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ABSTRACT
Tomorrow’s silicon chips will hold more transistors than most
embedded system designers could possibly use under the
prevalent “describe-and-synthesize”  design paradigm. Many have
thus re-proposed the once popular “capture-and-simulate”
paradigm, wherein pre-designed Intellectual Property software
and hardware components are connected and co-simulated, to
reduce this gap. However, major hurdles limit this paradigm to
only very high-cost embedded systems. In this paper, we describe
those hurdles and present a case for a new “configure-and-
execute”  paradigm for mainstream embedded systems, based on
the idea of deconstructing rather than constructing systems,
which takes advantage of the surplus transistors in a way that can
overcome the hurdles and significantly reduce time-to-market.
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1. INTRODUCTION
Trends in silicon chip capacity indicate that next decade’s chips
will have massive transistor counts compared to the previous
decade, implementing entire systems-on-a-chip (SOC).
Unfortunately, design methods have not kept pace, resulting in a
“productivity gap,”  resulting in underutilized transistors.

Synthesis is a commonly proposed solution. In the past, the
“capture-and-simulate”  paradigm [4] was prevalent, wherein one
captures gates or register-transfer components in a structural
schematic, and then simulates to verify correctness. Recently, the
“describe-and-synthesize”  design paradigm has taken hold,
wherein one describes desired functionality, and then
automatically synthesizes a structural schematic.

The productivity gap continues to increase, though, so many are
proposing a paradigm based on design reuse. It is essentially a
return to a capture-and-simulate paradigm in which the
components, rather than being gates, are standard and custom
processors, called Intellectual Property (IP) or more specifically
“cores.”  However, capture-and-simulate has major problems for
SOCs that didn’ t exist previously, which will result in high SOC
design costs and thus limit SOC design to high-end niches,
leaving most designers still under-utilizing potential transistors.

We can, however, still make good use of all those transistors by
adopting a new paradigm, which we call “ configure-and-
execute.”  An embedded system designer acquires a silicon
reference design for a particular application class (e.g., still video
processing), and then develops his/her specification application

(e.g., a digital camera) by repeatedly configuring the design and
executing it in its real environment. The silicon reference design
is an over-designed general-purpose working silicon SOC
intended for the application class, with the SOC design costs
amortized over numerous applications. When done developing,
the embedded system designer can optionally spin specialized
silicon, which is virtually guaranteed to be correct the first time
because of the extensive in-circuit verification already done.

This paper summarizes current trends, describes problems with
applying a capture-and-simulate paradigm for SOC’s, introduces
the configure-and-execute paradigm and argues for its use in
mainstream embedded system design, and provides preliminary
data for a digital camera example, developed as part of the
Dalton project at UC Riverside, supporting those arguments.

2. TRENDS
The driving trend is the existence of a huge number of transistors
on chips in the near future. By 2006, an inexpensive 200mm2 die
would have 75M logic transistors, or 375M SRAM transistors
[8]; a high-end 1000mm2 die would have 400M logic transistors
[18]. To illustrate the luxury of this silicon real estate, consider
the following transistor counts for various cores [8]:

• 486DX4 core: 0.7 million
• Pentium/MMX: 2.8 million
• MPEG-2 encoder/decoder: 1.5/0.5 million
• 8051 microcontroller: 0.05 million

In other words, we could fit up to 7500  8051 microcontrollers on
a single chip. Assuming a typical core has 0.5 million transistors,
we could fit between 150 and 750 cores on a single chip.

Designers simply cannot build such complex systems under the
cost and time constraints of most applications. The
Semiconductor Industry Association (SIA) states that while
transistors per chip have increased 58% per year, a designer’s
ability to use transistors has improved only 21% per year, leading
to a widening productivity gap. This inability to use transistors
has led to most systems not utilizing potential transistors; data
from a major silicon vendor indicates that the actual number of
transistors per design start has increased only 25% per year [13].

3. CURRENT PROBLEMS
The industry has generally recognized that transistors are
underutilized and many seem to agree that synthesis and IP reuse
will help solve the problem [18][20]. However, we argue that
even these techniques will not enable designers to really utilize
the large number available transistors, because cost and time
requirements would still be prohibitive for most applications.

Synthesis follows the “describe-and-synthesize”  paradigm. One
first describes desired functionality in a program-like language,
and then synthesizes a structural implementation. A problem is
that describing functionality is error-prone – some data suggests



about 1 bug per 100 lines of code, independent of code size [1].
A similar problem has faced the software community for decades.

Therefore, synthesis will almost certainly need to be
supplemented with IP reuse. However, the commonly-proposed
paradigm of connecting IP together, essentially representing a
return to a capture-and-simulate paradigm at a higher level of
abstraction than before, has major problems of its own.

3.1 Verification -- the main problem
The main problem in building SOCs by connecting IP relates to
verification of the correctness and completeness of a design’s
functionality. Some state that verification accounts for 1/3 to 1/2
of the system design process [18], others say it accounts for 2/3
[3][14]. Thus we see that verification is a bottleneck in system
design, and the idea of building systems by connecting IP does
little to address this problem.

3.1.1 Simulation
Simulation is probably the most common verification technique.
It is straightforward for systems with thousands of transistors,
but very difficult to perform well for million transistor systems.

The main problem with simulation is that simulating a
reasonable amount of real time requires an absurdly long amount
of simulation time. For example, 100 seconds of real-time for a
million-transistor design requires 10+ years of RTL simulation
[9][13] (cycle-based simulators help only incrementally). Such
long simulation times result in typically less than one second of
real time being simulated by designers. Cosimulation techniques
gain perhaps an order of magnitude, which is not enough.

A second problem with simulation is that developing the
system’s environment for simulation (i.e., the testbench) can take
enormous effort, since multi-million transistor systems often
have very complex environments, unlike simpler multi-thousand
transistor systems. Some claim that testbench development is the
real bottleneck in verification [3]. Since most of this time is
spent by the verification team trying to understand the
environment and the system, there is not much potential for time
reduction, and verification productivity tools like random test
generators provide only incremental improvements.

A third problem is that environments often have undocumented
features, which obviously can't be captured in a testbench no
matter how much effort is expended.

We can conclude that solving these three problems requires at-
speed (or nearly at-speed), in-circuit verification techniques.

3.1.2 Emulation
Emulation is commonly used to provide nearly at-speed
verification. It usually consists of the use of a general-purpose
FPGA (Field Programmable Gate Array) platform along with
microprocessor and other components configured to act like the
system being designed. However, emulation has problems too.

The first problem is that emulation requires many weeks, often
over a month, to set up [3].

The second problem is that compile times are long for large
designs, often lasting almost full day, and thus preventing
frequent iteration among design and verification.

A third problem is that general-purpose emulators are expensive,
ranging from $100,000 to $1,000,000, thus limiting their use to
high-end applications, and sometimes creating a new bottleneck
of different design teams having to share a single emulator.

A fourth problem is that emulators may still run 10 to 100 times
slower than the eventual system [13], which may prevent proper
functioning in the system’s environment.

3.1.3 Silicon spins
To really begin verifying a system in its environment, we often
require first silicon (i.e., a semi-custom chip) to be generated.
Because of the above problems with simulation and emulation,
first silicon usually still contains bugs, even after extensive
simulation and emulation [13][16]. Each silicon spin can take
months, and a recent study showed that the average number of
spins required to verify a design was 3.5 [16], resulting in over
50% of development time occurring after first silicon

3.2 Other problems
Test checks manufactured chips for defects. Testing costs are
projected to increase [2]: the cost per automated test equipment
divided by the number of chips it tests per hour rose from $600
in 1985 to $6000 in 1998, and is estimated to rise to $100,000 in
2005. Furthermore, the test cost per transistor is also increasing
(while design costs per transistor are decreasing).

Integrating cores can be a very difficult task. Even when cores
have been designed to interface to the same bus, detailed timing
problems can often arise, as well as load problems. Furthermore,
integrating cores often requires a good understanding of the
core’s functionality, which can take much time.  Finally, there is
a problem of “compounded risks”  [13], such as if there is a 98%
probability of successfully integrating a core into an SOC, then
the probability of successfully integrating 100 cores is only 13%.

Physical design has become "really, really, really hard" [17] in
deep submicron technology.  Chip design must be integrated with
physical design, and designs must be created to ensure high
yields. Custom techniques are becoming more necessary.

Time-to-market constraints continue to shrink, with average time
from product conception to delivery reduced to 8 months [11],
with further reduction likely. Such crushing constraints greatly
increase the need for correct silicon on the first spin.

3.3 Summary of problems
Building SOCs, even with extensive IP reuse, is time-consuming
and costly, because simulation covers a small fraction of real-
time and can’ t address undocumented environment features,
emulation requires much time and is expensive, and silicon spins
require months. Furthermore, testing costs, integration and
physical design problems, and tight time-to-market constraints
add to the difficulties in building SOCs. Large SOCs will
therefore be limited to a very small percentage of designs [5].

Mainstream embedded system designers thus will build systems
that greatly underutilize potential transistors. Even today,
potential transistors are underutilized by a factor of ten [13]. This
underutilization will likely get worse as chip capacity grows and
the productivity gap widens; if the current gap continues its rate
of growth, designers in 2006 will underutilize potential
transistors by a factor of 68, and in 2012 by a factor of 287.



4. CONFIGURE-AND-EXECUTE
Since most designers can’ t build systems that take advantage of
potential transistors, we can instead use a different paradigm that
makes use of those transistors to greatly reduce time-to-market.
The paradigm is based on two points. First, designs for different
products within the same application class have similar hardware
architectures. Second, deconstructing (configuring and adding to
or deleting from) an existing design that subsumes one’s desired
design is much easier than constructing a design from scratch (as
evidenced by many designers starting from past designs in
practice). These points lead us to a "configure-and-execute"
paradigm, involving providers and users of reference designs.

A reference design provider is a company with extensive SOC
expertise that builds a silicon chip, implementing a reference
design, for a given application class. A reference design is an
over-designed working system for an application class,
containing more cores than would likely ever be needed by any
particular application, and built to be easily configured and
modified to implement most instances of applications of its class.
The discussion of the earlier sections demonstrated that there is
plenty of room on the chip for such extra cores. The high cost of
building a reference design could be amortized over a large
number of applications in the class. Reference design builders
would likely make extensive use of advanced synthesis,
verification, testing, and physical-design techniques.

A reference design user is a typical embedded system designer,
who acquires a reference design and then configures it for a
specific application. The user thus has working silicon from the
very start of the design process, running at real speeds and
executing in a real environment. If the user decides to generate
specialized silicon for a given configuration in order to reduce
chip costs, power, size, etc., then first-time correct silicon is
quite likely since extensive verification in the system’s real
environment has already been performed. Figure 1 illustrates the
time-to-market advantage gained by the user. Whereas a
simulation-based paradigm typically requires respins, the
configure-and-execute paradigm is carried out on real silicon,
and thus respins are very unlikely.

4.1 Reference designs– “ fig chips”
As described above, a key aspect of configure-and-execute is the
existence of configurable reference design chips, or what we

refer to as “ fig chips.”  A fig chip is a fabricated and packaged
silicon integrated circuit having a configurable architecture
targeted to a particular class of embedded computing systems. A
typical fig chip would include microprocessors, digital signal
processors, memories, buses, field-programmable logic, and pins
that provide access to the internal bus for extendibility (ideally
providing for cascading). Furthermore, a fig chip would include a
large number of cores specific to its application class.

Fig chips are classifiable into prototype-oriented and product-
oriented chips. Prototype-oriented fig chips are very general
devices intended to cover as broad an application class as
possible. These chips would likely be far too large, expensive,
and consume too much power to actually be used in a final
product. They would likely have nearly the maximum number of
transistors and pins (e.g., 3000 pins in the year 2006 [9]) as
technology allows, costing perhaps hundreds of dollars each, and
consuming perhaps 100 watts of power. They would be used
during development, after which a product-oriented fig chip or
specialized chip would be used in the final product.

In contrast, product-oriented fig chips are intended for use in
final products. Though still more general than a particular
application instance, they would be small, cheap, and consume a
small enough amount of power to be used in final products. In
fact, because of their production in large quantities, and potential
for optimized configuration, their power consumption could be
even lower than obtainable by a typical custom SOC designer.

An example of a fig chip for control systems (e.g., closed-loop
automatic control) would include a microprocessor, digital signal
processor, cache, memory, direct-memory access controller, and a
two-level bus (processor-local and peripheral). The peripheral
bus would link a large number of cores specific to control
systems, such as microcontrollers, numerous analog-digital
converters, pulse-width modulators, counters, timers, serial
communication devices (UARTs), and numerous blocks of field-
programmable logic.

Field-programmable logic on a fig chip serves two purposes. The
first purpose is to provide for use of cores that are not already on
the fig chip. In this case, the ideal core would be specifically
optimized for the programmable logic, typically resulting in only
a factor of 10 slowdown or less [21] compared to a core
implemented as an ASIC (application-specific integrated circuit).
Otherwise, the core could be synthesized and mapped to the
logic. The second purpose is to implement custom logic, which is
estimated by Dataquest to occupy only about 10% of an SOC,
with the remaining 90% of the SOC being made up of cores [6].

A key aspect of a fig chip is that it is designed for development
and debugging, implying that its internal registers should be
controllable and observable, and step-by-step execution should
be supported. Fortunately, scan technology can be used to
provide such features [13]. Fig chips would thus come with
debug environments providing software control of the execution
of the system from a development workstation or PC.

It is important to point out that a fig chip would be a complete
working system. This means that any operating systems would be
pre-installed, all drivers for controlling peripherals would be
included, and template software would be running on the
microprocessor exercising these items.

Figure 1: (a) Simulation-based development leads to several
respins, (b) Silicon-based development may eliminate respins.
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4.2 Configure
After acquiring a fig chip, a designer configures the chip for
his/her own purposes. This implies that the fig chip must be
designed with configuration in mind. Drivers must be easily
turned off. Cores must have settable parameters. Cores should be
capable of being shut down if they are not needed (thus
consuming no power). Software templates obviously must be
easily modifiable. For prototype-oriented fig chips, additional
parameters must be settable, such as cache-size (and
associativity, replacement policy, etc.), bus size, memory size,
etc. A fig chip designed with configuration in mind can make
designing a system much easier than constructing a system.

4.3 Execute
The designer has working silicon from the start of the design
process. The silicon may run at speed, or perhaps nearly at-speed
if numerous FPGA cores were used and result in a system
slowdown compared to an ASIC design. The designer makes
numerous iterations among configuring the design and executing
it, thus supporting the spiral model of development.

4.4 Specialize
When using a prototype-oriented fig chip, the designer will want
to eventually generate a specialized chip for use in the final
product. This specialized chip is not custom, but rather a subset
of the original fig chip. Selected parameters during configuration
become “hard-coded”  in the specialized chip. For example, the
specialized chip may have a smaller cache with a particular
associativity, a smaller bus with bus-invert, omitted or added
cores, and programmable logic possibly replaced by custom logic.
Specialization will differ depending on the relative importance of
optimizing power, performance, size, cost, etc.

Because the system is extensively verified in its real environment
during development, first-pass correct silicon is very likely.

5. RELATED WORK
Many of the concepts in this paper are based on the “Rapid
Silicon Prototyping”  concepts described by Payne [13] of VLSI
Technology Inc., which has already built reference design chips
for several application classes [19], and some tools for
specialization, such as a cache configuration tool. Reference
designs for various applications classes are beginning to appear,
such as customizable networking chips.

Numerous researchers have proposed combining microprocessors
and field-programmable logic; a summary of some of the work
can be found in [7]. Rabaey has proposed an architecture of
reconfigurable heterogenous processors connected via a
communication network [15]. Fig chips differ in that they would
possess a large number of parameterized cores.

Meerbergen [10] has described the need for “silicon platforms”
in building chips for consumer products at Philips, in harmony
with the ideas presented in this paper.

The reader may notice that the configure-and-execute paradigm
actually has existed for many years in microcontroller-based
system design approaches. In particular, a microcontroller is
essentially an early form of SOC; it has a microprocessor plus
numerous peripherals (like timers and UARTs) on chip and pre-
integrated. Microcontroller providers create different
microcontrollers for different application classes (e.g., TV
applications, automotive, etc.), with each class having different
on-chip peripherals. Providers amortize their design costs over
large numbers of chips, resulting in chips available for just a few
dollars. Development environments and in-circuit emulators also
exist for microcontrollers, allowing step-by-step execution and
internal register control/observation. Microcontroller users
configure the device for a particular application instance.

6. EXAMPLE
We have developed an early version of a product-oriented
reference design validating some claims of this paper. The design
is captured in RTL VHDL and synthesized by Synopsys. Figure 2
shows the basic architecture, consisting of a (partial) 32-bit
MIPS processor core connected to RAM and EEPROM (for
program memory) via a high-speed MIPS bus. Peripheral cores
are connected to a low speed ISA bus.  The two buses are joined
with a bridge core.  The peripheral include a (partial) CODEC
for data compression/decompression, a UART for serial data
transmission and reception, a programmable peripheral interface
controller for parallel I/O, a DMA core for direct memory access
by other cores, and an 8051 core for miscellaneous software
functions.  The reference design would house an FPGA for
custom hardware. The design also provides logic for loading
configuration data, e.g., loading a MIPS program into the internal
EEPROM, and shutting off inactive cores by writing the
“disable”  command to the control register of that core. Table 1
provides some statistics on the design. Because silicon was not
generated, only 15 person-months were required to build this
design. However, it is interesting to note that integrating the
various cores occupied a substantial portion of time in building
the design. Most integration problems were low-level timing
mismatches in among cores resulting in corrupted bus data.

Table 1: Statistics for designing the reference design.

Lines of RTL Code 18,572

Transistor Count 888,740

Synthesis Time 12 hours

Max Clock Speed 100 MHz

Core Design Time 10 person-months

Core Integration Time 5 person-months

Figure 2:.A sample reference design.
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Given this reference design, we then set out to build a digital
camera system. The digital camera requires a CCD preprocessor
core, not already part of the reference design, for image-capture,
thus requiring use of the FPGA. We could capture the remaining
camera functionality using the existing cores, with the 8051 and
DMA cores unused, as shown in Figure 2. Thus, design consisted
of modifying the existing reference design software to implement
the digital camera application, and of describing and synthesizing
the CCD core onto the FPGA and integrating it with the other
cores. Table 2 shows that the CCD core was designed in a couple
weeks and required another couple weeks to integrate. The
complete example is available at [22].

Table 2: Statistics for using the reference design.

CCD Lines of Code 526

CCD Gate Count (FPGA) 28,415

CCD Synthesis Time 3 hours

CCD Core Design Time 0.6 person-months

CCD Core Integration Time 0.7 person-months

System’s Silicon Execution (1 frame) .00035 sec

Silicon/FPGA Execution (1 frame) 0.0029 sec

RT-Simulation (1 frame) 299 sec

Gate-Simulation (1 frame) 28,080 sec

The CCD core synthesized for the FPGA could run at 20MHz,
compared with 100 MHz for the reference design. Compared to
specialized silicon, the reference design with FPGA would run
between 5 and 10 times slower. As shown in the table,
simulation times are many orders of magnitude slower. A co-
simulator would help – our instruction-set simulation runs at 2
MHz, but remaining cores would still run at much slower rates.

In summary, configuring the reference design required only a
small amount of design, enabled nearly at-speed execution of the
system for verification, and eliminated much of the time-
consuming integration time. As this example was a relatively
small (1 million transistors) SOC, these factors would likely
magnify significantly for larger SOCs.

7. LIMITATIONS AND FUTURE WORK
A key limitation of the configure-and-execute paradigm is the
fact that simulation is good at catching some bugs that emulation
and actual silicon are not good at catching [3]. Part of this is due
to the fact that, even though we can control the chip such that we
can step through it execution, we often cannot control the real
environment, making a simulated environment desirable. A
second limitation is that a system may not match a particular
application class and thus have no reference design.

Future work is extensive, including the development of an
environment to support configuration of fig chips, including
exploring the numerous combinations of parameter values to find
the best settings for a given application and set of constraints.
We are also working on developing an object-oriented simulation
model of a reference design to support early performance and
power analysis, and provide a means for building virtual system
prototypes. These activities form the Dalton project at UCR [22].

8. CONCLUSIONS
The current situation and trends indicate that designers will not
be able to utilize potential transistors, and even an IP-based
reuse paradigm is not likely to bridge the gap because of major
problems related to simulation time, emulation time and
expense, repeated silicon spins, and other problems. Rather than
trying to enable designers to use all those transistors for their
system’s functionality, we propose instead to use them to reduce
time-to-market, by using a “configure-and-execute”  paradigm.
Extensive research into the design, parameterization,
configuration, and debugging of reference designs is thus needed,
as well as techniques for optimization of configuration
parameters for specialized silicon generation.
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