
Dynamic Tuning of Configurable Architectures: The AWW 
Online Algorithm 

Chen Huang, David Sheldon, and Frank Vahid* 
Department of Computer Science and Engineering 

University of California, Riverside, USA 
*Also with the Center for Embedded Computer Systems, UC Irvine 

{chuang/dsheldon/vahid}@cs.ucr.edu 

ABSTRACT 
Architectures with software-writable parameters, or configurable 
architectures, enable runtime reconfiguration of computing 
platforms to the applications they execute. Such dynamic tuning 
can improve application performance, as well as energy. However, 
reconfiguring incurs a temporary performance cost. Thus, online 
algorithms are needed that decide when to reconfigure and which 
configuration to choose such that overall performance is optimized.  
We introduce the adaptive weighted window (AWW) algorithm, 
and compare with several other algorithms, including algorithms 
previously developed by the online algorithm community. We 
describe experiments showing that AWW results are within 4% of 
the offline optimal on average. AWW outperforms the other 
algorithms, and is robust across three datasets and across three 
categories of application sequences too. AWW improves a non-
dynamic approach on average by 6%, and by up to 30% in low-
reconfiguration-time situations.    

Categories and Subject Descriptors 
C.1.3 [Processor Architectures]: Adaptable architectures, 
heterogeneous systems.  
General Terms 
Algorithm, Performance, Design. 
Keywords 
Configurable architecture, tuning, FPGAs, cache, dynamic 
optimization, runtime configuration,  online algorithms.   

1. INTRODUCTION  
Configurable architectures enable runtime tuning of computing 
platforms to their running applications. Tuning can substantially 
improve performance or energy.  

Runtime configurable architecture constructs include memory 
hierarchies whose caches may be shut down or have their total size, 
line size, associativity, or replacement policy adjusted, buses that 
may be resegmented or have their widths or protocols adjusted, 
soft-core processors on field-programmable gate arrays (FPGAs) 
that may be reinstantiated with different datapaths or any processor 
that may have certain datapath units shut down, processors with 
adjacent FPGA units that may have particular coprocessors loaded, 
and scalable processors whose supply voltage and frequency may 
be varied.  

Tuning a configurable architecture to an application can 
substantially improve performance or energy. For a configurable 

architecture, each distinct application that runs on that architecture 
may run most efficiently with a particular configuration, running 
inefficiently in other configurations. Figure 1 shows execution time 
for three EEMBC embedded benchmark applications running on a 
SimpleScalar MIPS processor with a 2 Kbyte direct-mapped 
instruction cache having three possible line size configurations: 16, 
32, or 64 bytes. An application with much spatial locality (e.g., 
TBLOOK01) is faster with the largest line size, while another 
application (PUWMOD01) is faster with the smallest line size, and 
a third runs fastest using the middle line size. If these three 
applications run on one processor, reconfiguring the cache for the 
currently-executing application may yield 40% better performance 
than using a single configuration for all three applications. Figure 2 
illustrates running a particular application sequence, each instance 
shown on the x-axis with the applications’ first letter, with a fixed 
32-byte line size versus with a reconfigurable line size. The figure 
shows how total runtime for the latter may be less if reconfiguration 
time is fast, but may actually be more if reconfiguration is slow.  

While some configurable architecture constructs may be 
reconfigured with little runtime reconfiguration overhead, such as 
voltage scalable processors, other constructs require non-negligible 
reconfiguration time. For example, reconfiguring a memory 
hierarchy may involve flushing of dirty cache words. 
Reinstantiating an FPGA soft-core processor may involve time to 
save the processor’s execution context, swap in a new partial FPGA 
bitstream, and restore the processor context.  

Figure 1: Applications’ best configurations typically differ. 

                               
 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. 
CODES+ISSS’08, October 19–24, 2008, Atlanta, Georgia, USA. 
Copyright 2008 ACM  978-1-60558-470-6/08/10...$5.00. 

Figure 2: Reconfiguring can lead to lower total execution time, if 
reconfiguration time isn’t too slow. 

                               
 

0

20

40

60

80

100

P P P T T R R P P P

Application execution instance

Ap
pl

ic
at

io
n 

ex
ec

ut
io

n 
tim

e 
(M

cy
cl

es
)

0

200

400

600

800

1000

To
ta

l e
xe

cu
tio

n 
tim

e 
(M

cy
cl

es
)

With fixed
line (32)
With reconfig.
line
Total with
fixed

Total with fast
reconfig.
Total with
slow reconfig.

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

16 32 64

Line size (bytes)

Ap
pl

ic
at

io
n 

ex
ec

ut
io

n 
tim

e 
(c

yc
le

s) PUWMOD01
RSPEED01
TBLOOK01



A problem is to determine, as applications arrive for execution, 
when to reconfigure an architecture and to which configuration. 
Reconfiguring incurs performance loss due to reconfiguration time, 
but also performance gains due to tuned application execution. The 
gain must outweigh the loss for benefit. If the schedule of 
application executions is known a priori, and with pre-determined 
performance information for every application in each 
configuration, a straightforward dynamic programming algorithm 
can determine the optimal reconfiguration schedule.  

For many modern embedded systems, however, the schedule of 
application executions is not known a priori, but rather is 
determined by end-user usage patterns. In this case, an algorithm 
must be used that makes reconfiguration decisions with incomplete 
information about the future schedule of application executions.    

In this paper, we cast the reconfiguration problem as an online 
optimization problem, namely, as a metrical task system. The key 
contribution is the Adaptive Weighted Window (AWW) algorithm, 
which obtains better optimization than previous algorithms, and is 
robust across a broad range of possible scenarios of reconfiguration 
time versus application runtimes and of application schedules. We 
define the problem, discuss related work, and describe previous and 
new algorithms including AWW. We describe experiments using 
the algorithms on real and synthetic benchmarks, showing the 
AWW algorithm to usually achieve results closest to optimal. The 
algorithm is also simple to implement. Thus, the AWW algorithm 
should be suitable for dynamic tuning of a wide range of existing 
and future configurable architectures.   

2. ARCHITECTURE RECONFIGURATION 
2.1 Problem Definition 
We define the architecture reconfiguration problem as follows. 
Given are: 
� The application set A = {a1, a2, ..., an} and a set of 

architecture configurations C = {c1, c2, ... cm}.  
� An execution time matrix E of dimension n x m. E(i,j) is the 

execution time of application ai on configuration cj.  
� The reconfiguration time R to change from any 

configuration ck to any other configuration cl.  

Runtime consists of a sequence of application executions S, such as 
S = <a2, a1, a1, a3, a2, a1>, but typically much longer with 
hundreds or thousands of application instances. We define S[k] as 
the application type at position k in the application sequence S; in 
the above sequence, S[1] is a2, S[2] is a1, and S[3] is a1.    

Assumed is that each application has a start and finish and 
cannot be preempted. Iterating applications can be accounted for by 
redefining the application as a single iteration and then scheduling 
repeated executions of the redefined application. 

The problem is to choose a configuration for every application 
in the sequence to minimize total time T, yielding a configuration 
schedule. Every configuration change in that schedule is a 
reconfiguration incurring time R. Total time T is the sum of 
application execution times on the corresponding configuration in 
the schedule, plus the time for all reconfigurations.  

2.2 Limitations  
The above problem definition assumes that each application’s 
execution time on each configuration is known. For some 
architectures, the number of possible architecture configurations 
could be large and thus hard to precompute, though this situation 
can be alleviated by using a configuration subset that reasonably 
covers the configuration space [14]. A priori knowledge also 

diverges from one research avenue in configurable architectures 
that seeks to make the configurations and tuning invisible to the 
application designer. However, dynamically collecting runtime data 
on applications and architectures may help address that problem. A 
second limitation is that applications cannot be preempted, a topic 
for future work. A third limitation is the assumption that application 
execution times on a configuration, and reconfiguration times, are 
constants. However, execution times for an application on a 
particular configuration may vary depending on runtime data. 
Reconfiguration times may differ among pairs of configurations 
(e.g., adding a datapath unit may be costlier than removing one), 
and further could depend on which applications ran earlier (e.g., 
more cache flushing may be needed after some applications than 
after others). Treating these times as constants involves considering 
worst cases or average cases instead.  Despite the limitations, the 
definition is close to many task-based problem definitions, and 
seems suitable for a variety of embedded systems. Future work may 
seek to extend the definition to other scenarios.  

2.3 Metrical Task System 
An online problem is one that must be solved given data piece by 
piece, in contrast to offline problems in which all input data is 
available. A metrical task system, defined in [5], is a well-known 
formulation of a class of online problems. The problem involves a 
task system (S,d) for processing sequences of tasks. S is a set 
system states, and d is a cost matrix where d(i, j) is the cost of 
changing from state i to state j, assumed to satisfy the triangle 
inequality, and assumed to have 0s on the diagonal. In a metrical 
system, state transition costs are symmetric, i.e.,    d(i, j) equals d(j, 
i). The cost of processing a task depends on the system state, and 
thus a task can be viewed as a vector T=(T(1), T(2), ..., T(j)), where 
T(j) is the (possibly infinite) cost of processing the task while in 
state j. A schedule for a sequence T1, T2,…, Tk of tasks is a 
sequence s1, s2,…,sk of states where si is the state in which Ti is 
processed. The cost of a schedule is the sum of all task processing 
costs and the state transition costs incurred. An on-line scheduling 
algorithm is one that chooses si only knowing T1T2…Ti. 

The architecture reconfiguration problem (AR) can be mapped 
to the metrical task system problem (MTS). AR’s applications 
correspond to MTS’ tasks, and configurations to states. Each row of 
AR’s execution time matrix corresponds to an MTS T vector. AR’s 
reconfiguration time R can be used to fill in MTS’ cost matrix with 
identical values (with the diagonal 0s), thus satisfying symmetry 
and triangle inequality requirements. AR’s sequence of application 
executions corresponds to MTS’ task sequence, AR’s schedule to 
MTS’ schedule, and AR’s total time to MTS’ cost.  

3. RELATED WORK 
A common configurable architecture parameter involves caches, 
which contribute greatly to system performance and power. 
Albonesi [1] proposed a configurable cache in which ways could be 
shut down. Malik [11] added the ability to configure each way as 
instruction, data, both, or off, for unified caches. Zhang [15] further 
added the ability to concatenate ways into one larger way, and to 
vary the line size. While most previous cache tuning work 
emphasizes static tuning of such caches, Balasubramonian [2] 
proposed a dynamic cache tuning approach involving enlarging or 
shrinking a configurable cache based on cache miss thresholds and 
program phase changes detected by counters, and measuring 
whether changes made improvements. Gordon-Ross [8] developed a 
dynamic cache tuning approach for Zhang’s configurable cache, 
intermittently activating a previously-developed cache tuning 



search heuristic, with activation frequency governed by a feedback 
control method. Both those dynamic approaches differed from the 
approach in this paper by their not assuming awareness of specific 
applications executing or of application execution times on possible 
configurations. Their advantage versus this paper’s approach is 
transparency, at the cost of less possible optimization.  

Configurable processors have also been proposed. The most 
common involves voltage/frequency scalable processors. Sekar [13] 
extends such platforms by also introducing configurability of data, 
which can be in an on-chip memory or off-chip, and by introducing 
a custom algorithm for dynamically partitioning data and choosing 
voltage/frequency based on the presently active task set.  Kumar [9] 
proposes having multiple diverse binary-compatible cores on a 
single general-purpose processor chip. Applications would be 
scheduled onto a specific core based on the best match as well as on 
current workload, and thus remapping applications upon arrival of a 
new application can be viewed as reconfiguration.  

Configurable bus research includes Lahiri’s [10] in which a 
system components’ communication transactions are monitored, 
and adjustments then made to configurable bus parameters like 
priorities and DMA mode.  

The metrical task system problem has been the focus of much 
online algorithm research since its definition in 1992 [5]. Many 
such works focus on developing K-competitive algorithms – 
algorithms guaranteed not to be worse than a factor K from the 
offline optimal – or extending the problem definition  (e.g., [3][6]).  

4. ALGORITHMS  
We introduce several algorithms for architecture reconfiguration. In 
the complexity analyses, n is the number of application types, and 
m the number of configuration types. Complexity is defined as 
deciding on a configuration for one application instance in S.  

4.1 Offline Optimal 
The offline optimal algorithm is given the complete application 
sequence S. A dynamic programming algorithm can be formed, 
using the following recurrence relation to fill the table of Figure 3: 

)],[(})(min,min{ 11 jkSERLLL k
hjh

k
j

k
j ++= −

≠

−  

k
jL  is the minimal total execution time, up to and including the 

application in position k in S, for choosing configuration j to 
execute that application. In other words, the minimal execution time 
at position k for configuration j is obtained either by using j for the 
previous application (the 1−k

jL  term) or by using a different 

configuration h having the smallest time (the 1−k
hL term) and 

reconfiguring to j (thus incurring time R), whichever is less, plus 
the current application’s time on configuration j (the )],[( jkSE  
term). Stored with each L, though not shown, is the previous 
configuration (either j or some h) as determined above, so that the 

algorithm records the configuration schedule to obtain the minimal 
time. The time complexity of this offline optimal algorithm is O(m2) 
for each application in the input sequence, or O(Km2) for the entire 
sequence, where K is the total length of the input sequence S.  

4.2 Greedy 
A simple online algorithm always changes to the configuration that 
is best for the current application, ignoring reconfiguration time. 
Such an algorithm is useful primarily for comparison purposes, 
representing a naive value to compare to along with the other 
extreme of the “best case” value of the offline optimal algorithm. 
The time complexity for the Greedy algorithm is O(1).  

4.3 Work Function 
The Work Function algorithm [5], defined for MTS, is similar to the 
offline optimal dynamic programming algorithm, but for an 
application sequence up to and including the current application 
only. The algorithm computes the dynamic programming table of 
Figure 3 incrementally as each application is encountered, choosing 
the configuration having the lowest k

jL  execution time for the 

current k. Time complexity is O(m2). 

4.4 Marking Algorithm  
The Marking algorithm [5] was also defined for MTS. It maintains 
a counter for each configuration, and uses phases. At a phase start, 
counters are reset to 0, and a random configuration cj is selected. 
When an application ai runs on configuration cj, the counter for 
configuration cj is incremented by the execution time of ai on cj, 
namely by E(i,j). If the counter for cj reaches some threshold X, the 
configuration is changed to a random configuration whose counter 
is less than X. If no such configuration exists, a new phase is 
started. The intuition of this algorithm is to rotate among 
configurations (since the best is not known), staying longer in 
configurations that execute applications fast and thus don’t have 
their counters increased rapidly. Time complexity is O(m).  

4.5 Window Algorithm 
Online algorithms defined for MTS typically focus on the K-
competitive ratio, which guarantees results no worse than K times 
the offline optimal for theoretically worst case (“adversarial”) input 
sequences. Our goal instead was to perform well for typical, while 
broad, input sequences (as theoretically worst case inputs are rare in 
practice). We thus developed additional algorithms.  

The first algorithm we developed for the architecture 
reconfiguration problem assumes temporal locality, meaning that 
the future will be similar to the recent past. The number of 
applications s considered into the past is called the window size. 
The Window algorithm, shown in Algorithm 1, finds the 
configuration that would have yielded the smallest time for the 
application sequence appearing in the previous s applications in the 
application sequence, followed by the current application.  

    Algorithm 1: Window Algorithm 

       Window (k, s)  returns configuration j  
             s: window size.   k: current position in sequence S 
          for each configuration j 

               ∑
+−=

←
k

skh

k
j jhSET

1
)],[(  

                if ≠j Current configuration then  RTT k
j

k
j +←  

      return   j corresponding to minimum k
jT  obtained   

   Figure 3: Table for dynamic programming algorithm. 

                                      
                            
                            
                            

                                    

 

c1

c2

cm

...

S[1] ... S[2] S[K] 

L 1 
1 L 2 

1 L K 
1 

L 1 
2 L 2 

2 L K 
2 

L 1 
m L 2 

m L K 
m 



k
jT  is the time of configuration j to execute the current window’s 

applications. The time complexity of the algorithm is O(m). The 
following relation, )],[()],[(1 jkSEjskSETT k

j
k
j +−−= − , 

keeps complexity low by incrementally computing the next T from 
the previous T, avoiding complexity proportional to s. 

4.6 Two-Way Window (TWW) Algorithm 
A possible improvement to the Window algorithm attempts to more 
accurately predict the future. The Two-Way Window (TWW) 
algorithm maintains an application transition matrix M(y,z). Each 
entry counts the number of times application az has followed ay. 
Given the current application ai, the algorithm determines the most 
probable next application aj by examining the matrix counts. With 
aj, the algorithm determines the most probable ak, and so on, for 
the desired future window size. The algorithm then determines the 
best configuration for the window that includes the past u 
applications, the current application, and the future v (predicted) 
applications. We set u and v to 10. The time complexity of TWW is 
O(mv), where v is the size of the future window.   

4.7 AWW Algorithm 
For the Window algorithm, choosing the best window size is 
challenging. A larger size is more stable, but a smaller size gives 
more weight to the near past, which may be more likely to reflect 
the near future. A hybrid uses a larger window while giving more 
weight to the recent window part. Such weighing can be achieved 
by multiplying application ax’s execution time by zdistance, where z is 
a constant between 0 and 1, and distance is the number of 
applications between ax and the current application. Thus, the 
further back in time that application ax was run, the less influence it 
has. We call this algorithm the Weighted Window algorithm. 

Choosing the best z is hard. If execution times are large relative 
to reconfiguration time, a small z is preferred to give more weight 
to the current application. In other words, small reconfiguration 
times enable frequent reconfigurations. But, if reconfiguration time 
is large, a large z (near 1) is preferred, to resist frequent 
reconfigurations, looking more evenly at the past application 
sequence, presumably predicting the long term future.  

The discussion leads to the idea of defining z as (1-y), where y 
is adapted to the extent to which execution times are greater than 
the reconfiguration time R. We define y as the fraction of 
application/configuration pairings whose execution time exceeds 
the reconfiguration time, namely: 

   for all i (application types) and j (configuration types) 
           y = ( #E(i,j) such that E(i,j)>R) / (i x j) 

Because z is thus adapted to the application execution times and 
reconfiguration time, we refer to this as the adaptive weighted 
window (AWW) algorithm, shown in  Algorithm 2.  

    Algorithm 2: AWW Algorithm 

       AWW (k, s)  returns configuration j 
         s: window size.   k: current position of S 
      y = (#E(i, j) | E(i, j) > R) / (i*j) 

          for each configuration j 

              ∑
+−=

−−⋅←
k

skh

hkk
j yjhSET

1

)1()],[(  

              if ≠j Current configuration then    RTT k
j

k
j +←  

      return    j corresponding to minimum k
jT  seen  

Tj is the time of configuration j to execute the application in the 
window. The time complexity is O(m). The relation: 

)],[()1())1()],[(( 11 jkSEyyjskSETT Sk
j

k
j +−⋅−⋅−−= −−  

enables incremental computation of T from the previous T, to avoid 
complexity proportional to the window size s.    

An alternative approach to adapt z could be to define y as the 
geometric mean of the difference of application execution times and 
the reconfiguration time R (other definitions are possible). 

Computing z based on application execution times and the 
reconfiguration time has the added benefit of adapting to changes if 
those times were dynamically recorded and the E and R items were 
dynamically updated. We did not do such dynamic updates in our 
experiments, but this may be an interesting avenue for future work.  

5. EXPERIMENTS 
We compared the developed algorithms on four data sets 
(applications and configurations), described in upcoming 
subsections. For each data set, to evaluate the algorithms across a 
spectrum of application sequence scenarios, we created a generator 
capable of creating three categories of application sequences: 
� Random: Applications are randomly inserted into the 

sequence. 
� Biased: We defined two percentages A and B, and then 

generated the sequence such that A percent of the 
applications executed B percent of the time. We used 
A=20% and B=80%.    

� Periodic: We defined a length T, and generated a random 
subsequence of length T that then repeats.  We used T=15.   

Each sequence’s length was 1,000. For all experiments, because 
sequences involve some random ordering, we generated 10 
sequences, and report the average.  

We developed a simulator in C++ that reads all problem input 
and an application sequence, and that determines the total 
application execution time that would result from running each 
algorithm on the sequence. The running time of the algorithms 
themselves is not included in that execution time, being negligible 
for our particular application and platform scenarios; for other 
scenarios, algorithm runtimes may be significant, especially for the 
Work Function algorithm whose complexity is quadratic.  

5.1 Cache Tuning 
We obtained data from Gordon-Ross [8] for a dynamically 
configurable cache. The data consisted of application execution 
times for 36 applications on all 18 possible configurations of a 
configurable cache (i.e., 648 data items). The benchmarks were 
from Powerstone, MediaBench and EEMBC. Example cache 
configurations included a 2 Kbyte, 16-byte line size, 1-way (direct 
mapped) cache and an 8 Kbyte, 64-byte line size, 4-way set-
associative cache, and various configurations between these 
extremes. Data was derived through exhaustive simulation using 
SimpleScalar. Rather than choosing one cache reconfiguration time, 
to evaluate the algorithms across a range of potential platforms, we 
considered cache reconfiguration times (mainly from cache 
flushing) from 0.01 ms to 100 ms. Application runtimes ranged 
from 20 ms to 500 ms. Figure 4 summarizes results.  

5.2 FPGA Soft-Core Tuning 
We obtained data from Sheldon [12] for a MicroBlaze configurable 
FPGA soft-core processor.  The data consisted of 15 applications on 
64 configurations, or 900 data points. Benchmarks were from 
Powerstone and EEMBC. Configurations included the base 
processor alone, the base processor plus all optional datapath 



components (floating-point unit, multiplier, barrel shifter, cache, 
etc.), and various configurations in between these extremes. The 
data was originally collected for offline tuning, but could be utilized 
in a dynamic tuning approach on an FPGA supporting runtime 
partial reconfiguration. To evaluate across a range of FPGA 
platforms, we considered reconfiguration times (due to FPGA 
bitstream loading and processor context store/restore) from 5 ms to 
200 ms. Application runtimes ranged from 60 ms to 2,000 ms. 
Figure 5 shows results.  

5.3 Synthetic Datasets 
To further evaluate the algorithms across a range of scenarios, we 
generated a randomized dataset with 5 applications and 10 
configurations, having cost matrix E of {38,58,394,36,69}, 
{91,73,98,72,49}, {18,93,58,37,44},  {83,27,38,55,36}, 
{78,35,84,59,19}, {89,45,28,50,22}, {29,40,95,38,66}, 
{85,16,48,67,34}, {20,49,87,239,60}, {29,59,27,86,90}}. The 
random nature of the data provides a greater challenge to tuning 
algorithms. Figure 6 summarizes results. A second dataset involved 
10 applications on 4 configurations. Results were similar to Figure 
6, and thus omitted for space reasons.  

5.4 Evaluation 
For all datasets, AWW performed best, within 2% of the offline 
optimal for the real data sets and 6% for the synthetic datasets, or 
4% overall. AWW performed well across all three application 
sequence categories, with its worst case being 12% from optimal for 
the random (and hence most difficult) sequence category with 
synthetic data (which was also random). TWW sometimes very 
slightly outperformed AWW, but such benefit was outweighed by 
significantly worse TWW results for certain scenarios. The Window 
algorithm, with sizes of 10 or 100, was often close to AWW, but 
did poorly for the biased FPGA soft-core scenarios and for the 
synthetic (more randomized) datasets. The Work Function 
algorithm was usually close to AWW, but did poorly for the 
synthetic datasets. Marking was not competitive, which can be 
explained by its seeking to improve the theoretical worst case. The 
Greedy algorithm’s inferiority was apparent for the larger 
reconfiguration times, when its “always reconfigure” approach 
hurts the most.  

We recorded the number of reconfigurations incurred by each 
algorithm, summarized for the FPGA soft-core experiments in 
Figure 7. Observing the number of reconfigurations provides insight 
into each algorithm’s behavior. AWW tends to match the offline 

Figure 4: Cache tuning: Resulting execution times (seconds) for the various online algorithms for random (left), biased (center), and periodic 
(right) application sequences, for reconfiguration times ranging from 0.01 ms to 100 ms.   

0

500

1000

1500

2000

2500

0. 01ms 0. 1ms 1ms 10ms 100ms

Of f l i neOpt i mal
Gr eedy
Wor kf unct i on
Mar ki ng
wi ndow( 100)
wi ndow( 10)
TWW
AWW

0

1000

2000

3000

4000

5000

6000

0. 01ms 0. 1ms 1ms 10ms 100ms
0

500

1000

1500

2000

2500

3000

0. 01ms 0. 1ms 1ms 10ms 100ms  

Figure 5: FPGA soft-core tuning: Resulting execution times (seconds) for the various online algorithms for random (left), biased (center), 
and periodic (right) application sequences, for reconfiguration times ranging from 5 ms to 200 ms.   

0
50
100
150
200
250
300
350
400
450

5ms 20ms 50ms 100ms 200ms

Of f l i neOpt i mal
Gr eedy
Wor kf unct i on
Mar ki ng
Wi ndow( 100)
Wi ndow( 10)
TWW
AWW 0

50
100
150
200
250
300
350
400

5ms 20ms 50ms 100ms 200ms
0
50
100
150
200
250
300
350
400
450

5ms 20ms 50ms 100ms 200ms

Figure 6: Synthetic cases: Resulting execution times (cycles) for the various online algorithms for random (left), biased (center), and periodic 
(right) application sequences, for reconfiguration times ranging from 5 cycles to 150 cycles. Certain values extend off the chart top.    

0
10000
20000
30000
40000
50000
60000
70000
80000

5c 20c 40c 80c 150c

Of f l i neOpt i mal
Gr eedy
Wor kf unct i on
Mar ki ng
Wi ndow( 100)
Wi ndow( 10)
TWW
AWW 0

5000
10000
15000
20000
25000
30000
35000
40000

5c 20c 40c 80c 150c
0

10000
20000
30000
40000
50000
60000
70000

5c 20c 40c 80c 150c  



optimal algorithm’s number, sometimes only slightly different. 
Work Function often performed many more reconfigurations, while 
still remaining competitive in total execution time in many cases. 
Greedy of course performed the most reconfigurations, 
reconfiguring every time the current application’s best 
configuration differed from the previous application’s best 
configuration.  

To determine algorithm runtimes, we ran each for a 50,000 
application sequence on a 2 GHz PC. The offline optimal required 
256 ms and Work Function 248 ms. AWW and Window(10) 
required 4 ms, while Marking and Window(100) required 8 ms. 
TWW required 840 ms. Greedy was near 0 ms. AWW not only 
outperformed the other algorithms, but was faster than all but 
Greedy. AWW required only 4 ms/50,000 = .08 microseconds to 
decide whether to reconfigure for the current application.  

For further comparison, we implemented a non-dynamic 
configuration algorithm that stays in the single configuration having 
the lowest average runtime across all application types. AWW was 
6% better on average, and up to 30% better for small 
reconfiguration times, when frequent reconfiguring can be done 
with less time overhead. For large reconfiguration times, the non-
dynamic algorithm nearly equaled AWW, slightly better (1%-2%) 
in some cases. Plots are omitted for space reasons.  

6. CONCLUSIONS 
Dynamic tuning will become increasingly important as configurable 
architectures proliferate. An adaptive weighted window (AWW) 
algorithm achieves excellent results for a wide range of scenarios, 
including various application sequence patterns (even the bad case 
of random sequences), and situations of low or high reconfiguration 
times. AWW involves a straightforward implementation, and 
outperforms the well-known Work Function online algorithm, while 
also having the lower time complexity of O(m) rather than O(m2) 
(explainable by our different goal of achieving good results for 
realistic scenarios versus theoretical worst case results). If m, the 
number of possible configurations, is large, subsetting could 
possibly reduce m with minimal performance loss [14]. AWW 
improves over a non-dynamic approach by 6% on average, and up 
to 30% for small reconfiguration times.  

Future work may consider variability in application and 
configuration times, energy costs, preemptable applications, and 
other extensions.  

To facilitate reproduction, comparison, and extension of this 
work, the complete datasets used in this paper are available at 
http://www.cs.ucr.edu/~vahid for an indefinite period of time.  

7. ACKNOWLEDGEMENTS 
This research was supported in part by the National Science 
Foundation (CNS-0614957).  

References 
[1] D.H. Albonesi. Selective Cache Ways: On-Demand Cache Resource 

Allocation. Journal of Instruction Level. Parallelism, May 2000. 
[2] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, S. Dwarkadas. 

Memory hierarchy reconfiguration for energy and performance in 
general-purpose processor. Int. Symp. on Microarchitecture (MICRO), 
2000, pp 245-257.  

[3] Y. Bartal, A. Blum, C. Burch, and A. Tomkins. A polylog(n)-
competitive algorithm for metrical task systems. ACM Symp. on 
Theory of Computing, 1997, pp. 711-719. 

[4] A. Blum and C. Burch. On-line learning and the metrical task system 
problem. Journal of Machine Learning, Vol. 39, No. 1, April 2000, pp. 
35-58.  

[5] A. Borodin, N. Linial, and M.E. Saks. An optimal on-line algorithm for 
metrical task system. Journal of the ACM (JACM), Volume 39, Issue 4  
(Oct. 1992), pp. 745 – 763.   

[6] W.R. Burley and S. Irani. On algorithm design for metrical task 
system. Algorithmica, 1997, Vol. 18, pp.  461-485.  

[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein. Introduction to 
algorithms. MIT Press, 2001. 

[8] A. Gordon-Ross and F. Vahid.  A self-tuning configurable cache. 
Design Automation Conference (DAC), 2007, pp. 234-237. 

[9] R. Kumar, D. Tullsen, N. Jouppi, P. Ranganathan. Heterogenous chip 
multiprocessors. IEEE Computer, Nov. 2005, pp. 32-38.  

[10] K.  Lahiri , A. Raghunathan, G. Lakshminarayana, and S. Dey. 
Communication architecture tuners: a methodology for the design of 
high-performance communication architectures for systems-on-chips.  
ACM/IEEE Design Automation Conf. (DAC), 2000, pp. 513-518.  

[11] A. Malik, B. Moyer and D. Cermak. A low power unified cache 
architecture providing power and performance flexibility. Int. Symp. on 
Low Power Electronics and Design (ISLPED), June 2000. 

[12] D. Sheldon, R. Kumar, R. Lysecky, F. Vahid, D.M. Tullsen.  
Application-specific customization of parameterized FPGA soft-core 
processors. IEEE/ACM International Conference on Computer-Aided 
Design (ICCAD), Nov. 2006, pp. 261-268. 

[13] K. Sekar, K. Lahiri, S. Dey. Dynamic platform management for 
configurable platform-based system-on-chips. Int. Conf. on Computer 
Aided Design (ICCAD), 2003, pp. 641-648.  

[14] P. Viana, A. Gordon-Ross, E. Keogh, E. Barros, F. Vahid, 
Configurable cache subsetting for fast cache tuning. IEEE/ACM 
Design Automation Conference (DAC), July 2006, pp. 695 - 700. 

[15] C. Zhang, F. Vahid and W. Najjar. A highly-configurable cache 
architecture for embedded systems. International Symposium on 
Computer Architecture (ISCA), 2003, pp. 136-146. 

Figure 7: Total number of reconfigurations for random (left), biased (center), and periodic (right) application sequences, with reconfiguration 
times ranging from 5 ms to 200 ms, for the FPGA soft-core tuning experiments.    

0
100
200
300
400
500
600
700
800
900

5ms 20ms 50ms 100ms 200ms

Of f l i neOpt i mal
Gr eedy
Wor kf unct i on
Mar ki ng
Wi ndow( 100)
Wi ndow( 10)
TWW
AWW 0

100
200
300
400
500
600
700
800

5ms 20ms 50ms 100ms 200ms
0

200

400

600

800

1000

1200

5ms 20ms 50ms 100ms 200ms


