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ABSTRACT 
We describe results of a case study whose intent was to 
determine whether new techniques for hardware/software 
partitioning of an application’s binary are competitive with 
partitioning at the C source code level. While such 
competitiveness has been shown previously for standard 
benchmark suites involving smaller or unoptimized applications, 
the case study instead focuses on a complete 16,000-line highly-
optimized commercial-grade application, namely an H.264 video 
decoder. The several month study revealed that binary 
partitioning was indeed competitive, achieving nearly identical 
2.5x speedups as source level partitioning, compared to a 
standard microprocessor. Furthermore, the study revealed that 
several simple C-level coding modifications, including pass by 
value-return, function specialization, algorithmic specialization, 
hardware-targeted reimplementation, global array elimination, 
hoisting and sinking of error code, and conversion to explicit 
control flow, could lead to improved application speedups 
approaching 7x for both source level and binary level 
partitioning.  

Categories and Subdescriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems. 

General Terms 
Performance, Design. 

Keywords 
Hardware/software partitioning, FPGA, synthesis, embedded 
systems, binaries, H.264. 

1. INTRODUCTION 
Microprocessor platforms with on-chip field-programmable gate 
arrays (FPGAs), such as the Xilinx Virtex II Pro, Altera 
Excalibur, Triscend E5/A7, and Atmel FPSLIC, provide the 
opportunity for significant performance improvement compared 
with software execution on an embedded microprocessor alone. 
The improvement comes from partitioning critical software 
kernels to the FPGA hardware.  Designers traditionally perform 
such hardware/software partitioning manually, perhaps using a 
hardware/software focused high-level language such as SystemC 

[8], SA-C [2], HandelC [12], or SiliconC [1]. Recently, 
automated compilers with built in partitioning capabilities have 
appeared, such as CatapultC [4] and XPRES [16], and research 
approaches such as [7][10].  These compiler-based approaches 
provide an excellent technical solution for hardware/software 
partitioning, commonly achieving order of magnitude 
performance improvements.   

A partitioning approach that operates on the binary, rather 
than source, may expand the applicability of hardware/software 
partitioning to an even broader market. Binary partitioning 
operates on the executable generated after compilation and 
linking. From a tool flow perspective, a binary approach avoids 
placing restrictions on the language, compiler or integrated 
design environment to be used, which are often well established 
in industry software design flows. A binary approach supports 
applications built from multiple source languages, built using 
third party object code for which no source is available, or with 
parts written in assembly language for optimization purposes or 
due to use of legacy code.  We originally introduced binary 
partitioning in [15], trading off reduced speedup compared to 
source partitioning, for easier tool flow integration.  Mittal used 
binary partitioning to map legacy digital-signal processor 
binaries onto FPGAs [11].  A commercial product from Critical 
Blue [6] uses binary partitioning to create a custom very-large 
instruction word co-processor that speeds up software execution 
on a standard embedded microprocessor.   

A further direction of binary partitioning is dynamic binary 
partitioning, known as warp processing, which we have proposed 
[13]. In warp processing, on-chip tools dynamically and 
transparently detect an executing binary’s kernels, decompile 
each kernel to a control/dataflow graph, and then synthesize, 
place and route the kernel onto a configurable logic fabric. While 
implementing all such tools on-chip sounds infeasible, careful 
creation of lean algorithms and a highly-simplified fabric enable 
execution of those tools on a low-end ARM embedded processor 
(i.e., an ARM7) in less than two seconds for MediaBench, 
PowerStone, EEMBC, and other benchmarks [13]. Warp 
processing potentially opens up hardware/software partitioning 
to the entire microprocessor market, including server, desktop, 
mobile, and other microprocessor platforms, just as dynamic 
binary translation and optimization presently enables use of 
underlying architectures radically different from x86 instructions 
in nearly all modern x86 microprocessor architectures. A major 
U.S. desktop microprocessor vendor is presently fabricating a 
prototype warp processing chip. 

To compensate for the speedup gap between source and 
binary partitioning, we have applied existing advanced 
decompilation methods, and developed several new synthesis-
focused methods to recover high-level constructs, such as loops 
and arrays, from the binary [14]. We have shown that such 
decompilation makes binary partitioning competitive with source 
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level partitioning for a wide variety of benchmarks drawn from 
MediaBench, PowerStone, and EEMBC [14]. Of course, we 
acknowledge that binary level partitioning will likely never 
equal source level partitioning for all benchmarks, especially for 
highly-advanced source-level methods. But by closing the gap, 
binary partitioning can at least broaden the market for 
hardware/software partitioning by resulting in respectable 
speedups in binary-based approaches.  

However, a limitation of previous binary partitioning studies 
(and in fact of previous source level partitioning studies too) is 
that the benchmarks used tend to be small benchmarks (kernels) 
and/or unoptimized software (reference code). Speeding up a 
kernel alone may result in misleadingly-high speedups as the 
surrounding support code, which often can’t be sped up, is 
excluded. Speeding up unoptimized code also may yield 
misleadingly-high speedups, as clearly a slow original execution 
makes hardware implementation look even faster. A concern is 
whether binary partitioning would achieve speedups for real 
commercial highly-optimized embedded applications, which are 
often painstakingly hand-optimized for performance. We 
wondered whether such optimized code could still be sped up.     

Through our collaboration with Freescale Semiconductor [9], 
we obtained the 16,000-line C source code for an H.264 video 
decoder, which unlike publicly available reference code has been 
highly hand-optimized for performance.  We then performed a 
several month case study that involved profiling the application 
to find the most critical functions (of which there were nearly 50, 
rather than just 2-5 as in most benchmarks) out of the many 
hundreds of total functions. The study also involved performing 
binary and source level partitioning, involving extensive manual 
analysis to look beyond present synthesis limitations of source-
level tools. In addition to finding the two approaches 
competitive, we found several simple modifications to the C 
code that would enable even greater speedups, for either source 
or binary partitioning.  

2. BINARY-LEVEL HW/SW 
PARTITIONING 
Binary-level hardware/software partitioning is the process of 
partitioning computation kernels of a software binary into 
regions that will be implemented in custom hardware and regions 
that will execute in the existing binary format, with possibly 
some added instructions to communicate with the hardware 
regions.  Figure 1 illustrates a binary-level hardware/software 

partitioning approach. The software developer initially writes the 
application to be partitioned in any high-level language, such as 
C, and then compiles the high-level code using any software 
compiler.  During compilation, the compiler links in additional 
object code from libraries and possibly hand-optimized 
assembly, forming a software binary.  The binary-level hw/sw 
partitioner then uses decompilation to recover high-level 
information that is necessary for hardware/software partitioning 
and synthesis.  Hw/sw partitioning determines the regions of the 
binary that will be implemented in hardware, possibly using 
profiling information and hardware/software performance 
estimation.  Synthesis then converts the regions selected for 
hardware into a hardware netlist.  The binary updater modifies 
the original software binary to remove the software 
implementation of regions moved to hardware in addition to 
adding new instructions to communicate with the hardware 
regions.  Finally, the binary-level hw/sw partitioner combines the 
updated binary with the hardware netlist to form a bitfile that 
configures the microprocessor/FPGA platform. 

2.1 Decompilation 
Binary partitioning uses decompilation to recover high-level 
information that the synthesis tool needs to synthesize efficient 
hardware.  Without the necessary high-level information 
available in the original code, synthesis of software binaries 
would produce hardware much slower than would be synthesized 
by compiler-based approaches.  For example, compilers 
commonly unroll loops to expose parallelism.  Without 
decompilation, binary synthesis approaches cannot unroll loops, 
losing potential parallelism, because the loop structure is not 
explicit at the binary level. 

Decompilation for binary synthesis consists of several steps.  
Initially, binary parsing converts the binary into an instruction 
set independent representation that allows all of the following 
steps to be performed for any instruction set [5].  The decompiler 
next analyzes the instruction-set independent representation and 
creates a control/data flow graph (CDFG).   The decompiler then 
performs control structure recovery [5] to identify regions of the 
CDFG that correspond to loops and if statements.  Next, the 
decompiler performs array recovery to determine the regions of 
memory that correspond to arrays.  The decompiler also 
performs optimizations that remove overhead introduced by the 
instruction set, in addition to undoing optimizations that were 

Figure 1: Binary-level hardware/software partitioning. 
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applied by the software compiler that may obscure some of the 
high-level constructs in the binary. 

Previous work [14] has shown that in some cases, 
decompilation is successful enough to recover enough high-level 
information to allow binary partitioning to achieve identical 
results as a compiler-based approach.  In fact, if decompilation is 
able to recover the original representation, then binary synthesis 
is equivalent to synthesis from C.   

Although decompilation can commonly recover all necessary 
information for partitioning, decompilation does have limitations 
that can result in an incomplete recovery of high-level 
information.  One limitation of decompilation is the inability to 
statically analyze control flow in the presence of indirect jumps.  
Indirect jumps typically result from function pointers and switch 
statements.  Another limitation of decompilation is the inability 
to guarantee array recovery.  Array recovery relies on memory 
access patterns to determine regions of memory that correspond 
to arrays.  If an array is not accessed in a regular pattern, the 
decompiler may fail to identify the array.  The inability to 
recover all arrays may be a disadvantage for binary partitioning 
because ideally these arrays could be stored in multiple 
memories on the FPGA, allowing for parallel accesses to 
individual array elements.  Fortunately, much of the code 
typically considered for hardware implementation is written in a 
way that is ideal for decompilation. 

2.2 Hardware/Software Partitioning 
Due to Amdahl’s Law, selecting hardware regions based on 
percentage of execution time guarantees the largest potential 
speedup.  Although selecting hardware regions solely based on 
percentage of execution time does not guarantee satisfaction of 
area constraints, in this study we are mainly concerned with 
obtaining the maximum speedup.  Therefore, we used a 
simplified partitioning technique that uses profiling results to 
sort the functions of the application based on the percentage of 
total execution time.  We also consider loops in addition to 
functions, but for the H.264 decoder, the body of most of the 
functions was just a loop, so we chose to partition the entire 
function.  Our partitioning technique selects functions for 
hardware implementation in order of the profiling results until 
the performance benefits from additional functions is negligible.  
If a function doesn’t benefit from hardware implementation, our 
partitioning technique skips the inappropriate function and 
moves to the next most frequent function.  We could of course 
extend our approach to meet specific area constraints by 
investigating different hardware implementations of each 
function or by using partial implementations of functions that 
have certain regions not appropriate for hardware. 

3. H.264  
H.264 is a video codec included in the MPEG4 standard as 
MPEG4-Part 10, also known as advanced video coding (AVC).   
H.264 is capable of compressing a video using up to three times 
fewer bits than MPEG2 and results in much higher quality for 
encoded videos.  This section provides a brief overview of the 
differences between H.264 and previous standards.  

H.264 achieves significant compression improvements by 
refining each step from previous standards, as opposed to adding 
entirely new steps.  Unlike MPEG2, H.264 can perform both 
intraprediction and interprediction to predict the samples in 
macroblocks.  For intraprediction, H.264 utilizes nine prediction 
modes for luma values and four prediction modes for chroma 
values in order to predict a macroblock based on other 
macroblocks within the same frame.  Intraprediction can predict 
either entire 16x16 macroblocks or smaller 4x4 blocks.  

Interprediction uses a more flexible form of motion 
compensation than in previous standards that is capable of 
predicting regions ranging from 16x16 samples to 4x4 samples.  
Also, unlike MPEG2, interprediction in H.264 may utilize up to 
32 reference frames.  H.264 also supports sub-pixel motion 
compensation up to one-quarter pixel for luma samples and one 
eighth of a pixel for chroma samples.  In addition to predicting 
macroblocks using motion compensation, H.264 utilizes the high 
correlation of motion vectors to predict the values of motion 
vectors, further reducing the size of each predicted frame. 

Whereas previous standards utilized the discrete cosine 
transform on 8x8 samples, H.264 supports three different 
transforms based on the data being coded.  H.264 utilizes a 4x4 
transform for luma DC coefficients, a 2x2 transform for chroma 
DC coefficients, and an additional 4x4 transform for all other 
data.  These transforms are integer transforms and can be 
implemented using only shifts and adders.  The transforms can 
also be inverted exactly without mismatches.  

H.264 applies a deblocking filter during decoding to improve 
blocking distortion that occurs from transforms using smaller 
block sizes.  In addition to improving image quality, the 
deblocking filter is applied by the encoder to all reference frames 
used in interprediction to help reduce the size of residual data in 
predicted frames.  

H.264 supports two possible entropy coding techniques.  
Context-adaptive variable length coding (CAVLC) encodes 
transform coefficients by adaptively choosing from multiple 
variable-length code word tables.  CAVLC encodes non-
transform coefficient data using a single table.  Context-adaptive 
binary arithmetic coding (CABAC) is a more complex method of 
entropy coding capable of achieving better compression at the 
cost of longer decoding/encoding execution times. 

4. CASE STUDY OF H.264 DECODE 
4.1 Experimental Setup 
The target architecture for our experiments is a hypothetical 
platform consisting of an ARM9 microprocessor running at 200 
MHz and a Xilinx Virtex II FPGA running at 100 MHz. The 
communication model used by the microprocessor and FPGA 
uses shared memory and memory-mapped registers within the 
FPGA.  Hardware within the FPGA accesses main memory using 
DMA or by directly reading from the data cache.  The 
communication model maintains data coherency by requiring the 
execution of the microprocessor and FPGA to be mutually 
exclusive.  The FPGA writes to memory through the cache to 
prevent the microprocessor from reading old values after 
resuming software execution.  The microprocessor copies all 
registers that are needed as input to the hardware to registers in 
the FPGA before hardware execution and reads modified 
registers back before resuming software execution.  

We generated a software binary by compiling the H.264 
decoder using gcc ported to the ARM, using the highest level of 
software optimizations (-O3). 

We performed profiling of the decoder using the LOOAN 
profiler, which we developed ourselves. This profiler uses 
instruction traces from an ARM version of the SimpleScalar [3] 
simulator.  The output of the profiler is a list of all functions and 
loops in the application and their corresponding percentages of 
total execution time. 

To perform binary partitioning of the decoder, we developed 
tools that implement the steps described in Section 2, requiring 
approximately 30,000 lines of C code.  The output of the tools is 
register-transfer-level (RTL) VHDL.  The execution time of the 
tools running on a 2.8 GHz Pentium IV is typically several 



seconds.  After obtaining the RTL VHDL, we use Xilinx ISE to 
synthesize the code to a netlist for the Virtex II FPGA. 

To obtain C-level partitioning results, we manually created 
hardware for each of the functions to guarantee the best possible 
hardware for the C code.  Current commercial tools are limited 
to the use of specific C constructs and may not create efficient 
hardware if other constructs appear in the code.  Instead, our 2-
month manual analysis ensured the hardware represented close 
to the ideal hardware that could be synthesized from C.  Manual 
analysis was possible because the average function consisted of 
only 20-50 lines of code.  To manually generate the hardware, 
we first created a control/data flow graph and then analyzed all 
dependencies to determine the potential parallelism of the code.  
We unrolled loops to increase parallelism if dependencies were 
not violated.  When possible, we copied data from main memory 
into multiple FPGA memories to increase the memory bandwidth 
during computational kernels that needed fast access to multiple 
array elements.  We performed standard compiler optimizations 
such as strength reduction, tree-height reduction, etc.  We 
scheduled each operation in the CDFG, and then created a 
controller and datapath to implement the operations. 

4.2 Profiling Results 
Table 1 shows a summary of the profiling results for the H.264 
decoder. Function Name specifies the name of the function, 
%Size specifies the percentage of the total application size in 
terms of assembly instructions for the specified function, %TimeI 
is the percentage of total execution time spent in the individual 
function, %TimeC is the cumulative percentage of total execution 
time spent in the specified function and every more frequent 
function.  SIdeal is the ideal speedup assuming that the specified 
function and all more frequent functions execute in zero time.   

Many embedded applications typically spend the majority of 
execution time in a few small loops [14], implying that a 
partitioning tool can obtain the majority of speedup by 
implementing the several most frequent loops in hardware.  
However, the profiling results shown in Table 1 for the H.264 
decoder show that the several most frequent regions are 
responsible for less than 20% of total execution time, 
corresponding to an ideal speedup of only 1.25. 

Upon further analysis of the profiling results, we found that 
the H.264 decoder does follow the well-known 90-10 rule, which 
states that 90% of execution time is typically spent in 10% of the 
code.  More specifically, H.264 decode spends 93% of execution 
time in 14% of the code.  The 14% percent of the code represents 
6,110 instructions out of a total of 42,835 instructions.  We 
determined that most of the speedup could be obtained by 
partitioning the 52 most frequent functions to hardware, allowing 
for an ideal speedup of 21.2.  The relationship between the ideal 
speedup and the number of functions implemented in hardware is 
shown in Figure 2.  The ideal speedup begins to increase very 
rapidly after approximately 43 functions are implemented in 
hardware, which corresponds to approximately 90% of execution 
time.  Although the ideal speedup continues to increase past the 
52 most frequent functions that we implement in hardware, the 
actual speedups tend to level off around 52 hardware functions, 
as will be shown in the following sections. 

4.3 Partitioning Results 
The actual speedups obtained compared to a 200 MHz ARM9 by 
partitioning the H.264 decoder at both the binary level and the C 
level are shown in Figure 2.  The figure shows how the actual 
speedup increases as more functions are implemented in 
hardware.  The overall application speedup from binary 
partitioning was 2.48 when the 52 most frequent regions were 

implemented in hardware.  C-level partitioning achieved only a 
slightly larger speedup of 2.53. 

C-level partitioning outperformed binary partitioning 
because several of the functions implemented in hardware used 
switch statements, resulting in indirect jumps that the decompiler 
was unable to remove.  Binary partitioning was unable to obtain 
any speedup for these functions.  Also, for several of the 
functions, the decompiler was unable to recover arrays 
successfully.  Array recovery failed because the functions 
accessed global arrays using indices that were parameters to the 
function.  At the binary level, there is no known way of 
determining the existence of an array in such an instance.  These 
arrays could potentially be implemented in memories on the 
FPGA during C-level partitioning.  However, a binary 
partitioning approach must fetch the appropriate array elements 
from main memory each time the code accesses an array 
element.  One would likely expect the speedup of binary 
partitioning to be much less because of the incomplete recovery 
of high-level information. However, the results were similar 
because the functions where high-level information could not be 
recovered consisted of a small percentage of total execution 
time.  

For both binary partitioning and C-level partitioning, the 
main limitation of speedup was memory bandwidth.  Many of 
the functions implemented in hardware contained parallelizable 
loops.  However, the synthesis tools could not take advantage of 
this parallelism because the hardware had to wait for the data 
needed by the loops to be fetched from memory.  Our binary 
synthesis tools fetch data for the hardware by copying the data 
from main memory into multiple memories in the FPGA, as 
early as dependencies allow.  However, much of the data needed 
by these loops is passed to a function as a pointer.  If other 
pointers are passed into the function, local alias analysis is 

Table 1: Profiling results showing the percentage of total size, 
percentage of total execution time, cumulative percentage of execution 

time, and ideal speedup for the most frequent functions in H.264 
decode.  The total size of the decoder was 42,835 instructions.  

Function Name %Size %TimeI %TimeC SIdeal

MotionComp_00 0.1% 6.76% 6.76% 1.1
InvTransform4x4 0.1% 5.77% 12.53% 1.1
FindHorizontalBS 0.1% 4.15% 16.68% 1.2
GetBits 0.1% 4.09% 20.78% 1.3
FindVerticalBS 0.1% 3.93% 24.70% 1.3
MotionCompChromaFullXF 0.1% 3.91% 28.61% 1.4
FilterHorizontalLuma 1.3% 3.91% 32.52% 1.5
FilterVerticalLuma 1.1% 3.32% 35.84% 1.6
FilterHorizontalChroma 0.3% 3.12% 38.96% 1.6
CombineCoefsZerosInvQua 0.2% 3.06% 42.02% 1.7
memset 0.0% 2.85% 44.87% 1.8
MotionCompensate 0.4% 2.79% 47.66% 1.9
FilterVerticalChroma 0.3% 2.66% 50.32% 2.0
MotionCompChromaFracXF 0.1% 2.66% 52.98% 2.1
ReadLeadingZerosAndOne 0.1% 2.60% 55.58% 2.3
DecodeCoeffTokenNormal 0.2% 1.97% 57.54% 2.4
DeblockingFilterLumaRow 0.6% 1.88% 59.42% 2.5
DecodeZeros 0.2% 1.87% 61.29% 2.6
MotionComp_23 0.7% 1.67% 62.96% 2.7
DecodeBlockCoefLevels 0.1% 1.61% 64.57% 2.8
MotionComp_21 0.7% 1.60% 66.17% 3.0
FindBoundaryStrengthPMB 0.1% 1.49% 67.66% 3.1  



unable to determine if copying the data to FPGA memories will 
violate the dependencies of the original code.  Global alias 
analysis may allow for further optimization, but global analysis 
is very difficult and time consuming and is rarely performed by 
existing synthesis tools.  In order to obtain larger speedups, we 
have to modify the original C code to allow for the synthesis tool 
to determine aliases.  Improved alias analysis could allow for 
data to be fetched by the FPGA much earlier and in some cases 
the data could be completely moved to the FPGA without ever 
having to refetch the data from main memory. 

Performance of both C-level hardware and binary-level 
hardware was also limited by the use of software algorithms 
when hardware algorithms would be more appropriate. One of 
the functions, “GetBits”, handled fetching a specified number of 
bits from a buffer.  This function could easily be implemented as 
a shift register or even as wires if the synthesis tool applied 
function specialization.  However, based on the C description, 
the code synthesizes to hardware that requires many additional 
cycles.  A synthesis tool could potentially implement another 
function, ReadLeadingZerosAndOne, as a priority encoder, 
requiring only a single cycle.  However, the C description results 
in a state machine that requires seven cycles. 

Another reason for poor hardware performance was because 
the C code contained constructs that were inappropriate for 
synthesis.  The C code contained multiple uses of function 
pointers and global variables, which complicated dependency 
analysis and limited the amount of parallelism in the hardware. 

4.4 Partitioning Results after Code Rewrite 
The limited speedups reported in the previous sections were 
caused largely in part by the C constructs and coding style of the 
H.264 decoder.  To see the potential speedup of H.264 decode in 
general, we performed an in-depth study of how the code could 
be rewritten to achieve improved performance for hardware 
synthesized from both the C code and the software binary.  We 
developed guidelines for improving C code used for synthesis, 
and applied these guidelines to the H.264 decoder. 

We addressed the memory bandwidth issues by rewriting 
small sections of the code to implement pass by value-return in 
order to make alias analysis easier for the synthesis tool, which 
allowed data to be efficiently moved to the FPGA.  We first 

identified groups of functions that executed consecutively and 
operated on the same data.  We then declared a local array and 
explicitly copied all data that was needed by the hardware into 
this local array, allowing for alias analysis to more easily 
determine the validity of moving the data to the FPGA.  We 
minimized the overhead from copying data into the local array 
by amortizing the overhead over multiple functions that needed 
the data.  Theoretically, a synthesis tool may be able to automate 
this process, but existing tools would require an explicit rewrite.  
This simple rewrite resulted in large speedups in many of the 
functions.  For example, many of the motion compensation 
functions performed operations on a macroblock.  By copying 
the data for the macroblock into a local array and then using the 
data in the array for several functions, we were able to unroll the 
loops in the motion compensation functions and obtain much 
more parallelism.  The speedups of the motion compensation 
functions increased from an average of 6.5 to 89.5 after the 
rewrite.   

We manually performed function specialization in cases 
where specific input values resulted in efficient hardware.  Many 
of the motion compensation functions contained loops that could 
be completely unrolled.  However, the bounds of the loops were 
passed to the function containing the loop.  To be able to 
determine the bounds of the loops statically, we had to perform 
function specialization for common bounds.  The synthesis tool 
could theoretically perform this function specialization by 
performing value profiling, but manually performing the 
specialization guaranteed that the loops were unrolled. 

We also rewrote the code to perform algorithmic 
specialization for hardware, by replacing algorithms more 
appropriate for software with more parallel algorithms.  For the 
function ReadLeadingZerosAndOne we rewrote the code to 
model a priority encoder, resulting in a speedup of 7 for that 
function.   

In some cases, we performed hardware-targeted 
reimplementation of the existing algorithm to obtain more 
efficient hardware.  For the GetBits function, the code originally 
used a struct that contained a variable to store a buffer of bits and 
an integer to store the number of valid bits within the buffer.  
Ideally, the code could be implemented in hardware as a shift 
register.  However, the synthesis tool was unable to determine a 

Figure 2: Speedup when implementing multiple functions in hardware.  The figure shows that binary partitioning is competitive with C-
level partitioning and that simple rewrites of the original code can improve speedups for both binary partitioning and C-level partitioning. 
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relationship between the variables that stored the buffer and the 
size of the buffer.  We rewrote the code to modify the value of 
the buffer when bits were read from the buffer.  Through data 
flow analysis, the synthesis tool was then able to determine that 
the buffer could be implemented as a shift register, resulting in a 
speedup of more than 5 for that function. 

We also performed global array elimination to replace 
global arrays of constants with logical expressions that could 
calculate the appropriate constant value based on the index of the 
array.  For example, one global array was used to efficiently 
implement clipping a value between 0 and 255.  We rewrote 
accesses to this array with if statements that assigned values 
greater than or less than 0 and 255 to be 0 or 255.  When 
synthesized, this code only required a comparator and a mux.  A 
synthesis tool could further optimize this code by performing 
logic synthesis to convert the code to Boolean expressions.  We 
removed other global variables from the code by adding 
additional inputs to the functions that used global variables.   

We performed hoisting and sinking of error checking code to 
remove error checking within computation kernels.  In many 
cases, the error checking greatly limited the parallelism of the 
synthesized hardware.  Whenever possible, we moved the error 
checking before or after the computation.  When the error 
checking had to be performed during the computation, we simply 
set a flag to signal that an error occurred, and then checked the 
flag after the computation completed to see if the output of the 
computation was valid. 

Whenever possible, we performed conversion to explicit 
control flow to replace all function pointers with if-else 
statements.  After the rewrite, functions with modified control 
flow obtained an average speedup of 4.0. 

Ideally, we would rewrite the code so that each stage of the 
H.264 decoder could be pipelined.  Such an implementation 
would result in a large increase in throughput.  However, 
synthesis tools generally cannot determine coarse-grained 
parallelism that is not explicit in the code.  We do not consider 
explicit coarse-grained parallelism as part of the rewrite because 
there are multiple thread packages for C.  We could of course 
implement synthesis for a specific thread package, but we 
consider this to be a restriction on tool flow, which contradicts 
the purpose of binary partitioning. 

The increased overall application speedups from rewriting 
the code are shown in Figure 2 for both binary partitioning and 
C-level partitioning.  The speedups for binary partitioning and C-
level partitioning were almost identical, with binary partitioning 
achieving a speedup of 6.55 and C-level partitioning achieving a 
speedup of 6.56.   Binary partitioning was able to achieve a 
similar speedup compared to C partitioning because 
decompilation recovered almost all important high-level 
information from the original C code.  These results imply that if 
code is written in a way that is suitable for hardware synthesis, 
then the performance of hardware generated from binary 
partitioning and C-level partitioning should be almost identical.  

5. CONCLUSIONS 
In this paper, we presented a case study showing that binary 
hardware/software partitioning is competitive with source-level 
compiler-based partitioning.  Unlike previous work, which 
performed binary partitioning on simple benchmarks, we 
partitioned large, highly-optimized commercial code for an 
H.264 decoder.  Binary partitioning and compiler-based 
partitioning achieved almost identical speedups of 2.5 compared 
to an ARM9 microprocessor.  In addition, we also found that 
simple rewrites to the original code following several proposed 

guidelines resulted in much larger speedups of 6.5, both at the 
binary level and source level.  These guidelines included using 
pass by value-return, function specialization, algorithmic 
specialization, hardware-targeted reimplementation, global array 
elimination, hoisting and sinking of error checking, and 
conversion to explicit control flow.  Of course, rewriting the 
original code is not possible for all binary partitioning 
approaches, such as partitioning of legacy code and hand-
optimized assembly.  

Binary partitioning will likely never achieve equal results to 
compiler-based partitioning on all benchmarks.  However, by 
achieving reasonably competitive results, binary partitioning can 
expand the market of hardware/software partitioning to include 
more software developers. 
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