
Tuning of Cache Ways and Voltage for Low-Energy Embedded
System Platforms

Abstract
System-on-a-chip platform manufacturers are increasingly adding
configurable features that provide power and performance flexibility,
in order to increase a platform’s applicability to a variety of
embedded computing systems. We illustrate the energy benefits of
combining the configurable features of voltage scaling and cache way
shutdown in a single platform. We describe methods to assist a
designer to tune such a platform to a particular software task and to
particular energy optimization criteria.

Keywords
System-on-a-chip, real-time systems, embedded systems, adaptive
architectures, low power, low energy, system-level exploration,
platform tuning.

1. Introduction
System-on-a-chip (SOC) platforms are becoming popular as a means
of reducing time-to-market. A platform is a pre-designed computing
system, typically consisting of a microprocessor, memory hierarchy,
coprocessors, peripherals, and possibly field-programmable logic. An
IP (Intellectual Property) platform comes in the form of a hardware
description language. An IC (Integrated Circuit) platform comes in the
form of a chip. An IC platform can be oriented towards prototyping, or
can be oriented towards implementation in a final product. In this
paper, we focus on product-oriented IC platforms with configurable
parameters.

Product-oriented IC platforms become cheaper as they are
produced in higher volumes. Thus, platform manufacturers seek to
make a platform as general and hence widely applicable as possible,
without allowing that generality to increase platform size too much to
offset the volume cost savings. One increasingly common method for
making a product widely applicable is to make its voltage source
scalable [4][7][9][14][15]. A platform user (i.e., an embedded system
designer) can then set the voltage level higher for fast performance, or
lower for reduced power, depending on the end application’s static or
dynamic requirements.

Another method for making a platform widely applicable is to
include an N-way set-associative cache whose ways can optionally be
individually shut down. Such shut down can reduce power per access
by reducing power-costly tag comparisons and eliminating the power
necessary to drive a way’s bit-lines and word-lines, at the potential
expense of reduced performance due to more misses. If this reduction
is greater than the increase caused by more cache misses and hence
power-costly accesses to the next level of memory, then overall power
is reduced. When power was not an issue, shutting down ways was not
considered since it could only hurt performance. Motorola’s recent

version of an MCORE processor IC has a configurable 4-way
set-associative unified cache [12], in which each way can be disabled,
or used for instructions, data, or both. They show that the best
configuration depends heavily on the particular running task. Albonesi
[1] proposes a 4-way data cache with ways that can be disabled even
during task runtime. They achieve 40% cache energy savings at a cost
of only 2% performance for several examples. Other types of cache
configurability have also been proposed [2][17]. Furthermore, various
cache power-reduction methods could easily be adapted for use in a
configurable cache. For example, pseudo-set-associative cache [11]
reduces access power at the expense of some performance loss, by
initially searching for a match in the first way of a cache, and only
searching the remaining ways if the first way misses. Introducing such
a search strategy as a configurable feature to a cache is
straightforward.

Both voltage scaling and configurable caches have been shown to
provide excellent flexibility for trading off power and performance.
The next logical step is for a platform to have both a scalable voltage
and a configurable cache. The problem then arises of tuning –
configuring of voltage and cache parameters to a particular software
task and to particular power and performance requirements. In the
case of a platform executing a single task, a single configuration may
be established during system initialization. In the case of multiple
tasks in a real-time system, each task may cause a reconfiguration of
the platform.

In this paper, we describe an example platform having
configurable voltage and cache, and we show the extensive power and
performance tradeoffs possible through tuning of such a platform. We
discuss methods for a platform developer to support tuning of the
platform. We describe methods for tuning such a platform to a task
under different optimization criteria, such as minimizing energy, and
minimizing energy-delay.

2. Evaluating Configurable Architectural
Features
2.1 Architecture
The platform we modeled is shown in Figure 1. It consists of a MIPS
microprocessor core, a unified instruction/data cache, an on-chip
memory, and a DC-to-DC converter. The microprocessor configures
the DC-to-DC converter by setting a register, to scale the input supply
voltage from 3.8 V down to 1.0 V, in increments of 0.1 V; the clock
frequency is reduced accordingly for lower voltages. The cache is
unified and 8-way set-associative, and can be configured by the
microprocessor to use 1, 2, 4, or 8 of its ways. We used a 16-byte line
size and 64 rows. In [12], the 4-way cache could have each way
configured to be disabled, used for instruction-only, for data-only, or

Tony Givargis
Center for Embedded Computer Systems

Department of Information & Computer Science
University of California, Irvine, CA 92697

givargis@ics.uci.edu

Frank Vahid
Department of Computer Science & Engineering
University of California, Riverside, CA 92521

vahid@cs.ucr.edu
Also with the Center for Embedded Computer Systems at UC Irvine



for both instruction and data. For simplicity in this work, our cache’s
ways could only be disabled or used for both instruction and data, but
the methods can be applied to cache’s with greater or lesser
configurability.

2.2 Evaluation Environment
A platform developer must have some way to evaluate the power and
performance impacts of a platform’s various configurable features, in
order to ensure that including such features is beneficial. Furthermore,
that method of evaluation may become part of a tuning environment
provided to a platform user. One method of evaluation is to measure
power and performance of an application executing on a physical
instance of a configurable platform. This method is generally preferred
when available, due to the speed and accuracy of evaluation. When not
possible, due to the unavailability of the platform, or the difficulty or
danger of executing the platform in a real environment, then
simulation based methods may be preferred.

We utilized a simulation-based method for this work. Our evaluation
environment, called Platune, includes an executable model of the
target architecture depicted in Figure 1. The simulation model is
augmented with power models to allow for measuring the average
power consumption of the chip while running a task. Platune can be
broken down into two components, namely, the simulator module and
power analyzer module. A lengthier description of those components
can be found in [8], while a brief summary is given here.

Platune is a tightly coupled collection of event driven cycle
accurate simulation models of its various components, namely,
processor, cache, memory, and busses. The processor simulator
maintains detailed statistics on its internal activity, e.g., fetches, stalls,
instruction execution frequency, register file access, floating-point
activity, etc. Such statistics are used in a post simulation analysis to
compute power and performance metrics. The level of detail of the
processor simulator can be compared to the most detailed simulator
that is part of the collection of simulators making up SimpleScalar [5].
The cache simulator of Platune is a fully parameterized element that
operates on a stream of memory references that is output from the

processor. In addition to the standard cache metrics, such as number of
misses (e.g., all those generated by Dinero cache simulator [6]), the
Platune cache simulator maintains additional activity statistics,
including the number of tag comparisons, the word-line activity and
bit-line activity, etc., that are later used for power computation. Like
the cache simulator, the bus simulator in Platune also operates on a
stream of data and memory references that are generated by the
processor, cache and memory modules, and accumulates bus wire bit
toggle statistics that are later used for power computation.

The second component of Platune, the power model and
analyzers, operate on the statistics that are gathered during simulation,
as described earlier. For the processor, an instruction based power
modeling is applied that is based on models developed in [16] and [3].
For caches, first a structured (physical) model is deduced based on
the cache parameter settings and technology feature size. This allows
estimation of bit-line, word-line, comparator, storage transistors, and
address decoding logic capacitive loads. Then, switching activity from
the simulation phase is applied to obtain average power consumption
of the cache. Similarly, for each bus segment, a rough layout is
inferred that is based on the chip technology, chip area, bus widths,
and relative size of the various cores, in order to obtain the average
bus capacitance. Then, switching activity from the simulation phase is
applied to obtain average power consumption of various buses.

The entire Platune environment is integrated into a single GUI
application. The environment bundles in a public-domain C compiler
as well as a small runtime kernel for use by the tasks that are being
executed on the platform. Overall accuracy of Platune was
experimentally shown to be 5% to 15% of gate-level measurements
[8].

We assume the evaluation environment provides a procedure
EvaluatePlatformConfig(V,A), which can be used by our algorithms.
The procedure executes a given task on our example platform using
the voltage V and associativity A values passed as parameters, and
returns the summary of the evaluation in a data structure Eval, which
includes the time, power, energy, and voltage and associativity
settings. The procedure may fire off simulation tools, like those in
Platune, SimpleScalar, hardware description language simulators, or
other simulation approaches. It may call higher-level estimators, such
as described in [13]. It may even run the task on real hardware if
available. The techniques in the rest of the paper can be used with any
of these evaluation approaches.

2.3 Power/Performance Tradeoffs and Pareto
Points
We now demonstrate the power and performance ranges that are
possible through the configurable platform described above. We used
three benchmark tasks from the PowerStone benchmark suite [12].
g3fax is a group three fax decoder (single level image decompression),
jpeg is a 24-bit JPEG image decompression standard, and v42
performs modem encoding/decoding. g3fax is roughly 652 lines of C
code, jpeg 620 lines , and v42 743 lines.

For each benchmark, we evaluated power and performance for 29
voltage levels ranging from 1.0 to 3.8 in 0.1V increments, and all 4
cache way configurations, for a total of 116 configurations. We
executed 1,127,387, 4,594,120, and 2,441,985 instructions for the
g3fax, jpeg, and v42 examples, respectively, requiring 512, 2088 and
1110 seconds for each configuration on Platune.

Figure 1: Target Architecture.

64

On Chip Memory

64 64

DC-DC
Converter &
Frequency
Loop

Vdd
•

Clk•

Vdd

MIPS Core

Freq. Reg. $ Regs.

Clk

• Variable voltage and
frequency feed to on
chip CPU, cache and
memory subsystem.

SOC

Way Configurable Cache

Unified I$/D$



We plot the data for the g3fax example in Figure 2. The plot uses
different symbols for 1, 2, 4, and 8-way associativity –– note that, for
a given associativity, the upper-left points correspond to the higher
voltage levels. The maximum values of the axes are limited to
improve viewing of the interesting points; thus, not all points appear.

The configurability of the platform provides a tremendous range
of power and performance, mostly due to the voltage scaling. Table 1
summarizes the power (in Watts) and time (in seconds) ranges for
each example.

Example Metric Max Min Ratio
power 0.2868 0.000195 1471
time 1.19 0.01625 73
power 0.3089 0.000206 1500
time 5.834 0.07124 82
power 0.2904 0.000164 1771
time 4.97 0.03862 129

g3fax

jpeg

v42

Table 1: Power and performance ranges for the examples.

The most important feature from the plot to note is that, while
voltage certainly has a larger impact on power and performance, the
configurable cache improves the granularity of possible tradeoffs by
providing additional Pareto points. A Pareto point is one for which no
other point has both better power and time. In other words, Pareto
points form the lower-left curve of the plot, and represent the design
points of interest. For example, observe the indicated points in Figure
2. The points for a 4-way cache, shown as triangles, are connected by
a dashed line. Notice that a 2-way cache’s points, shown as squares,
represent several additional Pareto points. Likewise, a 1-way cache’s
points, shown as diamonds, represent even more Pareto points. Thus,
if we had a fixed 4-way cache, we would not have been able to
achieve the intermediate points achieved by a 2-way and 1-way cache.
Similar observations can be made in other regions of the data. We
observed similar plots for the other two examples.

That configurable cache leads to additional Pareto points is not
an obvious situation –– it could have occurred that alternative cache
configurations may not have yielded interesting points. For example,
notice that an 8-way cache (shown as x’s in the figure) does not
provide any Pareto points in this example.

Table 2 compares the total number of Pareto points obtained for
each example with a configurable cache, to the number obtainable
using a fixed 4-way associative cache. The importance of these
additional Pareto points will become quite clear in subsequent
sections. One import feature of Pareto points is that a minimum
energy solution, for any given time constraint, will always be a Pareto
point.

Example
With fixed 4-
way cache

With configur-
able cache

g3fax 29 67
jpeg 29 57
v42 29 50

Table 2: Configurable cache increases the Pareto points and hence the
power/performance tradeoff granularity.

To summarize, a platform with both configurable voltage and
cache provides for more tradeoffs between power and performance.

3. Developing a Tuning Environment
Presently, tuning a platform’s configurable features is left to the
platform user. Because the potential configuration space may be very
large, platform developers may provide automated support for tuning.
The key to such support is to find the best configuration for a
particular application without evaluating all possible configurations.

To do this, a platform developer may exhaustively evaluate a number
of benchmarks, and find trends in the generated data that can be used
to develop algorithms that efficiently explore the configuration space
for typical tuning criteria desired by a user. We consider the typical
tuning criteria of minimizing energy given some performance
constraint, and of optimizing energy × delay (a.k.a., energy-delay)
given a performance constraint, while commenting on other tuning
criteria.

3.1 Optimizing Energy given Timing Constraints
3.1.1 Problem Overview
A common goal is to minimize the energy required to perform a
repetitive task. Energy minimization can maximize battery lifetime.

Figure 3 provides exhaustive energy data for all three examples.
The x-axis represents the voltage level, and different symbols
represent different associativity. The figure also shows power and
time data. We can see that, for our platform, minimum energy comes
from setting the voltage as low as possible, and then picking the
associativity that best matches the task. For the minimum voltage of
1.0 V in each example, we get the time, power and energy values
shown in Table 3.

Figure 2: Power vs. time for the g3fax example. The configurable
associativity yields additional Pareto points.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Time (s)

P
o

w
er

(W
)

1 2
4 8

Additional Pareto points
from 2-way

Additional Pareto points
from 1-way



Ex. Metric 1-way 2-way 4-way 8-way
time 1.19 1.02 0.9643 0.962
power 0.0001954 0.0002264 0.0002674 0.0003355
energy 0.0002326 0.000231 0.0002579 0.0003227
time 5.834 4.275 4.219 4.218
power 0.0002059 0.0002581 0.0002938 0.0003613
energy 0.001201 0.001104 0.00124 0.001524
time 4.97 3.141 2.435 2.287
power 0.0001637 0.0002077 0.000265 0.0003396
energy 0.0008138 0.0006522 0.0006452 0.0007766

g3fax

jpeg

v42

Table 3: Close-up look at time, power and energy data for the lowest
voltage for our three examples.

This data shows that 2-way associativity is best for g3fax and jpeg,
while 4-way is best for v42.

However, note that the lowest energy configuration may exhibit
very poor performance. For example, the jpeg example would require
4.275 seconds to decode an image at 1.0 V – too long for most
applications. In fact, we had to omit the 1.0 V points from the time
plots in Figure 3, as they were literally off the chart.

For reasons obvious from these examples, we consider instead
the problem of minimizing energy while also meeting a performance
constraint. We assume the constraint is given as a maximum time for
the task to execute once.

3.1.2 Approximate Algorithm
Let us begin by developing an approximate algorithm that works well
on the generated data, and will form part of an exact algorithm.
Looking at the energy plots, we see that lower voltage will usually
give us lower energy, independent of associativity. This is not always
true – notice that there is some overlap of energy values for adjacent
voltage levels. However, minimizing voltage should suffice in our
approximate algorithm. For a given voltage, we would then want to
find the associativity that yields minimum energy for that voltage.

Note from the time plots that 8-way associative cache always
yields the best time at a given voltage. This is logical; shutting down
ways can only increase the number of misses and thus lengthen time.
Thus, our algorithm can begin by finding the minimum feasible
voltage –– namely, that voltage at which an 8-way cache satisfies the
time constraint. No lower voltage could possibly satisfy the time
constraint. Given the lowest feasible voltage, the algorithm can try 1,

Figure 3: Time, power and energy data for the three examples.

0

0.02

0.04

0.06
0.08

0.1

0.12

0.14

0 2 4
Volt. (V)

T
im

e
(s

)
1 2 4 8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4
Volt. (V)

P
o

w
er

(W
)

1 2 4 8

0

0.001

0.002

0.003

0.004

0.005

0 2 4
Volt. (V)

E
n

er
g

y
(J

)

1 2 4 8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 2 4
Volt. (V)

T
im

e
(s

)

1 2 4 8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4
Volt. (V)

P
o

w
er

(W
)

1 2 4 8

0

0.005

0.01

0.015

0.02

0.025

0 2 4
Volt. (V)

E
n

er
g

y
(J

)

1 2 4 8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 2 4
Volt. (V)

T
im

e
(s

)

1 2 4 8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 2 4
Volt. (V)

P
o

w
er

(W
)

1 2 4 8

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 2 4
Volt. (V)

E
n

er
g

y
(J

)

1 2 4 8

g3
fa

x
jp

eg
v4

2



2 and 4-way caches, in addition to the already-tried 8-way cache, at
that voltage too, to see which associativity gives minimum energy at
that voltage while still meeting the timing constraint. That voltage and
associativity would be the best configuration found by the algorithm.

We want to find the lowest feasible voltage in an efficient
manner. We could begin with the lowest voltage, evaluate
performance, and then increase voltage by the smallest possible
voltage step and re-evaluate, until we find the first voltage that
satisfies the constraint. Conversely, we could begin with the highest
voltage and work down until we fail to meet the constraint. Either
approach has a time complexity linear with respect to the number of
possible voltage steps. In case the number of possible steps is large
(such as 128 [4]), this approach may take too long. However, observe
that task runtime strictly decreases as we increase voltage. Thus, we
can view the problem of finding the lowest feasible voltage as a
problem of searching for an item in an ordered list. A fast search
method for such a problem is binary search. Thus, we can step through
the voltage levels using a binary search approach. We start at the
middle voltage level (and an 8-way cache) and evaluate –– if this
configuration meets the timing constraint, we perform binary search
on the range of lower remaining voltages. If it doesn’t, we perform
binary search the higher remaining voltages.

Our approximate algorithm, TuneEnergyApprox, is shown in
Figure 4. It uses the EvaluatePlatformConfig routine described in
Section 2.2. The algorithm begins by calling a subroutine
BinarySearchVoltRange, which takes as parameters the lowest and
highest voltage settings to examine, the cache associativity, and the
time constraint T. It steps through voltage settings in a binary search
manner, as described above, and makes calls to
EvaluatePlatformConfig for each setting, returning the evaluation
with the lowest feasible voltage, which is stored in a variable V_low.
Then, the algorithm enters a loop that evaluates associativities lower
than 8, starting with 4, then 2, then 1, at the voltage V_low. If a lower
associativity fails to meet the timing constraint, the loop terminates,
since even lower associativities would also fail. At the end of the loop,
eval_best will be the evaluation having the lowest energy encountered,
and so it is returned by the algorithm.

The algorithm has a worst-case time complexity of log2(Vn) +
An, where Vn is the number of possible voltage settings, and An is the
number of possible associativities. For our platform, Vn is 29 and An
is 4, so the worst-case number of evaluations is 5 + 4 = 9. This can be
compared with an exhaustive search of all configurations, having time
complexity of 29 × 4 = 116.

As an example, consider the time plot for g3fax, and suppose we
are given a time constraint of 0.6 seconds (shown as a dashed line in
Figure 3). We see that a voltage setting of 2.2 V, with any of the cache
configurations, would satisfy this time constraint, whereas 1.8 V
would be too slow. Given that we have selected a voltage of 2.2 V, we
want to pick the associativity that gives the best energy. Looking
closely at the energy data reveals that 2-way associativity yields less
energy at any voltage level. Thus, we could select a configuration of
2.2 V and 2-way associativity.

Note that 2-way associativity provides neither the best time nor
the best power at 2.2 V. Best time will usually be obtained by
activating the entire cache, in this case, by using 8-ways. Best power,
in cases where cache power dominates overall power, will be obtained
by shutting down most of the cache, in this case, by using 1-way.

Thus, after determining what voltage level will satisfy timing, we
must then look directly at energy.

As another example, consider the time plot for v42, and a time
constraint of 0.2 seconds (shown as a dashed line in Figure 3). A
voltage of 1.8 V with 8-way associativity yields a time of 0.16
seconds, thus satisfying the time constraint. Reducing associativity to
4-way yields a time of 0.18 seconds, still satisfying the constraint.
However, reducing associativity to 2-way yields a time of 0.23
seconds, which exceeds the constraint. Thus, our algorithm compares
energy values for 4-way and 8-way associativies at 1.8V, and seeing
that 4-way is better, returns a configuration of 1.8 V and 4-way
associativity.

3.1.3 Exact algorithm
The above algorithm is approximate, because it does not consider
configurations using higher voltage than the minimum feasible
voltage. However, for a particular example, a time-satisfying
configuration could exist that uses a higher voltage and a different
cache configuration but has lower energy than the best time-satisfying
configuration at a lower voltage level. This situation can be seen in the
energy plots of Figure 3. At the right side of the g3fax and jpeg plots,
for example, we see that 2-way associativity at one voltage level has
lower energy than 8-way associativity at the next lower voltage level.
Assume for the moment that our cache were only configurable as 2 or
8 way, and consider the g3fax time plot in Figure 3. Though it is hard
to see from the plot, at 3.0 V, 2-way has a time of 0.0253 seconds,
while 8-way has a time of 0.02385 seconds. Now, suppose the time
constraint was 0.024 seconds. The lowest feasible voltage would be
3.0 V, and the best cache configuration at this voltage would be 8-
way, so our algorithm would find this point, having energy 0.002905
J. However, note from the g3fax energy plot that a configuration of 3.4
V and 2-way cache actually exhibits lower energy – 0.002671 J. Our
approximate algorithm would not detect this point, since it would
never check voltages higher than 3.0 V.

We provide an exact algorithm in Figure 5. The algorithm begins
by calling the approximate algorithm to find the lowest feasible

Figure 4: Approximate algorithm for minimizing energy while
satisfying a performance constraint.

Eval TuneEnergyApprox()
// Find lowest feasible voltage that can satisfy
// the timing constraint, using binary search.
Eval eval_init, eval_best, eval;
float V_low;

eval_init = BinarySearchVoltRange(1.0, 3.8, 8, T);
V_low = eval_init.V;

// Find lowest energy associativity at this voltage
// that still satisfies the timing constraint
eval_best = eval_init;
for each associativity A in (4, 2, 1) loop

eval = EvaluatePlatformConfig(V_low, A);
if (eval.time > T)

exit loop; // smaller assoc. would be slower
if (eval.energy < eval_best.energy)

eval_best = eval;
end loop;

// eval_best is the lowest energy configuration that
// satisfies the timing constraint at the lowest
// feasible voltage
return(eval_best);



voltage and the smallest time-satisfying associativity at that voltage.
We refer to the smaller associativities at this voltage level that exceed
the time constraint as the too-slow list. The algorithm then improves
on the approximate algorithm –– as long as there are higher voltages
to examine and the too-slow list is not empty, the algorithm iterates as
follows.

The algorithm increases the voltage to the next higher level, and
then calls EvaluatePlatformConfig with each associativity, highest to
lowest, moving to the next step when an associativity doesn’t meet the
timing constraint. If the evaluated energy for this associativity is
greater than the lowest so far, this associativity is removed from the
too-slow list and not considered further – its energy will only get
worse at higher voltages, according to the trends in Figure 3.
Otherwise, if the evaluated time now meets the time constraint, this
associativity is removed from the too-slow list and is added to a new
list. The algorithm then checks the energy for the associativities in the
new list, and updates the best configuration seen so far.

In summary, the idea is to increase to the next higher voltage
and catch any smaller associativities that didn’t satisfy timing at the
lower voltage, but do satisfy timing at this higher voltage and happen
to have lower energy than the best configuration seen so far.

The approximate part of the algorithm again has worst-case time
complexity of log2(Vn) + An. The subsequent iterations in the worst-
case may step through Vn voltages in the exact algorithm’s while loop.
The two for loops in that while loop have an amortized iteration count

of O(1) (each item in the too-slow list will be removed only once and
then checked for energy only once). So the complexity of the exact
algorithm is log2(Vn) + An + Vn. However, we rarely expect to see
this worst case, since we don’t expect to have to increase voltage by
much before other associativities have higher energy than the best
seen so far, thus causing the too-short list to empty quickly.

Further improvements to the algorithm involve increasing the
voltage during the iterative step in larger chunks, backtracking when
necessary –– one can approach binary search in this direction too, thus
reducing the Vn term closer to log2(Vn).

Recall that we consider only a basic form of configurable cache.
Other caches may be more highly configurable. For example, there
may be more ways (e.g., a 32-way cache), and any number of ways
could be shut down rather than just powers of two (e.g., 7 ways may
be active). Ways could be configurable for instructions, data or both.
Lookup could be configurable as set-associative or pseudo-set-
associative. Both our approximate and exact algorithms can be
extended for more-configurable caches. The key is to sort the
configurations by their time impact, and to replace occurrences of lists
of associativities in our algorithms by the more general idea of lists of
cache configurations. If certain configurations can’t be sorted relative
to one another, they must be treated as a set within the list.
Furthermore, if energy is not strictly increasing at higher voltages for a
given configuration, then we would simply remove the line with the
comment “already worse” in the exact algorithm.

3.2 Optimizing for Energy ×××× Time
As mentioned earlier, optimizing for energy only may result in
unacceptably slow performance. One way to solve this is to provide a
time constraint. However, if a hard time constraint does not exist, an
alternative that has been proposed by other authors is to optimize the
product of energy and time [10]. Optimizing this product seeks to
balance the minimization of energy with the minimization of time, not
letting one grow unacceptably large.

We provide energy × time data in Figure 6 for g3fax. Notice that
there is a clear minimum point at 2.2 V. All three examples exhibited
a similar curve with a clear minimum, though at different voltage
levels. Furthermore, note that the ordering of associativities is the
same at each voltage level –– this was also consistent across
examples. Given these trends, we can develop a straightforward exact
algorithm, similar to the approximate algorithm in Figure 4. To find
the voltage corresponding to the minimum energy × time, we perform
a modified binary search of the voltage. The modification to binary

Figure 5: Exact algorithm for minimizing energy while satisfying a
performance constraint.

Eval TuneEnergyExact()

// Find approximate solution
Eval eval_best, eval;
eval_best = TuneEnergyApprox();

// Create too-slow list of all associativities less
// than eval_best.A
LIST tooslowlist, newlist;
for (int A=(eval_best.A)/2; A >=1; A=A/2) loop

tooslowlist.Append(eval_best.A);
end loop;

// Look for higher-voltage assocs. with lower energy
float V = eval_best.V;
while (((V = NextHigherVoltage(V)) != NONE) and

(!tooslowlist.IsEmpty())) loop
// Find new assocs. that satisfy time constraint
for each A in tooslowlist loop

eval = EvaluatePlatformConfig(V, A);
if (eval.energy > eval_best.energy)

tooslowlist.Remove(A); // already worse
else if (eval.time <= eval_best.T)

newlist.Append(A);
tooslowlist.Remove(A); // gets one chance

else // eval.time > eval_best.T
exit loop; // smaller assocs. can’t satisfy

end loop;

// Check if new assocs. reduce energy
for each A in newlist loop

if (eval.energy < eval_best.energy)
eval_best = eval;

end loop;
end loop;

return(eval_best);

Figure 6: Energy × time for the g3fax example.

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0 1 2 3 4
Volt. (V)

E
n

er
g

y*
T

im
e

(J
*s

ec
)

1 2 4 8



search is as follows. Given a voltage range, we find the two middle
voltages of the range and evaluate them. If the slope of the line
connecting the resulting energy × time points is positive, then we must
be to the right of the minimum, and thus we consider only the
remaining voltage range less than the middle voltages. If the slope is
negative, we must be to the left, and thus we consider the remaining
range greater than the middle voltages. After finding the voltage
corresponding to minimum energy × time, we evaluate all possible
associativities at this voltage, and choose the one with minimum
energy × time. This algorithm is exact, and has worst-case time
complexity log2(Vn) + An.

3.3 Optimizing for Other Situations
There are several other tuning scenarios that can be solved using
slight variations to the above algorithms.

A platform user might, for example, have a time constraint, but
want to minimize energy rather than power. This can be solved using a
similar approximate algorithm or exact algorithm as proposed for
minimizing energy, substituting power evaluations for energy
evaluations.

A platform user might instead have a power constraint, and wish
to minimize time. Again, we can use similar techniques. We can use
an approximate algorithm that performs binary search on the voltage
range to find the maximum feasible voltage that satisfies the power
constraint, and then pick the best associativity. We can extend this
into an exact algorithm by iterating for lower voltages, examining the
remaining set of associativities at each stage.

Several other possible variations to the techniques exist for other
optimization goals.

The specific algorithms may differ for different platforms – the
key point is that the platform developer can analyze extensive data to
generate fast tuning algorithms, which may or may not look similar to
those presented above. In some cases, exact algorithms may be too

time consuming, so approximate algorithms might be all that is
possible.

3.4 Dependency on Input Data
The platform developer should take care to ensure that the power and
performance are not heavily dependent on the input data being utilized
by a particular task. If there is such dependency, the developer should
take additional steps to characterize that data (e.g., based for example
on the density of 1’s in the data), and to adjust tuning accordingly
based on the datasets.

We investigated the dependency on input data for the three
benchmarks. We ran each benchmark using three data sets: one
representing actual data (fax data, image data, and modem data for
g3fax, jpeg and v42, respectively), and two being random data.
Results are shown in Figure 7, for 40 different voltage and
associativity configurations. The results show some dependence on
input data, but overall trends being rather independent of the data.

4. Using a Tuning Environment
In this section, we highlight experiments of a user utilizing a tuning
environment to minimize energy given a time constraint. We use the
same three examples as earlier. We ran the approximate and exact
algorithms on the g3fax, jpeg, and v42 examples, for two different
time constraints (Tcon) of 0.08 and 0.3 seconds. These constraints
were selected to represent one tight and one loose constraint across all
three examples. Table 4 summarizes results. The number of
evaluations (#) performed by our approximate algorithm averaged just
over 7, and just over 9 for our exact algorithm. Thus, for this platform,
the exact algorithm can usually be run without requiring excessive
time.

The resulting best voltage (V) and associativity (A), and
corresponding energy (E, in Joules) are shown for approximate and
exact. The percentage difference in energy (E%) is the same for the
two algorithms except for one case. The exact solutions were identical

Figure 7: Energy results for different input data.

g3fax

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009
1 4 7 10 13 16 19 22 25 28 31 34 37 40

E
n

er
g

y
(J

)

jpe g

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

1 4 7 10 13 16 19 22 25 28 31 34 37 40

v 42

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

1 4 7 10 13 16 19 22 25 28 31 34 37 40

ac tual

rand1

rand2



to the optimal solutions found during the exhaustive search
experiments described in Section 3. The results show that the tuning
environment can find the optimal configuration using less than 10
evaluations, much less than the 116 required for an exhaustive search.

Ex. Tcon # V A E (mJ) # V A E E%
g3fax 0.08 8 1.8 2 0.0007 10 1.8 2 0.0007 0%

0.30 8 1.2 4 0.0004 10 1.2 4 0.0004 0%
jpeg 0.08 7 3.6 2 0.0143 9 3.6 2 0.0143 0%

0.30 7 1.9 2 0.0040 9 1.9 2 0.0040 0%
v42 0.08 6 2.5 8 0.0049 9 2.6 4 0.0044 12%

0.30 7 1.5 4 0.0015 9 1.5 4 0.0015 0%

Approximate Exact

Table 4: Results of minimizing energy while meeting a performance
constraint, for two different timing constraints, using the approximate

and exact algorithms.

A platform user mapping one task to a platform need only run
tuning once for that task, given the particular performance constraint
and optimization criteria (e.g., energy, energy * delay). A user
mapping multiple tasks to the same platform may statically allocate
performance constraints to each task and then tune each task
individually as above for the given optimization criteria, resulting in a
static task schedule and a configuration for each task. Such runtime
reconfiguration must take into account the reconfiguration time, which
should be provided by the platform developer. This time will likely be
dominated by the voltage scaling and clock scaling; the cache
configuration takes about the time needed just to write to the
configuration registers.

A platform user should be aware that different versions of the
same task can yield very different performance and power results. The
user may want to consider first examining different task versions
before tuning a platform to the selected task. Furthermore, the user
may wish to iterative tune the task to the platform and the platform to
the task.

We also conducted experiments to demonstrate the usefulness of
having a configurable cache in addition to configurable voltage,
coupled with a tuning environment. A user without a tuning
environment may not find the best configuration. In Table 5, we show
the energy that would have been wasted if we had scalable voltage,
but we only used a fixed cache of associativity 1, 2, 4 or 8 (A1, A2, A4
and A8, respectively), compared to an 8-way cache whose ways are
shut down optimally. In other words, the 11% in the first row of
column A1 indicates that the optimal configuration for g3fax with a
time constraint of 0.08 seconds utilized 11% less energy than a 1-way
cache. We can see by the 0% in the next column that a 2-way cache
was the optimal for that example. Had we merely left all 8-ways on,
the average energy wasted would have been 27%, and as much as 50%
in one instance.

Ex. Tcon A1 A2 A4 A8
g3fax 0.08 11% 0% 10% 28%

0.30 1% 0% 10% 50%
jpeg 0.08 fail 0% 11% 28%

0.30 25% 0% 16% 28%
v42 0.08 fail 21% 0% 10%

0.30 55% 22% 0% 17%
Average: fail 7% 8% 27%

Table 5: Data showing that no single cache configuration is best for all
three examples.

An observation that we can make from this data is that no one
cache configuration is best for all the examples. The largest, 8-way,
cache is not the most energy efficient for any of the examples. The
smallest, 1-way, cache is also not energy efficient (due to numerous
misses), and even fails to meet the timing constraint in two of the six
cases. The 2-way cache is best for two of the examples, but the 4-way
is best for the third example. For other benchmarks, the 8-way or 1-
way caches might be best. Thus, we can see the importance of
including configurable cache in platforms with configurable voltage,
and the importance of a platform user performing the tuning step
properly.

5. Conclusions
Adding configurability to platforms allows a user to tune a platform to
a task’s runtime profile and to power and performance constraints,
making such platforms more widely-applicable and hence lowering
their costs due to volume production savings. Voltage scaling and
configurable caches represent two increasingly popular forms of
platform configurability. We showed that combining these two
features extends the meaningful configuration space considerably. We
described methods to adapt a platform to particular tasks and
introduced tuning algorithms for several common situations. Future
work includes considering more highly-configurable caches as well as
additional configurable parameters, and possibly even dynamic
determination of reconfiguration values by a real-time kernel.

6. Acknowledgements
This work was supported by an NSF CAREER award (CCR-9876006)
and TriMedia Technologies Inc.

References
[1] Albonesi, D.H.. Selective Cache Ways: On-Demand Cache

Resource Allocation. Journal of Instruction Level Parallelism,
May 2000.

[2] Balasubramonian, R; Albonesi, D; Buyuktosunoglu, A;
Dwarkadas S. Memory hierarchy reconfiguration for energy and
performance in general-purpose processor architectures.
Proceedings of Annual IEEE/ACM International Symposium on
Microarchitecture. Dec. 2000.

[3] Brooks, D.; Tiwari, V.; Martonosi, M.; Wattch: A Framework for
architectural-level power analysis and optimizations. Proceedings
of Annual international Symposium on Computer Architecture.
June, 2000.



[4] Burd, T.D.; Pering, T.A.; Stratakos, A.J.; Brodersen, R.W. A
dynamic voltage scaled microprocessor system. IEEE
International Solid-State Circuits Conference. Nov. 2000.

[5] Burger, D; Austin, T.M. The SimpleScalar Tool Set, Version 2.0.
University of Wisconsin-Madison Computer Sciences
Department Technical Repor #1342. June 1997.

[6] Edler, J.; Hill, M.D. Dinero IV Trace-Driven Uniprocessor Cache
Simulator. http://www.cs.wisc.edu/~markhill/DineroIV.

[7] Geppert, L.; Perry, T.S. Transmeta's magic show. IEEE
Spectrum, vol. 37, no. 5, pp. 26-33, May 2000.

[8] Givargis, T.D.; Vahid, F.; Henkel, J. System-level exploration for
Pareto-optimal configurations in parameterized system-on-a-chip.
Proceedings of the International Conference on Computer-Aided
Design, Nov. 2001.

[9] Halfhill T.R. Transmeta Breaks x86 low power barrier.
Microprocessor Report, pp. 9-18, Feb. 2000.

[10] Hong, I.; Potkonjak, M.; Srivastava, M.B. On-line scheduling of
hard real-time tasks on variable voltage processor. International
Conference on Computer-Aided Design. Nov. 1998.

[11] Inoue, K., T. Ishihara and K. Murakami. Way-Predicting Set-
Associative Cache for High Performance and Low Energy
Consumption. International Symposium on Low Power
Electronics and Design, 1999.

[12] Malik, A.; Moyer B.; Cermak D. A Low Power Unified Cache
Architecture Providing Power and Performance Flexibility.
International Symposium on Low Power Electronics and Design.
June 2000.

[13] Nandi, A., and R. Marculescu System-Level Power/Performance
Analysis for Embedded Systems Design. Design Automation
Conference, 2001, pp. 599-604

[14] Rae, A. and S. Parameswaran. Voltage Reduction of Application-
Specific Heterogeneous Multiprocessor Systems for Power
Minimisation. ASP-DAC, 2000, pp. 147-152.

[15] Pering, T.; Burd, T.; Brodersen, R. The simulation and evaluation
of dynamic voltage scaling algorithms. International Symposium
on Low Power Electronics and Design. Aug. 1998.

[16] Tiwari, V; Malik, S.; Wolfe, A. Power Analysis of Embedded
Software: A First Step Toward Sofware Power Minimization.
IEEE Transactions on VLSI Systems, vol. 2, no. 4, pp. 437-445,
1994.

[17] Veidenbaum, A.V.; Weiyu T.; Gupta, R.; Nicolau, A.; Xiaomei J.
Adapting cache line size to tas behavior. International Conference
on Supercomputing. June 1999.


