Specification Partitioning for System Design

Frank Vahid and Daniel D. Gajski
Department of Information and Computer Science
University of California, Irvine, CA, 92717

Abstract

Behavioral partitioning can be applied to attain various
goals, one of which is the satisfaction of chip-packaging
constraints. Such partitioning heavily influences decisions
made in subsequent structural design, and may therefore
lead to higher performance designs and more efficient use
of area and pins than possible when structure is designed
before partitioning. Current behavioral partitioning ap-
proaches are limited in that they partition at the level of
control/dataflow graph operations. We introduce a new ap-
proach which partitions entire computations of a behavioral
specification, such as processes and procedures, into chip
behavioral specifications. We demonstrate the approach’s
usefulness and highlight results of several ezamples.

1 Introduction

Given a behavioral specification, our overall aim is to
implement it as custom hardware and/or as software. Be-
havioral partitioning can be used to achieve one or more
of the following subgoals in which each partition is imple-
mented:

o using a specific class of hardware technology, such
as custom layout, ASICs, or off-the-shelf proces-
sor chips. The essential tradeoff is between de-
sign/manufacturing costs and system performance,
both being heavily influenced by the technologies
used. Note that hardware/software partitioning is en-
compassed by this goal.

o as a chip that satisfies chip-capacity constraints. Here
performance is affected by the amount of interchip
communication, while cost depends on the chip pack-
ages chosen within the technology being used. Note
that different chip technologies will have differing size
constraints in terms of the silicon-area, gates, or num-
ber of instruction-words, as well as differing pin and
power constraints.

e on a single sequential processor, where there may be
one or more processors per chip. In the context of be-
havioral partitioning, a processor is either a custom-
designed controller and datpath, or an off-the-shelf
component such as a microcontroller. Here fewer pro-
cessors mean less cost and less interprocessor com-
munication time, but more processors can yield more
parallel execution.

e by a synthesis tool, separately from other partitions.
If the partitions are chosen well, results obtained by
the synthesis tool may be superior to those obtained
by the tool when applied to the entire unpartitioned

behavior. Also, the unpartitioned behavior might ex-
ceed the tool’s runtime or memory capacity; parti-
tioning can create smaller behaviors that can be han-
dled by the tool.

These goals are closely related and may overlap. Vari-
ous combinations of these goals result in partitioning prob-
lems which differ in the types and weights of constraints,
in the techniques and accuracy of estimations made of
the constrained parameters, and in the objective functions
which evaluate partitionings based on the estimations and
constraints. In this paper, we focus on the goal of par-
titioning a behavior to satisfy chip-capacity constraints
while considering system-performance constraints. We as-
sume a hardware (as opposed to software) implementation
with a uniform chip technology.

The paper is organized as follows. In Section 2 we dis-
cuss the need for a new partitioning approach, outline our
specification partitioning approach, and highlight its ad-
vantages. In Section 3 we describe details of our approach.
In Section 4 we provide the results of partitioning several
examples using the specification partitioning tool we are
developing. In Section 5 we discuss future work.

2 Specification partitioning overview

Structural partitioning can be used to attempt to sat-
isfy chip-capacity and system-performance constraints, but
there are drawbacks when compared to behavioral parti-
tioning. In a structural partitioning approach, a behav-
ior is first converted to structure, and then the structure
is partitioned among chips. While yielding accurate size
and pin estimates, the approach ignores the fact that the
design of the structure can be heavily influenced by the
chip-partitioning. For example, two sequential procedures
that each perform an addition can share an adder if both
procedures are implemented on the same chip. If the pro-
cedures are separated among two chips, the same sharing
results in poor performance due to interchip communica-
tion time; a better design would include two adders, one
on each chip.

The effect of partitioning on the structural design sup-
ports the need for behavioral partitioning. There are es-
sentially two levels at which such behavioral partitioning
can be performed. At the operation level, dataflow-level
operations such as addition and subtraction are grouped.
At the algorithmic level, entire program-grained computa-
tions such as processes and procedures, making up a set of
sequential and concurrent behaviors, are grouped. Figure 1
shows goals that are achievable at each level. Most goals
involve tradeoffs between cost and performance. In gen-
eral, algorithmic-level goals relate to larger systems than

29th ACM/IEEE Design Automation Conference®

0738-100X/92 $3.00 © 1992 IEEE

219

Paper 14.1

Min. # of

constraints

Max. concurrency
w multiple processors Min, cost w’ choaper —;
i, ntars ot ¥
cation | __(e9.3dtware) 20
Min. # of FU's Satistying packagi 'Y
o . Y
" % Simplilying floor
Raducing synthesis and roucting panning §§
and memory -=
Min, = mi Max. =

Figure 1: Abstraction levels vs. goals

do operation-level goals.

Previous approaches to behavioral partitioning have
been at the operation level; see [1] for a detailed survey
of these approaches. In discussing these approaches, we
shall use the term “CDFG” to denote any graph-type rep-
resentation of behavior consisting of control and dataflow
operations. Such representations are used internally by
most synthesis tools.

YSC [2, 3] partitions logic containing behavioral op-
erations, such as addition and subtraction, so that logic-
synthesis runtime and memory-use constraints are not ex-
ceeded and so that follow-up floorplanning quality is im-
proved. BUD [4] partitions the dataflow-graph operations
of a CDFG in a manner that encapsulates scheduling and
allocation decisions. Various partitionings are evaluated
with respect to estimations of area and time. A similar
approach is found in [5]. In Aparty [6, 7], the partition-
ing algorithm is extended to allow for the use of differing
closeness functions and evaluation criteria at each one of
multiple partitioning stages. CHOP [8] provides area and
time estimates of an acyclic dataflow graph’s operations
for a given chip partitioning. Vulcan [9) partitions CDFG
vertices, each of which represents a finite-state machine or
combinational block, among chips.

As chip capacities as well as behavior-description
sizes increase, we feel that algorithmic-level rather than
operation-level partitioning approaches will be necessary.
In this paper, we introduce an algorithmic-level approach
(see Figure 2). The main contribution of this re-
search is the elevation of partitioning to a higher
level of abstraction, i.e. grouping entire computa-
tions as opposed to merely operations. In our speci-
fication partitioning approach, a behavioral description is
viewed as a set of behaviors, such as processes, procedures,
substates, and other code groupings imposed by the lan-
guage, and a set of storage elements, including registers,
memories, stacks, and queues. These behaviors and stor-
age elements are then partitioned such that each parti-
tion represents a chip. To find a partitioning that satisfies
constraints, we must be able to estimate values for pins,
area, and performance for a given partitioning, thus re-
quiring estimation models. The results of partitioning are
reflected in a refined specification consisting of a set of in-
terconnected chips, each possessing behaviors and storage
elements.

Specification partitioning has several advantages.
There are far fewer algorithmic-level objects than
operation-level objects. In addition, because partitioning
is performed on the specification itself, most of the ob-
Jects are familiar to the designer. The first fact permits

Paper 14.1

220

Figure 2: Specification partitioning vs. other methods

ioral Refined
Sp . . Communication Arbiter Behavioral
& 9 l_.l Seotts I—..I | « Specification
(system level) Ti Syrthesis e

Figure 3: Iterative specification-refinement methodology

the application of more thorough partitioning algorithms.
The two facts combined enable designer control over the
partitioning decisions. Also, functional test patterns can
be written for each chip to test intended behavior. If the
most abstract description of a chip consists of thousands of
gates or low-level control/data operations, such test pat-
terns are difficult to obtain.

Another advantage is the localization of the effects of
late specification changes. Each chip specification consists
of entire portions of the original specification behaviors
(e.g. processes), with little or no modification. If a process
needs to be internally changed after structural design of the
chips, only the affected chip need be changed, leaving the
rest of the multi-chip system intact. In CDFG approaches,
a single simple behavior may be spread over multiple chips.

Now let us consider the most important advantage,
which relates to the ability to modify the partitioned spec-
ification. To discuss this, we must first describe the overall
design task of which behavioral partitioning is actually a
subtask. We distinguish between two specification levels:
the system specification, which denotes desired system be-
havior, and chip specifications, which denote the division
of the system into interconnected chip specifications. Con-
version from the first to the second level is part of what
we call System Design, and often results in modified or
added behaviors. We view system design as the refine-
ment of a specification through iterations of partitioning,
communication tradeoffs (e.g. bus merging), and arbiter
synthesis, among other tasks (see Figure 3).

In specification partitioning, it is easy to modify or add
to the specification when chip information is obtained, since
the specification is maintained near its original abstraction
level. For example, a 16-bit parallel data transfer between
two behaviors on separate chips could easily be converted
to two 8-bit transfers or even to a serial transfer in order
to reduce pins, simply by changing the internal details of
the two behaviors involved. As another example, multiple
data buses can be merged into a single bus, which may
then require the addition of a bus arbiter process to resolve
contending bus-transfers.

In contrast, CDFG approaches usually view a specifica-
tion as unchangeable, thus limiting synthesis to tasks such
as scheduling, binding and logic synthesis. For example,
multiple data transfers can use a single bus only if there
would not be contention; adding an arbiter is not consid-

main
nUM_Msgs : regiswer(8); mnl
usor_id_ram : memory(4x4); system_on ot syslem_on

M Lut id
systom_on od_code : manovy(m)
i nbg«nmﬂl
initialize respond_k_machine_buton imi;
while i <= 4 loop
machine_bution_pushed wait unil bution_tone;

ontored_codefi] := button;

respond_to_extemal_ine imist;
. dalione ond loop;
if (enred_code{ 1}=user_id_ram{1])
+ and
answer
daone (onbred_codefdjeusor_id_ram{4]
Uphy_amomwmm Tecord_msg | m:o‘do oK <o YU
&i’!:‘ iﬂl;l) -
code_ok <= false;
romole_operaion § ondif,
chock_user_id respond_to_cmds (b) a leaf behavior
datone | Jrotcode_ok %%

(a) Behavioral description (partial)

Figure 4: Answering machine example.

ered. The arbiter would have had to exist in the origi-
nal specification, even though its necessity may only arise
when trying to satisfy pin constraints after partitioning.

In the cases when the specification partitioning ap-
proach does not decompose a behavior into fine enough
granularity to satisfy chip-capacity constraints, it can be
followed by an operation-level or structural-level partition-
ing approach. However, we believe such cases will become
less frequent as chip capacities continue to increase.

3 Method
3.1

We specify behavior with the SpecCharts language [10],
which allows behavior to be decomposed into concurrent
sub-behaviors, sequential sub-behaviors sequenced by arcs,
or VHDL sequential statements. SpecCharts is intended as
a system specification language rather than a hardware de-
scription language (HDL); its main advantages over HDLs
are the support of behavioral hierarchy and a unified rep-
resentation of control, function, and structure. These fea-
tures ease accurate capture and aid comprehension of the
refined specification. Since SpecCharts subsumes behav-
ioral VHDL, our approach is also applicable to VHDL.

An example of a behavioral specification is the tele-
phone answering machine shown in Figure 4(a). It con-
sists of a hierarchy of behaviors which respond to a phone
line such that the machine can answer the phone, play an
announcement, record a message, or be programmed re-
motely after a user identification number is checked. The
code for the check_user_id behavior is shown in Figure 4(b).

We now describe the main steps of specification parti-
tioning.

The behavioral specification

3.2 Object determination

Behavioral objects are all SpecChart behaviors and pro-
cedures (for VHDL, they would simply be all processes
and procedures). Using VHDL-like declarations, memory
storage is any variable or signal of array type where the
elements are scalars or bit-vectors. Register storage is any
other VHDL signal of register-kind or any global variable.

221

The example in Figure 4(a) shows 14 behaviors
(e.g. main, reset, system_on, system.off, etc.) and 3 stor-
age elements (num_msgs, user_id_ram and entered_code).

3.3 Estimation model creation

Estimation models are needed in order to estimate pins,
area, and performance for a given partitioning of objects.
The estimates are used by the partitioning algorithm to
evaluate various partitionings.

Pin model: The model for pins is the simplest of the
three. We use a hypergraph model where each vertex rep-
resents an object and each hyperedge represents commu-
nication between objects. There are several types of hy-
peredges:

e storage access: A hyperedge connects each storage
with all behaviors which globally access (read and/or
write) it. The weight of the hyperedge equals the
register bitwidth or memory address/data bitwidth
plus some control lines depending on the nature of
the access.

o behavior control: A hyperedge connects each behavior
with the parent behaviors that control it (e.g. calling
procedures). Its weight is the sum of the bitwidths
of any parameters, plus two control lines representing
activation/completion control.

o global-wire/external-port access: For each non-storage
signal or external port, a hyperedge connects it to
all accessing behaviors. Its weight is the signal/port
bitwidth.

Given a hypergraph, the number of pins for a partition
is calculated as the sum of the weights of all hyperedges
which cross the partition’s boundary (i.e. the partition’s
cutsize).

Area model: Given a partition containing behavior
and storage objects, we must estimate an area for the par-
tition. This task is far more difficult than that for pins. An
accurate area-estimation approach would perform synthe-
sis for each partition, mapping sequential behaviors to a
single control-unit and datapath (CU/DP). Unfortunately,
such synthesis is computationally expensive, so perform-
ing it for each of the thousands of possible partitionings
explored by a partitioning algorithm is infeasible.

An alternative is to assign a fixed area to each behavior
and storage object, and then estimate a partition’s area
as the sum of its objects’ areas. For each storage, area
is determined by querying a component library. For each
behavior, we synthesize a CU/DP and then use the result-
ing area. The advantage of this approach is that it only
performs the computationally-expensive synthesis once per
behavior, before partitioning begins. However, estimated
partition area may be inaccurate since eventual implemen-
tation may not actually use a separate CU/DP for each
behavior. The inaccuracy of this estimation approach is
small if most behaviors are concurrent (i.e. processes) and
thus will actually be implemented as separate CU/DPs,
or if functional-unit sharing between sequential behaviors
(which will occur if the behaviors use the same CU/DP)
does not substantially affect overall area for a partition.

To minimize the error related to functional-unit sharing
as well as reducing partitioning computation-time, only a
subset of the specification’s behaviors can be selected for

Paper 14.1

AREA: 0511
PINS: 21 :

Figure 5: Partitioned hypergraph for answering machine

partitioning. By default, each remaining behavior is then
encompassed by its parent behavior in the hierarchy.

We shall now discuss the synthesis technique used to
create a CU/DP and estimate its area, although the tech-
nique is somewhat independent of our partitioning ap-
proach. We use the tool described in [11] to perform
scheduling, allocation, and binding. We provide a basic
set of functional units (e.g. an adder, a subtractor, and
so on) and restrict synthesis to use only one functional
unit of each type when building a datapath. This re-
striction could easily be changed to allow multiple small
functional units but only one of each large functional-unit
type (e.g. a2 multiplier) if such a change would more closely
match the structural design strategy that will eventually
be used. Once the structure is synthesized, the datapath
area is determined by creating a bit-slice style floorplan of
the muxes, registers, and functional units comprising the
datapath, estimating wire-routing area, and then comput-
ing a bounding box. The control-unit area is determined
from the state-register size and the number of gates.

Once each object has been assigned an area value, we
map these values to the vertices of the hypergraph model
already created for the pin model, so that standard hy-
pergraph partitioning algorithms can be used. Figure 5
shows the hypergraph created for the answering machine
example, along with a sample partitioning showing pin and
area estimates. Areas are shown with each object, and
interconnect-widths with each hyperedge. Note that many
objects in the specification are not in the hypergraph; those
objects are encompassed through hierarchy by objects in
the hypergraph.

Performance model: Any behavior can have its aver-
age start-to-finish execution-time constrained. Execution
time for a behavior can be modeled as the sum of two parts:
(1) time spent communicating with other behaviors or stor-
age over communication channels, and (2) time spent per-
forming computations. The computation time is estimated
by simulating the scheduled behavior with a representative
data set, with all communication times over channels set
to zero. This simulation also provides the average num-
ber of times that the behavior communicates over each
channel during a single pass through the behavior; this
number is multiplied by the latency of a channel’s commu-
nication protocol to obtain total communication time over
each channel. A communication is either a storage ac-
cess or a sub-behavior access (activation/completion) plus
the sub-behavior’s execution-time. Default access proto-
cols with given latencies are used for each type of access.
Each channel actually has two protocol-latency values, one
for accessing the object when it is on-chip, and one for the
case when it is off-chip.

Paper 14.1

222

A given partitioning determines whether the on-chip
or off-chip latency is to be used for each channel. The
expected execution-time for a behavior is then the com-
putation time plus the total communication time of its
channels, which in turn are calculated using the appropri-
ate latencies. We extend the hypergraph such that each
vertex has a computation time. We add edges to repre-
sent channels between vertices, along with associated on-
chip/off-chip communication times.

3.4 Partitioning

Let each hypergraph vertex be denoted as vj, each chan-
nel edge by c;,x and each partition as Vi. We currently
use the following straightforward objective function, which
attempts to minimize constraint violations, to evaluate a
given partitioning:

excessarea(V;)) 2
mazarea(V;)

OBJFCT = ky E (mo x

t

ezccaapiﬂs(V.-))2 k (100 .
—_— 3

excesschips) 2
mazpins(V;)

+ko z (100 x

mazchips

An excess value (e.g. excessarea(V;)) is equal to the es-
timated value (e.g. area(V;)) minus the imposed constraint
(e.g. mazarea(V:)), with negative values being treated as
0. Thus, any partitionings that meet all constraints are
considered equal since OBJFCT will evaluate to 0. The
k’s are user-defined constants which indicate the relative
importance of each metric. To favor balanced over unbal-
anced excesses, we multiply each term by 100 and then
square. Other objective functions can also be used.

To extend OBJFCT to consider performance, we add
a fourth term:

. 2
ezcessexectime(v;))

OBJFCT = ...+ k4 z (mo x
2

mazezectime(vy)

excesserectime(v;)= exectime(v;) — mazezectime(v;), or 0
if negative,

ezectime(v;) = commtime(v;) + comptime(v;),

comptime(v;) the expected time to execute a single pass
of the behavior associated with v; assum-
ing communication times are 0,

commtime(v;) = Zk commdelay(c; x) for all vx with

which v; communicates
commdelay(cjx) = offchipdelay(c;x) i v; and v
are not in the same partition V;,
onchipdelay(c;j x) otherwise (recall that
these delays incorporate expected fre-
quency of channel use). If v is a behav-
ior, it’s execution-time equation is added.

Note that this term involves vj, not V;. Specifically, ex-
cess execution time is determined per vertex, not per par-
tition. In other words, although execution time is affected
by the chip partitioning, time-constraints are specified for
behaviors (v,), not partitions (V;).

Well-known partitioning algorithms such as clustering
and group migration are then applied. We currently use a
clustering algorithm similar to that in [4], modified to use
a closeness function defined for behaviors rather than op-
erations. Evaluation of clusterings is done with the above

objective function, rather than an area/time function. Our
group migration algorithm is similar to the Kernighan/Lin
algorithm discussed in [12], except that each move involves
one object, not two. Also, an object can be moved to any
one of multiple partitions, as opposed to just the opposite
partition in bipartitioning. The objective function is that
given above.

3.5 Refining the specification

The partitioning results are used to refine the original
specification with chip information. Each chip will contain
the behaviors and storage partitioned into it. If a storage
is accessed by a behavior on a separate chip, that stor-
age is converted to a process and all accesses are made
via ports. Likewise, if a behavior is controlled by another
behavior on a separate chip, control must be added be-
tween these behaviors. To aid designer comprehension,
refinement should make minimal changes from the origi-
nal specification. Each chip specification will serve as the
behavioral input to a subsequent structural design phase,
which may be done by a high-level synthesis tool.

Assume a function anc-obj(v;) returns the vertex whose
behavior is the closest ancestor to the behavior of v; in the
specification hierarchy. The function accessing-objs(v:)
returns the set of vertices which access the storage associ-
ated with v;. We use the following algorithm to refine the
original specification with the partitioning information:

Algorithm 3.1 : Specification refinement

for each vertex v, representing a behavior
if anc.obj(v;) is on a different chip than v,
convert v;'s behavior to a concurrent behavior b;
for each vertex vy representing storage
if any of accessing_objs(v;) is on a different chip
convert v;’s storage to a concurrent behavior b;
for each chip-partition V;
create a concurrent behavior B; representing a chip
for each conc. beh. b; (created from a v; above)
move b; to a conc. subbehavior of B; such that v; € V,

As an example, let us assume that the best partitioning
in terms of area and pins has check.user_id, monitor, and
user_id_ram on one chip, and all other objects on another
chip, The refined specification resulting from this parti-
tioning is shown in Figure 6.

Using ports to model storage access or subbehavior con-
trol unnecessarily models communication at a wire level.
Communication should be modeled at a higher level in or-
der to maintain information regarding the port groupings
and the protocols over those ports. Therefore, whenever
possible, we use the constructs of protocols and channels
(see [10]) rather than ports. A protocol is defined as a
set of ports (e.g. address and data) and a behavior over
those ports. A channel is simply an instantiation of an as-
sociated protocol’s ports. A channel is connected to other
channels just as ports are, and the associated behavior is
activated similar to a procedure call. These constructs sep-
arate communication from computation, making specifica-
tions readable and modifiable. Communication tradeoffs
can be made later by merging channels, merging ports of
a single channel, or associating a different protocol with a
channel. All storage access and sub-behavior control in the
refined specification uses channels with default protocols.

Relined_spec
CHIPY CHIP2
user_id_ram : memory(4xd);
check_user_id

enterod_code : memory(4x4);
i:integer range 110 5,

wak urti| activated

=1

while | <=4
wal until m_mne;
Iaieliod_cndqi] = button;

=il

end loap;
Imend_cotbm = user_id_jam{1]}

hglued_pm] = user_id_sam{4)
code_ak <= lrue;

_run_ms@ : rogisler(8);

Figure 6: Refined specification
4 Results

SpecPart is a tool we are developing for specification
partitioning. Its input is a specification in the SpecCharts
language. Object selection, manual and automated par-
titioning, and partitioning evaluation are all aided by an
X-based graphical interface. SpecPart currently consists
of approximately 16,000 lines of C code.

Figure 7 summarizes partitioning results on several ex-
amples. All area units are generic; a particular technol-
ogy would result in values in square mils or equivalent
gates/transistors. The second column provides informa-
tion on the size and characteristics of the specification,
i.e. the number of specification lines, the number of behav-
ioral hierarchical levels, and the number of behaviors and
storage elements that could be selected for partitioning.
Refined specifications were created for all partitionings.

We briefly discuss each example; for more details, see
[13]). Rockwell’s DRACO interfaces 16 1/O ports to a mi-
croprocessor’s 8-bit multiplexed address/data bus, with
extensive error and security checking. Two partitionings
are shown with differing pin constraints. In the latter
case, communication tradeoffs multiplex communication
with 11 registers over a single bus, reducing pin counts
from (134,124) to (58,48). A different merging resulted
in (79,69) pins but had less effect on performance. The
refined specification for one partitioning had 460 lines.

The telephone answering machine is the complete model
from which the example in this paper was derived. By
selecting several approximately equal-sized behaviors from
the hierarchy, balanced two-way and three-way partitions
are obtainable, as shown. The refined specification for the
two-way partitioning had 1200 lines.

The Intel 8237 is a DMA controller. We tried three
different selections of behaviors to obtain differing gran-
ularities for partitioning, as shown in the table. For the
third case, pins can be reduced from (163,153) to (81,71) by
merging the buses used by a particular behavior to access
several registers on the opposite chip. Since the particular
behavior (the program mode of the 8237) is only performed
occasionally, the decrease in speed caused by these merges
is of little consequence. For the fourth case, we imposed

Paper 14.1

P ————
spec. lines,
aroa n
Exampie hﬂgb:-"l."wﬂl:é" #chips const. conal. Area Pins comments
1 - .
S 302,4,19 2 8000 100
2 8000 150
3 o =
E 2 15000 50
of 726,10,59
E 2 15000 90
3 10000 40
E] - N
2 15000 80
5
8 697.5.54 15000 80
2 15000 150
2 15000 SO
d 64,
52% 64,3,10 2 100

Figure 7: Results of partitioning several examples

a time-constraint on a particular behavior (the transfer
mode). In this case, several register files which were pre-
viously placed on a separate chip, were grouped with the
constrained behavior to reduce communication time.

We also modeled a subset of protocols handled by an
AST bus controller which interfaces 32-bit address and
data buses with two 8-bit buses. To obtain a partitioning
which met pin constraints, the original model had to be
rewritten as two concurrent behaviors, one implementing
the controlling state machine, the other the bus routing.

The above examples represent only the lower end of the
domain for which SpecPart is intended. We are currently
working on a much larger industrial example, consisting
of a RISC signal processor, timers, several memories, and
multiple I/O behaviors. We believe that the fact that such
extensive functionality will be implemented on a single chip
(with approximately one million transistors) lends support
to the need for algorithmic-level partitioning approaches.
We plan to examine not only multichip implementations,
but also to extract partitions which lead to better single
chip designs by using multiple custom processors, as dis-
cussed in the introduction.

5 Future work

We are currently developing a method for estimating
area far more accurately than discussed in this paper, but
in a manner which still permits constant-time updates of
the estimate when an object is moved among partitions.

Currently, our refinement algorithm converts sequential
behaviors which are separated from their parent into con-
current processes. However, if the behaviors on a chip are
sequential, they can be merged into a single process in or-
der to encourage more efficient implementation as a single
CU/DP.

As mentioned in the introduction, attacking other prob-
lems such as hardware/software partitioning, or partition-
ing among multiple processors to extract concurrency (as
discussed for the RISC example above) involves changes in
the constraints, estimations, and objective functions. We
plan to make these changes to broaden the scope of the
specification partitioning approach.

Paper 14.1

224

If a satisfactory partitioning is not found, respecifying
the behavior using more procedures can provide finer gran-
ularity. Automated techniques to isolate and convert can-
didate code portions should be developed.

We also plan to develop tools for generating and match-
ing communication protocols, for performing communica-
tion tradeoffs, for binding memories, and for synthesizing
arbiters to resolve bus contention.

6 Conclusion

We have introduced a partitioning approach that is
the first to address behavioral partitioning at a pro-
cess/procedural level as opposed to a dataflow-operation
level. We have shown how the approach can be used
to solve the specific problem of obtaining multichip par-
titions. As behavioral description sizes continue to in-
crease, there are many other behavioral partitioning prob-
lems that must be addressed. We feel that building on the
concepts outlined in this paper should lead to promising
solutions to these problems.

7 Acknowledgements

We would like thank Sanjiv Narayan for his work on es-
timation which enabled implementation of our partitioner,
and for his numerous other contributions. This research
was supported by the National Science Foundation (grant
#MIP-8922851) and the Semiconductor Research Corpo-
ration (grant #90-DJ-146); we are grateful for their sup-
port.

References

[1] F. Vahid, “A Survey of Behavioral-Level Partitioning Sys-
tems.” UC Irvine, TR ICS 91-71, 1991.

[2] R. Camposano and R. Brayton, “Partitioning Before Logic
Synthesis,” in Proc. ICCAD, 1987.
&)

R. Camposano and J. van Eijndhoven, “Partitioning a De-
sign in Structural Synthesis,” in Proc. ICCD, 1987.
[4]

M. McFarland and T. Kowalski, “Incorporating Bottom-
Up Design into Hardware Synthesis,” JEEE Transactions
on Computer-Aided Design, Septemi)er 1990.

J. Rajan and D. Thomas, “Synthesis by Delayed Binding
of Decisions,” in Proc. 22nd DAC, 1985.

E. Lagnese and D. Thomas, “Architectural Partitionin,
for System Level Synthesis of Integrated Circuits,” IEE,
Transactions on Computer-Aided Design, July 1991.

E. Lagnese, Architectural Partitioning for System Level
Design of Integrated Circuits. PhD thesis, Carnegie Mellon
Unversity., March 1989.

K. Kucukcakar and A. Parker, “CHOP: A Constraint-
Driven System-Level Partitioner,” in Proc. 28th DAC,
1991.

(5]
(6]

(7]
8]

[9] R. Guptaand G. Micheli, “Partitioninﬁ of Functional Mod-
els of Synchronous Digital Systems,” in Proc. ICCAD,

1990.

S. Narayan, F. Vahid, and D. Gajski, “System Specification

and Synthesis with the SpecCharts Language,” in Proc.

ICCAD, 1991.

S. Narayan and D. Gajski, “Area and Performance Esti-

mation from System-Level Specifications.” UC Irvine, TR

ICS 92-16, 1992.

B. Preas and M. Lorenzetti, Physical Design Automation

of VLSI Systems. California: Benjamin/Cummings, 1988.

[13] S.Narayan,F. Vahid, and D. Gajski, “Modeling with Spec-
Charts.” UC Irvine, TR ICS 90-20, 1990.

[10]

1]

2]

