
Automatic Tuning of Two-Level Caches to Embedded Applications

Abstract
The power consumed by the memory hierarchy of a
microprocessor can contribute to as much as 50% of the total
microprocessor system power, and is thus a good candidate
for optimizations. We present an automated method for
tuning two-level caches to embedded applications for reduced
energy consumption. The method is applicable to both a
simulation-based exploration environment and a hardware-
based system prototyping environment. We introduce the two-
level cache tuner, or TCaT - a heuristic for searching the huge
solution space of possible configurations. The heuristic
interlaces the exploration of the two cache levels and
searches the various cache parameters in a specific order
based on their impact on energy. We show the integrity of our
heuristic across multiple memory configurations and even in
the presence of hardware/software partitioning – a common
optimization capable of achieving significant speedups
and/or reduced energy consumption. We apply our
exploration heuristic to a large set of embedded applications.
Our experiments demonstrate the efficacy of our heuristic: on
average the heuristic examines only 7% of the possible cache
configurations, but results in cache sub-system energy
savings of 53%, only 1% more than the optimal cache
configuration. In addition, the configured cache achieves an
average speedup of 30% over the base cache configuration
due to tuning of cache line size to the application’s needs.

Keywords
Configurable cache, cache hierarchy, cache exploration, cache
optimization, low power, low energy, architecture tuning,
embedded systems.

1. Introduction
The power consumed by the memory hierarchy of a

microprocessor can contribute to as much as 50% of the total
microprocessor system power [16]. Such a large contributor to
power is a good candidate for optimizations.

Tuning cache parameters to the needs of a particular
application can save energy. Every application has different
cache requirements that cannot be efficiently satisfied with
one predetermined cache configuration. Miss rates or energy
consumption may be unnecessarily high if a cache
configuration does not fit the application. For instance, the
cache size should reflect the working set of the application. If
the cache is too large, the energy required to fetch from the
larger cache may be unnecessarily high. If the cache is too
small, excess energy may be wasted due to thrashing.
Furthermore, an application may have a large or small amount

of spatial locality, favoring either a large or small line size,
respectively. Excess energy may be consumed during stall
cycles if the line size is too small, but energy may be wasted
fetching unused information from main memory if the line size
is too large. Additionally, cache associativity should reflect
the application’s temporal locality. The diversity among
applications leads to very different cache requirements for
different applications [21].

New technologies enable tuning of cache parameters to the
needs of an application. Core-based processors allow a
designer to choose a particular cache configuration
[2][3][4][13][18] and there are instances of processor designs
that allow their caches to be configured during system reset or
even during runtime [1][12][21].

Finding the best cache configuration for an application i s
difficult. A single-level cache may have dozens of different
cache configurations, and interdependent multi-level caches
lead to thousands of different cache configurations. The
configuration space gets even larger if other dependent
configurable architecture parameters are considered, such as
bus and processor parameters. Exhaustively searching the
space is too slow even if fully automated. However, with
possible average energy savings of over 40% for a
configurable memory hierarchy [5][21], we believe that cache
configuration is worth the effort.

Cache configuration can either be done at design time or
in-system during runtime. If cache configuration is done at
design time, a simulation method is typically used to search
the design space. Simulation-based exploration is particularly
costly in terms of time since searching even one configuration
may take hours to simulate. Using an exploration heuristic can
reduce the number of explored configurations. However, for
the simulation to be accurate, the system must be well modeled
with realistic input stimuli. Often, setting up a realistic
simulation environment may be more difficult than designing
the system itself.

The alternative to cache configuration at design time i s
cache configuration in-system during runtime. Runtime
configuration is accomplished with a configurable cache and
hardware to drive the cache exploration. While exploration
time is greatly reduced due to real-time execution, the
exploration itself can interfere with system behavior of many
embedded systems. This interference may not be tolerated in
real-time systems with strict timing requirements. For in-
system exploration to be useful, a relatively non-intrusive
heuristic is needed where accuracy may be traded off for
reduced intrusion or reduced power during exploration.

Whether cache exploration is done during design time or
runtime, an exhaustive approach may not be feasible. Good

Ann Gordon-Ross, Frank Vahid*
Department of Computer Science and Engineering

University of California, Riverside
{ann/vahid}@cs.ucr.edu

http://www.cs.ucr.edu/~vahid
*Also with the Center for Embedded Computer

Systems at UC Irvine

Nikil Dutt
Center for Embedded Computer Systems

School of Information and Computer Science
University of California, Irvine

dutt@cecs.uci.edu
 http://www.ics.uci.edu/~dutt

heuristics based on typical cache behavior can find near
optimal results by searching a fraction of the exploration
space. This is possible because of the highly predictable
nature of cache and application behavior. Caches are designed
to exploit the temporal and spatial locality of applications and
good heuristics can exploit this behavior to converge on an
optimal cache configuration quickly.

A popular system optimization that greatly affects an
application’s cache behavior i s hardware/software
partitioning. Current methods of hardware/software
partitioning discover the frequent loops of an application and
convert these frequent loops into hardware running on a field
programmable gate array (FPGA) for reduced energy
consumption and improved performance (e.g., [17]). The
frequent loops can amount to as much as 90% or more of the
execution time. Removing these frequent loops from software
alters cache behavior greatly by removing spatial and temporal
locality from the application. An application’s locality comes
mainly from highly iterated loops, however these loops are
now implemented in hardware. In all hardware/software
platforms, the implementation of frequent loops in the FPGA
affects instruction cache behavior because the instructions
associated with these loops are no longer fetched and stored in
the instruction cache. The data cache will also be affected in
systems where the FPGA does not access the cache structures.
We observed that some heuristics that worked well for non-
partitioned systems, did not work well after the system i s
partitioned because the removal of locality from the
application by hardware/software partitioning causes cache
behavior to become unpredictable. We therefore consider both
non-partitioned and partitioned systems in our cache
configuration method.

In this paper, we discuss related work on automated cache
configuration both during design time and in-system during
runtime. We describe the two-level cache tuner, or TCaT - a
heuristic for automatically searching a configurable two-level
cache hierarchy with configurable size, associativity, and line
size. The basic idea of the TCaT is to interlace the exploration
of the level one and level two caches, exploring the most
important cache parameters first. The TCaT performs well on
non-partitioned systems, and also improves greatly upon
previous heuristics in the presence of hardware/software
partitioning. The TCaT is targeted for design time exploration
and may be applied to a simulation environment or a hardware-
based prototyping environment.

2. Related Work
Many methods exist for configuring a single level of cache

to a particular application during design time and in-system
during runtime. Cache configuration can be specified during
design time for many commercial soft cores from MIPS [13],
ARM [4], and Arc [3] and for environments such as Tensilica’s
Xtensa processor generator [18] and Altera’s Nios embedded
processor system [2].

Configurable cache hardware also exists to assist in cache
configuration. Motorola’s M*CORE [12] processors offer way
configuration which allows the ways of a unified
data/instruction cache to individually be specified as either
data or instruction ways. Additionally, ways may be shut down
entirely. Way shut-down is further explored by Albonesi [1] to
reduce dynamic power by an average of 40%. An adaptive
cache line size methodology is proposed by Veidenbaum et al.
[19] to reduce memory traffic by more than 50%. Zhang et al.
[21] proposes a methodology called way-concatenation where
a cache can be configured by software to either be direct-

mapped, 2- or 4-way set associative achieving average energy
savings of 40% compared to a conventional 4-way set
associative cache.

Exhaustive search methods may be used to find optimal
cache configurations, but the time required for an exhaustive
search is often prohibitive. Several tools do exist for assisting
designers in tuning a single level of cache. Platune [8] is a
framework for tuning configurable system-on-a-chip (SOC)
platforms. Platune offers many configurable parameters and
prunes the search space by isolating interdependent
parameters from independent parameters. However, the level
one cache parameters, being dependent, are explored
exhaustively.

Heuristic methods exist to prune the search space of the
configurable cache. Palesi et al. [14] improves upon the
exhaustive search used in Platune by using a genetic
algorithm to produce comparable results in less time. Zhang et
al. [20] presents a cache configuration exploration
methodology for prototyping platforms, wherein a cache
exploration component searches configurations in order of
their impact on energy, and produces a list of Pareto-optimal
points representing reasonable tradeoffs in energy and
performance. Ghosh et al. [9] uses an analytical model to
efficiently explore cache size and associativity and directly
computes a cache configuration to meet the designers’
performance constraints.

Few methods exist for tuning multiple levels of a cache
hierarchy. Balasubramonian et al. [5] proposes a hardware-
based cache configuration management algorithm to improve
memory hierarchy performance while considering energy
consumption. An average reduction in memory hierarchy
energy of 43% can be achieved with a configurable level two
and level three cache hierarchy coupled with a conventional
level one cache.

To the best of our knowledge, no previous work has
explored the integrity of cache tuning in the presence of
hardware/software partitioning like we do, yet such
partitioning is becoming increasingly common in embedded
systems, especially with the advent of single-chip
microprocessor/FPGA platforms.

3. Configurable Cache Architecture
The configurable caches in each of the two cache levels

explored in this paper are based on the configurable cache
architecture described for a single level configurable cache by
Zhang et al. [21]. The target architecture for our two-level cache
tuning heuristic contains separate level one instruction and
data caches and separate level two instruction and data caches.

The cache architecture supports a certain range of
configurations as detailed in Zhang et al. [21]. The base level-
one cache of 8 Kbytes consists of four banks that can operate
as four ways. A special configuration register allows the ways
to be concatenated to form either a direct-mapped or 2-way set
associative 8 Kbyte cache. The configuration register may also
be configured to shut down ways, resulting in a 4 Kbyte direct-
mapped or 2-way set associative cache or a 2 Kbyte direct-
mapped cache. Specifically, 2 Kbyte 2- or 4-way set associative
and 4 Kbyte 4-way set associative caches are not possible
using the configurable cache hardware. The same limitations
apply to the level two cache with the base cache being a 64
Kbyte cache with four banks – each bank is 16 Kbyte and
similarly to the 8 Kbyte cache with four banks, a 2-way 16
Kbyte cache is not possible. Although the cache architecture i s
limited to certain configurations in a hardware-based
prototyping environment, our work can be easily extended to

include all possible configurations for a simulation-based
environment.

An exhaustive exploration of all cache configurations for a
two level cache hierarchy is too costly. For a single level
separate instruction and data cache design, an exhaustive
exploration would explore a total of 28 different cache
configurations. However, the addition of a second level of
hierarchy raises the number of cache configurations to 432.

Nevertheless, for comparison purposes, we determined the
optimal cache configuration for each benchmark by generating
exhaustive data. It took over one month of continual
simulation time on an UltraSparc compute server to generate
the data for our nine benchmarks.

4. Experimental Environment
For our studies, we used three benchmarks from the

MediaBench benchmark suite [11] and six benchmarks for the
EEMBC benchmark suite [7] as shown in Table 1. The
benchmarks are small embedded applications geared towards
low power embedded systems. We have also generated results
for 25 additional benchmarks [10], but omit the results here
for brevity. We ran all benchmarks on SimpleScalar [6] for each
cache configuration to determine the cache hits and misses.

We determined the energy of the system using both
estimation methods and measurements. We obtained the
dynamic energy consumed by a cache fetch for each cache
configuration using the CACTI [15] model for 0.18-micron
technology (in separate work, we compared a cache layout to
the CACTI model and found CACTI’s estimates to be very
close [21]). We obtained the energy consumed by a fetch from
main memory from a standard Samsung memory. For static
energy consumption of the caches, we assume the static energy
accounts for 10% of the total energy of the cache (reasonable
for the next few years’ technologies). We obtained CPU stall
energy from a 0.18-micron MIPS microprocessor.

For the base system, we estimated the cache miss penalties
and memory throughput using typical ratios for an embedded
system. A fetch from the level one cache is used as the base
fetch time for the system and all other miss penalties are
derived as ratios of the base. We assume that a fetch from the
level two cache takes four times longer than a fetch from level
one cache. A fetch from main memory takes ten times longer
than a fetch from level two cache. We assign the memory
throughput as 50% of the latency, meaning that after the first
block of a request is transferred, it takes 50% of the original
latency to transfer each remaining block. In Section 6.4, we
will explore different system configurations.

We chose the cache parameters to explore based on the
benchmarks chosen and to reflect cache configurations of
typical embedded systems [21]. We chose cache sizes large
enough to be realistic yet small enough so that the entire

benchmark did not fit into the cache. For the level one cache,
we explore cache sizes of 2, 4, and 8 Kbytes. For the level two
cache, we explore cache sizes of 16, 32, and 64 Kbytes. The
associativities and line sizes chosen reflect typical off-the-
shelf embedded systems. We explore direct mapped, 2-, and 4-
way set associativities, and cache line sizes of 16, 32, and 64
bytes. For comparison, we have chosen a base cache hierarchy
configuration consisting of an 8 Kbyte, 4-way set associative
level one cache with a 32 byte line size, and a 64 Kbyte 4-way
set associative level two cache with a 64 byte line size – a
reasonably common configuration.

We based the hardware/software partitioning of the
benchmarks on the method described by Stitt et al. in [17] for a
system where the FPGA does not access the cache structures.
Stitt determines the frequent loops in an application and
partitions the most frequent loops into hardware. We use a
loop profiling tool to determine the loop structure and loop
frequencies of the benchmarks. We determine the most
frequent loops to partition to hardware and modify
SimpleScalar so that the instructions and data fetched within
the loops are not included in the cache simulation.

5. Initial Two-Level Cache Tuning Heuristic
– Searching Each Level Independently

When developing a good heuristic, the parameter (cache
size, line size, or associativity) with the largest impact in
performance and energy would likely be the best parameter to
search first. Zhang et al. [20] showed the importance of each
parameter by holding two parameters steady and varying the
third to study the impact that the varied parameter had on miss
rates and energy consumption. Zhang concluded that the most
important cache parameter is cache size, followed by line size,
and finally associativity.

The heuristic developed by Zhang et al., based on the
importance of the cache parameters, is summarized below:

(1) Begin with a 2 Kbyte, direct-mapped cache with a 16
byte line size. Increase the cache size to 4 Kbytes. If
the increase in cache size causes a decrease in energy
consumption, increase the cache size to 8 Kbytes.
Choose the cache size with the best energy
consumption.

(2) For the best cache size determined in step (1), increase
the line size from 16 bytes to 32 bytes. If the increase
in line size causes a decrease in energy consumption,
increase the line size to 64 bytes. Choose the line size
with the best energy consumption.

(3) For the best cache size determined in step (1) and the
best line size determined in step (2), increase the
associativity to 2 ways. If the increase in associativity
causes a decrease in energy consumption, increase the
associativity to 4 ways. Choose the associativity with
the best energy consumption.

The heuristic described was developed for a single level of
cache. We initially extended this heuristic to a two level
hierarchy by exploring the level one cache while holding the
level two cache at the smallest size. Once the level one cache i s
configured, the level two cache is explored using the same
heuristic.

We applied the initial heuristic to the benchmarks and
found that this heuristic did not perform well for two levels
(the original heuristic was intended for only one level, for
which the heuristic works well). The cache configuration

Table 1: Benchmark descriptions.

Benchmark Description
g721* Voice Compression
rawcaudio* Voice Encoding
pegwit* Public Key Encryption
AIFFTR01** Fast Fourier Transform
AIFIRF01** Finite Impulse Response (FIR) Filter
BITMNP01** Bit Manipulation
IDCTRN01** Inverse Discrete Cosine Transform
PNTRCH01** Pointer Chasing
TTSPRK01** Tooth To Spark

* MediaBench **EEMBC

determined by our initial heuristic consumed, on average over
all benchmarks for instruction and data caches, 1.41 times
more energy than the optimal configuration for a non-
partitioned system, and 1.45 times more energy than the
optimal configuration for a hardware/software partitioned
system. In the worst case, our initial heuristic found a cache
configuration that had 2.70 times more energy consumption
than the optimal configuration.

The naïve assumption that the two levels of cache could be
configured independently was the reason that our initial
heuristic did not perform well for a two level system. In a two
level cache hierarchy, the behavior of each cache level directly
affects the behavior of the other level. For example, the miss
rate of the level one cache does not solely determine the
performance of the level two cache. The performance of the
level two cache is also determined by what values are missing
in the level one cache. To fully explore the dependencies
between the two levels, we decided to explore both levels
simultaneously.

6. Interlaced Heuristic
To more fully explore the dependencies between the two

levels, we expanded our initial heuristic to interlace the
exploration of the level one and level two caches. Instead of
entirely configuring the level one cache before configuring the
level two cache, the interlaced heuristic explores one parameter
for both levels of cache before exploring the next parameter.
The basic intuition behind our heuristic is that interlacing the
exploration allows for better modeling and tuning of the
interdependencies between the different levels of cache
hierarchy.

6.1 Basic Interlacing
The interlaced heuristic follows the same parameter

exploration ordering as the initial heuristic. However, instead
of exploring the cache configuration one level at a time, the
interlaced heuristic explores one parameter at a time: the
optimal size is found for the level one cache, followed by the
optimal size for the level two cache. Then, the optimal line size
is found for the level one cache, followed by the optimal line
size for the level two cache. Finally, the optimal associativity
is found for the level one cache, followed by the optimal
associativity for the level two cache.

We applied the interlaced heuristic to the benchmarks and
found that the interlaced heuristic performed much better than
the initial heuristic, but there was still much room for
improvement.

6.2 Interlaced Heuristic with Full Parameter
Exploration

We examined the cases where the interlaced heuristic did
not yield the optimal solution. We discovered that in these
cases, the optimal was not being reached because the initial
heuristic did not fully explore each parameter. For instance, if
an increase from a 2 Kbyte to 4 Kbyte cache size did not yield
an improvement in energy, an 8 Kbyte cache size was not
examined. For a system with only a level one cache, not fully
exploring each parameter had little to no adverse impact on the
quality of results produced by the initial heuristic. However,
when exploring two levels of caches, the limited exploration
of each parameter does not allow the dependencies between the
two caches to be explored fully. Furthermore, in a
hardware/software partitioned system, the limited parameter

exploration did not allow the unpredictable cache behavior to
be fully explored.

To improve upon the interlaced heuristic, we added full
parameter exploration, meaning the heuristic checks all
possible values for a given parameter. We applied the
interlaced heuristic with full parameter exploration to the
benchmarks. The results were much improved over the
previous attempt. However, a few benchmarks still performed
poorly.

6.3 The Improved Interlaced Heuristic with
Full Parameter Exploration and Final
Adjustment – TCaT

We examined the cases where the interlaced heuristic with
full parameter exploration was far from optimal. We
determined that the reason for being far from optimal was not
due to a failure in the heuristic, but rather due to the
limitations set on certain cache configurations by the
configurable cache itself. For example, in the level two cache,
if a 16 Kbyte cache is chosen as the best size, the only
associativity available is a direct-mapped cache. With no
energy improvement by increasing the cache from 16 Kbyte
direct-mapped to a 32 Kbyte direct-mapped cache, no other
associativities are searched by the previous heuristics. In some
cases, the optimal cache was indeed a 32 Kbyte 2-way set
associative cache. To allow for all associativities to be
searched, we added a final adjustment to the associativity
search step of the interlaced heuristic with full parameter
exploration. The final adjustment allows the cache size to be
increased for both the level one and level two caches in order
to search larger associativities. We refer to this final heuristic
as the two-level cache tuner - the TCaT.

Table 2 shows the results for the initial heuristic and the
TCaT for each benchmark for the instruction and data caches
for both a non-partitioned and partitioned system. The energy
consumptions have been normalized to the optimal cache
configuration for each benchmark’s instruction or data caches.
The results show that the TCaT finds the optimal cache
configuration in most cases. Averaged over all benchmarks for
the instruction and data caches for the non-partitioned and
partitioned systems, the average energy consumption is 14%
higher than the optimal cache configuration energy

Table 2: Energy consumption (normalized to the optimal cache
configuration) for the initial heuristic and TCaT cache

configurations for both non-partitioned and partitioned
systems.

ICACHE DCACHE

No
Partitioning Partitioning

No
Partitioning Partitioning

Initial
Heur. TCaT

Initial
Heur. TCaT

Initial
Heur. TCaT

Initial
Heur. TCaT

g721 1.007 1 1.007 1 1.147 1 1.474 1
rawcaudio 1.362 1 1.005 1.005 1.282 1.056 1.768 1.043
pegwit 2.285 1 2.322 1 1.041 1 1 1
AIFFTR 1.264 1 1.824 1.019 1.279 1 2.177 1
AIFIRF 1.301 1 1.069 1 1.410 1 2.205 1
BITMNP 1.536 1 1.308 1.031 1 1 1.641 1
IDCTRN 2.694 1 1.492 1 1.127 1.127 1.252 1.004
PNTRCH 1.327 1 1.081 1.142 1.475 1.008 1.068 1
TTSPRK 1.534 1 1.109 1 1.230 1 1.241 1
average 1.590 1 1.357 1.022 1.221 1.0212 1.536 1.005

consumption for the initial heuristic and only 1.2% higher
than the optimal cache configuration for the TCaT. In a few
cases, the TCaT greatly outperforms the initial heuristic. The
initial heuristic finds cache configurations that have 47%,
64% and 430% higher energy consumption than the optimal
cache configuration, while the TCaT finds the optimal cache
configuration in these cases.

To determine the energy savings achieved by the TCaT, we
compared the energy of the cache configuration determined by
the TCaT to the base cache configuration defined in Section 4.
The TCaT achieves an average energy savings in the cache
subsystem of 53% for a non-hardware/software partitioned
system and 55% for a hardware/software partitioned system.

The TCaT focuses on determining the optimal cache
configuration with respect to energy consumption. However, i t
is important to verify that the performance of the system is not
adversely affected. Figure 1 shows the execution times for each
benchmark for the TCaT cache configuration and the optimal
cache configuration normalized to the execution time for the
base cache configuration. Figure 1 represents a system without
hardware/software partitioning. The performance of the system
with hardware/software partitioning is highly dependent on
the partitioning itself, the speed of the processor and the speed
of the configurable fabric used. Details on the performance
estimation methods of the hardware/software partitioning is
beyond the scope of this paper.

Figure 1 shows that for every benchmark, there is no loss
of performance due to cache configuration for optimal energy
consumption. In fact, the benchmarks receive an average of a
30% speedup due to the optimal configuration of the cache
line size.

6.4 Integrity of the TCaT Across Different
Configurations

We studied the integrity of the TCaT across three
additional system configurations. Table 3(a) shows the results
for a system with a fetch from the level two cache being four
times longer than a fetch from the level one cache, with a fetch
from main memory being ten times longer than a fetch from the
level two cache and a memory throughput of 10% of the miss
latency. Table 3(b) and Table 3(c) both show the results for a
system with a fetch from the level two cache being two times
longer than a fetch from the level one cache and with a fetch
from main memory being five times longer than a fetch from
the level two cache. The memory throughput for Table 3(b) and
Table 3(c) is 50% and 10% of the miss latency respectively.

For all of the different system configurations, not only did

the TCaT always perform better than the basic interlaced
heuristic, the average energy consumption of the TCaT
configurations ranges from 0.72% to 1.3% more energy than
the optimal configurations. For the basic interlaced heuristic,
the average energy consumption of the cache configurations
ranges from 6.0% to 14% more energy consumption than the
optimal configurations. The TCaT both performed better and
produced more consistent results than the basic interlaced
heuristic.

6.5 TCaT Exploration Time
The TCaT reduces the configuration search space

significantly. The exhaustive approach for separate instruction
and data caches for a two level cache hierarchy explores 432
cache configurations. The improved heuristic explores 28
cache configurations, or 6.5% of the search space. The
reduction speeds up both a simulation approach and a
hardware-based prototyping platform approach.

For a simulation-based approach, we examined the
exploration time in hours for the exhaustive and TCaT
approaches for cache configuration exploration on a Sun
workstation running SunOS 5.8 with dual 500 MHz processors
and 2 gigabytes of memory. We determined the execution time
for one configuration running on SimpleScalar using the Unix
time command. On average over all benchmarks, using the
TCaT reduced the exploration time from 49.5 hours down to
3.2 hours, with the longest and shortest exploration times
being reduced from 204 hours down to 13 hours, and 6 hours
down to 0.4 hours, respectively.

For the hardware-based prototyping environment, we
examined the exploration time in seconds for the exhaustive
and TCaT approaches for cache configuration exploration on a
hypothetical 200 MHz hardware-based configurable
prototyping platform. To determine the execution time on the
platform, we obtained the total number of instructions
executed in the application from SimpleScalar and assumed a
CPI of 1.5 for all benchmarks. On average over all benchmarks,
using the TCaT reduced the exploration time from 434 seconds
down to 28 seconds, with the longest and shortest exploration
times being reduced from 1811 seconds down to 117 seconds,
and 53 seconds down to 3.4 seconds respectively. Keep in
mind that the benchmarks used were chosen to simulate in a
reasonable amount of time to allow for verification of our
heuristic. Larger benchmarks, and more comprehensive input
vectors, could take hours to search exhaustively in hardware.

7. Conclusions and Future Work
In this paper, we presented an automated method for

tuning two level caches to embedded applications for reduced
energy consumption. On average, the TCaT finds a cache
configuration that consumes only 1% more energy than the
optimal cache configuration for non-hardware/software
partitioned applications, and only 1.4% more energy for
hardware/software partitioned applications. The TCaT searches
only 6.5% of the design space, translating to a 15 times
speedup in exploration time. The TCaT achieves an average
energy savings of 53% for a non-hardware/software partitioned
system and 55% for a hardware/software partitioned system,
with improved performance. We showed the integrity of the
TCaT across multiple system configurations. Future work
includes extending the TCaT to explore a unified level two
cache, recompiling an application after the optimal cache
configuration is determined, and performing the heuristic
dynamically and transparently during runtime.

Figure 1: Execution time of the benchmarks for the TCaT
cache configuration and the optimal cache configuration

(normalized to the execution time of the benchmark running
with the base cache configuration).

0

0.2

0.4

0.6

0.8

1

g7
21

ra
w

ca
ud

io

pe
gw

it

jp
eg

A
2T

IM
E

01

A
IF

F
T

R
01

A
IF

IR
F

01

B
IT

M
N

P
01

ID
C

T
R

N
01

P
N

T
R

C
H

01

T
T

S
P

R
K

01 av
g

P
er
fo
rm
an
ce Base Cache

Configuration

TCaT Cache
Configuration

Optimal
Cache
Configuration

8. Acknowledgements
This research was supported in part by the National Science
Foundation (CCR-0203829, CCR-9876006) and a Dept. of
Education GAANN fellowship, and the Semiconductor
Research Corporation (grant CSR 2002-RJ-1046G).

9. References
[1] Albonesi, D.H. Selective cache ways: on demand cache resource

allocation. Journal of Instruction Level Parallelism, May 2002.
[2] Altera, Nios Embedded Processor System Development,

http://www.altera.com/corporate/news_room/releases/products/nr-
nios_delivers_goods.html

[3] Arc International, www.arccores.com.
[4] ARM, www.arm.com.
[5] Balasubramonian, R., Albonesi, D., Buyuktosunoglu, A.,

Dwarkadas, S. Memory heirarchy reconfiguration for energy and
performance in general-purpose processor architecture. 33rd
International Symposium on Microarchitecture, December 2000.

[6] Burger, D., Austin, T., Bennet, S. Evaluating future
microprocessors: the simplescalar toolset. University of Wisconsin-
Madison. Computer Science Department Tech. Report CS-TR-
1308, July 2000.

[7] EEMBC, the Embedded Microprocessor Benchmark Consortium,
www.eembc.org.

[8] Givargis, T., Vahid, F. Platune: a tuning framework for system-on-
a-chip platforms. IEEE Transactions on Computer Aided Design,
November 2002.

[9] Gnosh, A., Givargis, T. Cache optimization for embedded
processor cores: an analytical approach. International Conference
on Computer Aided Design, November 2003.

[10] Gordon-Ross, A., Vahid, F., Dutt, N. Automatic tuning of two-level
caches to embedded applications. UC Riverside Techical Report
UCR-CSE-03-02, 2003.

[11] Lee, C., Potkonjak, M., Mangione-Smith, W.H. MediaBench: a tool
for evaluating and synthesizing multimedia and communication
systems. Proc 30th Annual International Symposium on
Microarchitecture, December 1997.

[12] Malik, A., Moyer, W., Cermak, D. A low power unified cache
architecture providing power and performance flexibility.
International Symposium on Low Power Electronics and Design,
2000.

[13] MIPS Technologies, www.mips.com.
[14] Palesi, M., Givargis, T. Multi-objective design space exploration

using genetic algorithms. International Workshop on
Hardware/Software Codesign, May 2002.

[15] Reinman, G., Jouppi, N.P. CACTI2.0: an integrated cache timing
and power model. COMPAQ Western Research Lab, 1999.

[16] Segars, S. Low power design techniques for microprocessors,
International Solid State Circuit Conference, February 2001.

[17] Stitt, G., Vahid, F. The energy advantages of microprocessor
platforms with on-chip configurable logic. IEEE Design and Test of
Computers, Nov/Dec 2002.

[18] Tensilica, Xtensa Processor Generator, http://www.tensilica.com/.
[19] Veidenbaum, A., Tang, W., Gupta, R., Nicolau, A., Ji, X. Cache

access and cache time model. IEEE Journal of Solid-State Circuits,
Vol 31, No 5, 1996.

[20] Zhang, C., Vahid, F. Cache configuration exploration on
prototyping platforms. 14th IEEE International Workshop on Rapid
System Prototyping , June 2003.

[21] Zhang, C., Vahid, F., Najjar, W. A highly-configurable cache
architecture for embedded systems. 30th Annual International
Symposium on Computer Architecture, June 2003.

Table 3: Cache energy consumption (normalized to the
optimal cache configuration) for the basic interlaced heuristic

and TCaT for both non-partitioned and partitioned systems
using different system memory configurations:

ICACHE DCACHE

No
Partitioning Partitioning

No
Partitioning Partitioning

Basic
Inter-
laced TCaT

Basic
Inter-
laced TCaT

Basic
Inter-
laced TCaT

Basic
Inter-
laced TCaT

g721 1.008 1 1.009 1 1.147 1 1.474 1
rawcaudio 1 1 1.005 1.005 1.056 1.056 1.043 1.043
pegwit 1 1 1 1 1 1 1 1
AIFFTR 1.006 1 1.019 1.019 1 1 2.177 1
AIFIRF 1 1 1 1 1 1 1 1
BITMNP 1 1 1.030 1.030 1 1 1.641 1
IDCTRN 1 1 1.024 1 1.127 1.127 1.004 1.004
PNTRCH 1.016 1.016 1.142 1.142 1.008 1.008 1.068 1
TTSPRK 1 1 1.000 1 1 1 1 1
average 1.003 1.002 1.025 1.022 1.038 1.021 1.267 1.005

(a) L2 fetch is 4x longer than an L1 fetch, main memory fetch is
10x longer than an L2 fetch, and throughput is 10% of latency

ICACHE DCACHE

No
Partitioning Partitioning

No
Partitioning Partitioning

Basic
Inter-
laced TCaT

Basic
Inter-
laced TCaT

Basic
Inter-
laced TCaT

Basic
Inter-
laced TCaT

g721 1.015 1 1.017 1 1 1 1.121 1
rawcaudio 1 1 1.020 1.020 1 1 1.058 1.058
pegwit 1 1 1 1 1 1 1 1
AIFFTR 1 1 1 1 1 1 2.195 1
AIFIRF 1 1 1 1 1 1 1 1
BITMNP 1 1 1 1 1 1 1.440 1
IDCTRN 1 1 1 1 1 1 1.027 1.027
PNTRCH 1 1 1.118 1.118 1.037 1.037 1.097 1
TTSPRK 1 1 1 1 1 1 1 1
average 1.002 1 1.017 1.015 1.004 1.004 1.215 1.009

(b) L2 fetch is 2x longer than an L1 fetch, main memory fetch is
5x longer than an L2 fetch, and throughput is 50% of latency

ICACHE DCACHE

No
Partitioning Partitioning

No
Partitioning Partitioning

Basic
Inter-
laced TCaT

Basic
Inter-
laced TCaT

Basic
Inter-
laced TCaT

Basic
Inter-
laced TCaT

g721 1.016 1 1.017 1 1 1 1.121 1
rawcaudio 1 1 1.003 1.003 1.206 1.206 1.058 1.058
pegwit 1 1 1 1 1 1 1 1
AIFFTR 1 1 1 1 1.081 1 2.195 1
AIFIRF 1 1 1 1 1 1 1 1
BITMNP 1.001 1.001 1 1 1 1 1.440 1
IDCTRN 1 1 1 1 1 1 1.027 1.027
PNTRCH 1 1 1.118 1.118 1.037 1.037 1.097 1
TTSPRK 1 1 1 1 1 1 1 1
average 1.002 1.000 1.015 1.013 1.036 1.027 1.215 1.009

(c) L2 fetch is 2x longer than an L1 fetch, main memory fetch is
5x longer than an L2 fetch, and throughput is 10% of latency

