to replace clusters of
eBlocks with programmable eBlocks and minimize the total
number of eBlocks. This partitioning problem cannot be solved
using approaches developed for the classic bin-packing problem
or the knapsack problem, as we must mind at least two constraints
when “packing” a programmable block: the number of inputs
used and the number of outputs used. Solutions to the two-
dimensional bin-packing problem, commonly manifested in the
cutting stock problem [3], are also not applicable to our problem.
The input and output constraints of the programmable blocks are
mutually independent, the number of inputs used in a
programmable block has no effect on the number of outputs
available, and vice versa, and thus our problem cannot be restated
as a cutting stock problem.

 Our partitioning problem is similar to the problem of
synthesizing behavioral specifications to FPGAs (Field
Programmable Gate Arrays). Specifically, our problem is closest
to that of DAG (Directed Acyclic Graph) covering. DAG
covering, as it relates to our problem, has been shown to be NP-
hard [12]. However, algorithms developed for finding solutions to
DAG covering, particularly algorithms that map Boolean
networks to LUTs (look-up tables), are not applicable to our

problem for a number of reasons. First, we do not require that all
nodes in our network graph be covered (i.e. not all blocks need to
be replaced by a programmable block). In fact, circumstances in
which a partition contains a single node are undesirable, as there
is no net reduction in the size of the design with a one-to-one
mapping of a pre-defined block to a programmable block. This
relaxation of the problem increases the search space significantly
as we must now consider partitions in which one or more nodes
are not covered. Second, we define our optimal solution as a
cover that covers the most number of blocks with the fewest
number of partitions, analogous to the goal of minimum-area
DAG covering. However, many DAG covering algorithms focus
on finding minimum-delay solutions or approximations
[4][5][14]. Third, many existing DAG covering algorithms permit
replication of nodes in each LUT/programmable block [9], but
duplicating code in the programmable blocks runs contrary to the
need to minimize power usage in sensor networks.

Thus, we contend that a partitioning algorithm targeted to the
problem of partitioning pre-defined compute blocks to a minimum
number of programmable compute blocks with limited
input/output solves a new and useful problem.
3. Design Framework
We have written a number of tools that enable the specification,
simulation, partitioning, and code generation of eBlock systems.
Figure 2 illustrates our tool chain.
3.1 Design Entry/Simulation
We developed a Java-based graphical user interface (GUI) and
simulator for the design entry and simulation of an eBlock
system, illustrated in Figure 3. A user can drag a block from a
library of blocks, situated on the right edge of the simulator, to the
workspace and connect the blocks together by drawing lines
between circular representations of their input/outputs. The
simulator incorporates eBlocks that sense or interact with their
environment with an accompanying visual representation of their
environmental stimuli/interaction (e.g. clicking on a light sensor
will toggle a light bulb icon on and off).

The simulator contains behavioral representations of all
available eBlocks. It also understands the underlying
communication protocol and all the restrictions on the model of
computation. The simulation is behaviorally correct and obeys
general high-level timing, but no detailed timing characteristics
can be inferred. Given that all communication between blocks is
done serially using packets and hence globally asynchronous, and
because the blocks deal with human-scale events rather than fast
timing, such lack of timing detail is generally not a problem.
3.2 eBlock Partitioning
After completing a design in the simulator, the user can instruct
the framework to minimize the number of computation eBlocks

Figure 1: Garage-open-at-night system built using eBlock
prototypes.

Figure 2: Design framework.

Design Entry/
Simulation

Interpreter

GUI

Synthesis

Partitioning Code Generation
contact switch

sensor
light sensor

2-input logic LED

needed by implementing them with a minimum number of
programmable eBlocks. The simulator passes the design into our
partitioning tool, which produces a list of partitions based on our
partitioning algorithm. The partitioning tool subsequently passes
each partition to the code generation tool, which translates the
interaction between the partition’s inputs and component blocks
into sequential code that can run on a programmable block.

Using the eBlock Design Framework, we can utilize different
partitioning algorithms for different designs. Detailed discussion
of the partitioning problem and the algorithms used will be
presented in Section 4.
3.3 Code Generation
Each partition generated by the partitioning tool utilizes the code
generation tool. The tool assigns each block within a partition a
level, defined as the maximum distance between the block and
any sensor block (analogous to the primary input-based level
definition in circuit partitioning). The code generation tool assigns
levels by tracing the paths in the network, beginning with sensor
blocks, and marking each block visited with an appropriate level.
Blocks visited multiple times retain the greatest level value
assigned to them. eBlock networks do not contain loops, so the
levels for eBlocks in a network are well-defined.

The simulator maintains the behavior of each block, defined
in a Java-like language that is automatically transformed to a
syntax tree. The code generator attaches the syntax trees of every
block in the partition so that the tool can evaluate trees in
succession. Syntax trees are ordered in non-decreasing order and
determined by the level of each block. The ordering of the syntax
trees ensures that the tool does not evaluate a block’s tree before
any of its input blocks have produced output. As the tool merges
each block’s tree into the new programmable block’s tree, the tool
changes tree nodes that access a block’s input or output into a
variable access, where appropriate. Communication between two
blocks in a partition will occur internally in a programmable
block via variables. In the event that two or more blocks share
variable names in their internal behavior code, the conflict is
resolved through variable renaming.

The newly merged syntax tree specifies the behavior of the
programmable block that will replace the partition. The
simulator’s interpreter evaluates the tree in the same manner as a
non-programmable block. A user can select a programmable
block and instruct the simulator to translate the syntax tree into C
code for downloading and use in a physical block.

Since we have implemented physical programmable eBlock
system prototypes, we were able to compile and download the
generated code and use the output of the synthesis tool chain in

real-world systems. The programmable eBlock prototype utilizes
a Microchip PIC16F628 microcontroller (www.microchip.com)
with 2 Kbytes of program memory and is available for under $2.
Given that amount of program memory, the small size of each
program describing a pre-defined block’s function, and the scale
of real eBlock systems, we make the practical assumption that a
programmable block’s program size constraint will not be
violated by any partition. Making such violation even less likely
is the fact that the block-partitioning problem is actually
input/output limited, not size limited. However, even if a
programmable block’s memory size were exceeded, we could
easily utilize a PIC with a larger memory, or extend our algorithm
with size constraints.

4. Partitioning
As mentioned in Section 2, the general aim of the partitioning
phase is to minimize the total number of blocks by replacing the
greatest number of pre-defined compute blocks with fewer
programmable blocks. Pre-defined compute blocks have identical
internal components and thus have equal cost. A programmable
compute block has slightly higher cost due to the programmability
hardware, but less cost than two pre-defined compute blocks.

A more precise statement of the problem is as follows. We
represent an eBlock system as a directed acyclic graph G = (V, E)
where V is the set of nodes (blocks) in the graph and E is the set
of edges (connections) between the nodes. We define sensor
eBlocks as primary inputs, and output eBlocks as primary outputs.
The objective of the partitioning phase is to find a set of
subgraphs of non-primary input and non-primary output nodes
(hereafter referred to as inner nodes) of G such that 1) each
subgraph has at most i inputs and o outputs, where i and o
correspond to the number of inputs and outputs available in a
programmable block, 2) each subgraph must be replaceable by a
programmable block that can provide equivalent functionality,
and 3) the number of inner blocks after replacement is minimized.
We assume a subgraph containing only a single node to be
invalid, as it is undesirable to replace a pre-defined compute block
with a programmable compute block due to slightly higher cost of
the latter.
4.1 Exhaustive Search
Initially, we implemented an exhaustive search algorithm to see
whether an exhaustive approach was reasonable with respect to
computation time, and to provide optimum results for small
problem instances. The search space consists of every
combination of n blocks into n programmable blocks (a
combination need not use every block). We utilized a simple
pruning mechanism in which all “empty” programmable blocks in
a combination are indistinguishable, and portions of the search
tree removed accordingly. For example, if at a given point in the
search tree we are able to assign a block to one of three empty
programmable blocks, we only consider one such branch.

The run time of partitioning by exhaustive search naturally
increased exponentially. With designs featuring fourteen inner
blocks, the search did not conclude after four hours. Such run
time of exhaustive search is not acceptable for designs with as
few as eleven inner blocks, where a user must wait for about one
minute. An exhaustive search is therefore overly prohibitive as
eBlocks designs with eleven or more inner blocks are common,
and thus a different approach is needed.

Figure 3: eBlock graphical capture and simulator tool.

4.2 Decomposition Method – The “PareDown”
Heuristic
We first implemented a heuristic that clusters nodes into
subgraphs through aggregation. From a list of inner nodes
connected to a primary input, the aggregation method repeatedly
selects a node that fits within a programmable block as a partition.
Though the aggregation method concludes quickly for cases in
which the exhaustive search is impractical, the aggregation
method is not capable of taking advantage of convergence and
thus we found it often produced non-optimal results.

We sought to avoid the pitfalls of the aggregation method’s
lack of look-ahead capabilities, by utilizing a decomposition
method heuristic we call PareDown, to detect convergence but not
be constrained by a particular “depth” at which our heuristic looks
ahead. Thus, the PareDown approach, shown in Figure 4, begins
by selecting all internal blocks of a design as a candidate
partition, and then removes blocks from the partition until input
and output constraints are met, hence the moniker “decomposition
method.” If the algorithm finds a valid partition, the algorithm
repeats on the remaining blocks and continues until no new
partitions remain.

The choice of which block to remove from an invalid
candidate partition is determined by computing a rank for all
border blocks in the candidate partition and removing the block
with the lowest rank. We define a border block as a block in
which every output or every input connects to a block outside of
the candidate partition. The block’s rank is defined as the net
increase or decrease in the combined indegree and outdegree of a
candidate partition if that block is removed from the candidate
partition. For blocks that have the same rank, removal priority is
given to the following criteria, in order: 1) The block with the
greatest indegree 2) The block with the greatest outdegree 3) The
block with the highest level.

The decomposition method benefits from fast run times and
produces results well beyond the practical range of the exhaustive
search. A worst-case design would feature inner blocks that can

fit into a partition by themselves but cannot form a valid partition
when combined with any other block or blocks. A design of this
form containing n inner blocks would therefore require n
iterations through the algorithm’s main loop. In the first iteration,
the PareDown heuristic would check for a valid partition n times
before eventually isolating a single block as a partition (an invalid
result). Subsequent iterations check for valid partitions n-1 times
and so forth. Accordingly, the total iterations through the
decomposition method is n*(n+1)/2, or the sum of 1 to n. This
total yields a time complexity of O(n2).
4.2.1 Example
As an example, we will demonstrate the PareDown heuristic
partitioning of an example eBlock design, the Podium Timer 3
design from [8]. The podium timer utilizes a set of eBlocks to
build a system that can notify a person that his/her talk time is
nearing the end, and that time has ended. The design consists of
some buttons, output LEDs, and several internal pre-defined
compute nodes, including combinational and sequential nodes.

We begin with the DAG representation of the design, shown
in Figure 5(a). For ease of reference, we number each block.
Figure 5(a) shows the initial selection by the PareDown heuristic
of every interior block as a candidate partition, indicated by the
shaded area, and the rank values for the border nodes 2, 8, and 9.
We assume that the programmable block available features two
inputs and two outputs.

Since the shaded partition in Figure 5(a) requires three
outputs, the partition is invalid. The PareDown heuristic removes
node 9, the node with the least rank value, as shown in Figure
5(b). The partition remains invalid and nodes 2 and 8 are
considered for removal, being the border nodes (node 6 and 7 are
not border nodes since one or more of their outputs connects to a
block inside the candidate partition). The two border nodes have
the same rank but node 8 has a greater indegree and is removed,
as shown in Figure 5(c).

With a requirement of four outputs, the partition shown in
Figure 5(c) is invalid. Subsequent steps remove nodes 7 and 6
from the partition, and the partition becomes valid, as indicated
by the solid outline in Figure 5(d).

The algorithm is repeated on the remaining node(s): 6, 7, 8,
and 9. The PareDown heuristic removes node 7 from the new
candidate partition, and the new partition becomes valid. Again,
the heuristic runs on the un-partitioned node(s), which consists
only of node 7. Though the partition fits in a programmable block,

Figure 4: Decomposition method pseudocode.

Figure 5: Decomposition method example.

PareDown heuristic
 blocks list of inner blocks
 partitions empty list
 while blocks contains elements
 partition blocks
 while partition contains elements

 if partition fits in a programmable block then
 if partition contains more than one block then

 add partition to partitions
 else if partition contains zero blocks
 return partitions
 end if

 remove elements in partition from blocks
 else
 compute ranks for border blocks in partition
 remove border block from partition with the least rank
 end if
 end while
end while

return partitions
(partitions contains a list of partitions)

(a) (b)

(c) (d)

(e)

1

1
0

1 2
3

4

5 7

8

10
11
12

6
9

1
11 2

3

4

5 7

8

10
11
12

6
9

1
-1

-1

1 2
3

4

5 7

8

10
11
12

6
9

1 2
3

4

5 7

8

10
11
12

6
9

-1
0

1 2
3

4

5 7

8

10
11
12

6
91

the partition is invalid for containing only a single block. The
heuristic halts, returning the result visualized in Figure 5(e).

Thus, the heuristic reduces the internal compute nodes from
the initial user-defined 8 nodes to only 3 programmable nodes.

5. Experiments
5.1 Setup
We executed the decomposition and exhaustive search algorithms
on a variety of designs of varying depths (maximum block level)
and size on a 2GHz AMD Athlon XP PC. The designs included
15 actual eBlock systems appearing at [8], designed
independently of our work for purposes other than synthesis.
Some of those systems were intentionally designed to be small by
avoiding multiple identical sensors whenever possible to
maximize user-comprehension of the systems, whereas eBlock
systems can easily involve several dozen nodes. Thus, we also
developed a randomized eBlock system generator able to generate
eBlock networks of varying sizes. We implemented both
exploration algorithms, exhaustive and PareDown, in Java within
the framework provided by the eBlocks simulator, with the two
implementations each representing less than 100 lines of code,
including the code to extract experimental data. We assumed the
existence of a programmable block having two inputs and two
outputs.

Table 1 summarizes the data collected during the experiments
for the library-based designs. The Inner Blocks (Original) column
indicates the number of inner blocks corresponding to the design
specified by the Design Name column. The Inner Blocks (Total)
column indicates the number of inner blocks in a given design
after partitioning by either the exhaustive search or PareDown
heuristic algorithm. The Inner Blocks (Prog.) column specifies, of
the number of inner blocks after partitioning listed in the Inner
Blocks (Total) column, the number of programmable blocks in the
partitioned design, which is essentially the number of partitions
found. The Time column specifies the execution time for either of
the algorithm utilized. The Block Overhead column indicates the
number of additional inner blocks required after partitioning by
the heuristic algorithm compared to optimal results of the
exhaustive search algorithm. The % Overhead indicates the
percent increase in the final design when the heuristic is utilized
compared to the optimal results of the exhaustive search
algorithm.

In addition to the library of designs used in our experiments,
we ran the exhaustive search and heuristic algorithms on a sample
of randomly generated designs. Table 2 shows the corresponding
results. The random designs’ inner block count varied between
three and forty-five inner blocks as illustrated in the Inner Blocks
(Original) column. The Number of Designs column specifies the
number of designs considered for a given inner block counts.
5.2 Runtime Performance
The decomposition algorithm achieves significant speedup over
the exhaustive search throughout the entire range of inner block
values. Though exhaustive search maintains a reasonable runtime
up to ten inner blocks, adding more inner blocks has a dire effect
on the exhaustive search’s computation time. Inner block sizes of
thirteen or more yield unacceptable wait times for a user.

Beyond thirteen inner blocks, the decomposition method
continues to process large designs in a reasonable amount of time
and is therefore a good replacement for the exhaustive search.
Though not displayed in Table 2, the decomposition method
produced a result for a design with 465 inner nodes in 80 seconds.
We note that it is highly unlikely that a real-world eBlocks design
would feature 465 inner nodes. Thus, our method should be
sufficiently fast for all practical eBlock designs.
5.3 Optimality
The decomposition method achieves excellent results that are
optimal or within 15% of an optimal solution for every inner
block size in which data was available from the exhaustive search.
As indicated in Table 1 and Table 2, the solution generated by the
decomposition method for the displayed range of inner block
sizes is within one block of an optimal solution, on the average.

6. Conclusions and Further Work
We have demonstrated a working system for synthesizing
behavioral models of eBlock networks into code and connectivity
for physical eBlocks. We focused on the partitioning aspect of
synthesis and introduced the PareDown heuristic. We have shown
that PareDown is an effective method for rapidly finding optimal
or near-optimal solutions to eBlock partitioning for both real-
world designs and generated ones.

We plan to extend the PareDown heuristic to consider
multiple types of programmable blocks (having different number
of inputs and outputs) and varying compute block costs, and to

Table 1: Results for exhaustive search and PareDown decomposition using design library.
 Averages for Exhaustive Search Averages for “PareDown” Decomposition

Inner Blocks
(Original) Design Name Inner Blocks

(Total)
Inner Blocks

(Prog.) Time Inner Blocks
(Total)

Inner Blocks
(Prog.) Time Block

Overhead % Overhead

2 Ignition Illuminator 1 1 <1ms 1 1 <1ms 0 0 %
2 Night Lamp Controller 1 1 <1ms 1 1 <1ms 0 0 %
2 Entry Gate Detector 1 1 <1ms 1 1 <1ms 0 0 %
2 Carpool Alert 1 1 <1ms 1 1 <1ms 0 0 %
3 Cafeteria Food Alert 1 1 <1ms 1 1 <1ms 0 0 %
3 Podium Timer 2 1 1 <1ms 1 1 <1ms 0 0 %
3 Any Window Open Alarm 3 0 <1ms 3 0 <1ms 0 0 %
3 Two Button Light 3 1 <1ms 3 1 <1ms 0 0 %
5 Doorbell Extender 1 5 0 <1ms 5 0 <1ms 0 0 %
6 Doorbell Extender 2 6 0 9ms 6 0 <1ms 0 0 %
8 Podium Timer 3 3 3 125ms 3 2 <1ms 0 0 %

10 Noise At Night Detector 6 4 4.79 s 6 4 <1ms 0 0 %
19 Two-Zone Security -- -- -- 10 3 <1ms -- --
19 Motion on Property Alert -- -- -- 19 0 <1ms -- --
23 Timed Passage -- -- -- 14 5 <1ms -- --

 -- = no data available

extend our methods to map to an existing underlying network of
sensor nodes.

7. Acknowledgements
This work was supported by the National Science Foundation
(CCR-0311026) and by a Department of Education GAANN
fellowship, and aided by donations from Microchip Technology
Corporation.

8. References
[1] Adlakha, S., S. Ganeriwal, C. Schurger, M. Srivastava.

Density, Accuracy, Latency and Lifetime Tradeoffs in
Wireless Sensor Networks – A Multidimensional Design
Perspective. Embedded Network Sensor Systems, 2003.

[2] Akyildiz, I., Su, W., Sankarasubramanian, Y., and Cayirci,
E. Wireless sensor networks: a survey. Computer Networks,
38(4), pp. 393-422, 2002.

[3] Alvarez-Valdes, R., Parajon, A., and Tamarit, J. A
Computational Study of Heuristic Algorithms for Two-
Dimensional Cutting Stock Problems. MIC, 2001.

[4] Chen, K., et. al. DAG-Map: Graph-based FPGA Technology
Mapping for Delay Optimization. IEEE Design and Test of
Computers, 1992.

[5] Cong, J. FlowMap: An Optimal Technology Mapping
Algorithm for Delay Optimization in Lookup-Table Based
FPGA Designs. IEEE Trans. Computer-aided Design, 1994.

[6] Cotterrell, S., F. Vahid, W. Najjar and H. Hsieh. First
Results with eBlocks: Embedded Systems Building Blocks.
IEEE/ACM CODES+ISSS Conference, 2003.

[7] Cotterell, S., K. Downey, and F. Vahid. Applications and
Experiments with eBlocks -- Electronic Blocks for Basic
Sensor-Based Systems. IEEE Sensor and Ad Hoc
Communications and Networks (SECON), 2004.

[8] eBlocks: Embedded System Building Blocks. Yes/No
Systems.
http://www.cs.ucr.edu/~eblock/pages/blist/sys_index.html.

[9] Francis, R. J., J. Rose, and K. Chung. Chortle: A Technology
Mapping Program for Lookup Table-Based Field
Programmable Gate Arrays. ACM/IEEE DAC, 1990.

[10] Heinzelman, W., A. Chandrakasan, H. Balakrishnan.
Energy-Efficient Communication Protocols for Wireless
Microsensor Networks. Hawaii Int. Conf. on System
Sciences, 2000.

[11] Hill, J., D. Culler. MICA: A Wireless Platform For Deeply
Embedded Networks. IEEE Micro 22(6), 2002.

[12] Keutzer, K., and D. Richards. Computational complexity of
logic synthesis and optimization. Proceedings of
International Workshop on Logic Synthesis, 1989.

[13] Kharma, N. and L. Caro. MagicBlocks: A Game Kit for
Exploring Digital Logic. Proc. of the 2002 American Society
for Engineering Education Annual Conference, 2002.

[14] Kukimoto, Y., R. Brayton, and P. Sawkar. Delay-Optimal
Technology Mapping by (DAG) Covering. DAC, 1998.

[15] Logiblocs. http://www.logiblocs.com.
[16] Logidules, http://diwww.epfl.ch/lami/teach/logidules.html.
[17] National Research Council. Embedded, Everywhere: A

Research Agenda for Networked Systems of Embedded
Computers. National Academies Press, 2001.

[18] Tilak, S., N. Abu-Ghazaleh, W. Heinzelman. Infrastructure
Tradeoffs for Sensor Networks. Int. Workshop on Wireless
Sensor Networks and Applications, 2002.

[19] Warneke, B., M. Last, B. Liebowitz, and K. Pister. Smart
Dust: Communicating with a Cubic-Millimeter Computer,
pg. 44-51, 2001.

[20] Wyeth, P. and Purchase, H. Using Developmental Theories
to Inform the Design of Technology for Children. Small
Users - Big Ideas: Proc. of Interaction Design and Children,
2003.

[21] Yuan, L., G. Qu. Design Space Exploration for Energy-
Efficient Secure Sensor Network. Conf. on Application-
Specific Systems, Architectures, and Processors, 2002.

[22] X10 Protocol, http://www.x10.org, 2004.

Table 2: Results for exhaustive search and PareDown decomposition using randomly generated designs.
 Averages for Exhaustive Search Averages for “PareDown” Decomposition

Inner Blocks
(Original) Number of Designs Inner Blocks

(Total)
Inner Blocks

(Prog.) Time Inner Blocks
(Total)

Inner Blocks
(Prog.) Time Block

Overhead
% Overhead

3 1531 1.83 0.81 <1ms 1.87 0.79 <1ms 0.04 2 %
4 982 2.24 1.22 <1ms 2.33 1.10 <1ms 0.09 4 %
5 542 2.51 1.52 1.33ms 2.62 1.32 <1ms 0.11 4 %
6 432 3.08 1.74 6.56ms 3.36 1.49 <1ms 0.28 9 %
7 447 3.77 2.00 25.52ms 4.09 1.73 <1ms 0.32 8 %
8 350 4.11 2.32 122.97ms 4.56 1.93 <1ms 0.45 11 %
9 340 4.67 2.60 719.90ms 5.24 2.17 <1ms 0.57 12 %

10 199 5.04 2.93 4.53s 5.76 2.45 <1ms 0.69 14 %
11 170 5.47 3.20 31.77s 6.29 2.59 <1ms 0.82 15 %
12 31 4.58 3.23 3.67min 4.87 2.58 <1ms 0.29 6 %
13 6 6.84 3.17 29.93min 7.83 2.83 <1ms 0.99 14 %
14 1311 -- -- -- 8.11 3.05 <1ms -- --
15 1184 -- -- -- 8.67 3.32 <1ms -- --
20 928 -- -- -- 11.09 4.70 <1ms -- --
25 691 -- -- -- 13.93 5.97 1.86ms -- --
35 354 -- -- -- 19.63 8.26 4.82ms -- --
45 165 -- -- -- 25.43 10.62 13.28ms -- --

 -- = no data available

