
Hardware/Software Partitioning of Software Binaries: A
Case Study of H.264 Decode

Greg Stitt and Frank Vahid*
University of California, Riverside

Department of Computer Science and Engineering
{gstitt, vahid}@cs.ucr.edu

http://www.cs.ucr.edu/{~gstitt,~vahid}
*Also with the Center for Embedded Computer Systems,

UC Irvine

Gordon McGregor and Brian Einloth
Freescale Semiconductor

Gordon.Mcgregor@freescale.com
Brian.Einloth@freescale.com

ABSTRACT
We describe results of a case study whose intent was to
determine whether new techniques for hardware/software
partitioning of an application’s binary are competitive with
partitioning at the C source code level. While such
competitiveness has been shown previously for standard
benchmark suites involving smaller or unoptimized applications,
the case study instead focuses on a complete 16,000-line highly-
optimized commercial-grade application, namely an H.264 video
decoder. The several month study revealed that binary
partitioning was indeed competitive, achieving nearly identical
2.5x speedups as source level partitioning, compared to a
standard microprocessor. Furthermore, the study revealed that
several simple C-level coding modifications, including pass by
value-return, function specialization, algorithmic specialization,
hardware-targeted reimplementation, global array elimination,
hoisting and sinking of error code, and conversion to explicit
control flow, could lead to improved application speedups
approaching 7x for both source level and binary level
partitioning.

Categories and Subdescriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems.

General Terms
Performance, Design.

Keywords
Hardware/software partitioning, FPGA, synthesis, embedded
systems, binaries, H.264.

1. INTRODUCTION
Microprocessor platforms with on-chip field-programmable gate
arrays (FPGAs), such as the Xilinx Virtex II Pro, Altera
Excalibur, Triscend E5/A7, and Atmel FPSLIC, provide the
opportunity for significant performance improvement compared
with software execution on an embedded microprocessor alone.
The improvement comes from partitioning critical software
kernels to the FPGA hardware. Designers traditionally perform
such hardware/software partitioning manually, perhaps using a
hardware/software focused high-level language such as SystemC

[8], SA-C [2], HandelC [12], or SiliconC [1]. Recently,
automated compilers with built in partitioning capabilities have
appeared, such as CatapultC [4] and XPRES [16], and research
approaches such as [7][10]. These compiler-based approaches
provide an excellent technical solution for hardware/software
partitioning, commonly achieving order of magnitude
performance improvements.

A partitioning approach that operates on the binary, rather
than source, may expand the applicability of hardware/software
partitioning to an even broader market. Binary partitioning
operates on the executable generated after compilation and
linking. From a tool flow perspective, a binary approach avoids
placing restrictions on the language, compiler or integrated
design environment to be used, which are often well established
in industry software design flows. A binary approach supports
applications built from multiple source languages, built using
third party object code for which no source is available, or with
parts written in assembly language for optimization purposes or
due to use of legacy code. We originally introduced binary
partitioning in [15], trading off reduced speedup compared to
source partitioning, for easier tool flow integration. Mittal used
binary partitioning to map legacy digital-signal processor
binaries onto FPGAs [11]. A commercial product from Critical
Blue [6] uses binary partitioning to create a custom very-large
instruction word co-processor that speeds up software execution
on a standard embedded microprocessor.

A further direction of binary partitioning is dynamic binary
partitioning, known as warp processing, which we have proposed
[13]. In warp processing, on-chip tools dynamically and
transparently detect an executing binary’s kernels, decompile
each kernel to a control/dataflow graph, and then synthesize,
place and route the kernel onto a configurable logic fabric. While
implementing all such tools on-chip sounds infeasible, careful
creation of lean algorithms and a highly-simplified fabric enable
execution of those tools on a low-end ARM embedded processor
(i.e., an ARM7) in less than two seconds for MediaBench,
PowerStone, EEMBC, and other benchmarks [13]. Warp
processing potentially opens up hardware/software partitioning
to the entire microprocessor market, including server, desktop,
mobile, and other microprocessor platforms, just as dynamic
binary translation and optimization presently enables use of
underlying architectures radically different from x86 instructions
in nearly all modern x86 microprocessor architectures. A major
U.S. desktop microprocessor vendor is presently fabricating a
prototype warp processing chip.

To compensate for the speedup gap between source and
binary partitioning, we have applied existing advanced
decompilation methods, and developed several new synthesis-
focused methods to recover high-level constructs, such as loops
and arrays, from the binary [14]. We have shown that such
decompilation makes binary partitioning competitive with source

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CODES+ISSS’05, Sept. 19–21, 2005, Jersey City, New Jersey, USA.
Copyright 2005 ACM 1-59593-161-9/05/0009...$5.00.

level partitioning for a wide variety of benchmarks drawn from
MediaBench, PowerStone, and EEMBC [14]. Of course, we
acknowledge that binary level partitioning will likely never
equal source level partitioning for all benchmarks, especially for
highly-advanced source-level methods. But by closing the gap,
binary partitioning can at least broaden the market for
hardware/software partitioning by resulting in respectable
speedups in binary-based approaches.

However, a limitation of previous binary partitioning studies
(and in fact of previous source level partitioning studies too) is
that the benchmarks used tend to be small benchmarks (kernels)
and/or unoptimized software (reference code). Speeding up a
kernel alone may result in misleadingly-high speedups as the
surrounding support code, which often can’t be sped up, is
excluded. Speeding up unoptimized code also may yield
misleadingly-high speedups, as clearly a slow original execution
makes hardware implementation look even faster. A concern is
whether binary partitioning would achieve speedups for real
commercial highly-optimized embedded applications, which are
often painstakingly hand-optimized for performance. We
wondered whether such optimized code could still be sped up.

Through our collaboration with Freescale Semiconductor [9],
we obtained the 16,000-line C source code for an H.264 video
decoder, which unlike publicly available reference code has been
highly hand-optimized for performance. We then performed a
several month case study that involved profiling the application
to find the most critical functions (of which there were nearly 50,
rather than just 2-5 as in most benchmarks) out of the many
hundreds of total functions. The study also involved performing
binary and source level partitioning, involving extensive manual
analysis to look beyond present synthesis limitations of source-
level tools. In addition to finding the two approaches
competitive, we found several simple modifications to the C
code that would enable even greater speedups, for either source
or binary partitioning.

2. BINARY-LEVEL HW/SW
PARTITIONING
Binary-level hardware/software partitioning is the process of
partitioning computation kernels of a software binary into
regions that will be implemented in custom hardware and regions
that will execute in the existing binary format, with possibly
some added instructions to communicate with the hardware
regions. Figure 1 illustrates a binary-level hardware/software

partitioning approach. The software developer initially writes the
application to be partitioned in any high-level language, such as
C, and then compiles the high-level code using any software
compiler. During compilation, the compiler links in additional
object code from libraries and possibly hand-optimized
assembly, forming a software binary. The binary-level hw/sw
partitioner then uses decompilation to recover high-level
information that is necessary for hardware/software partitioning
and synthesis. Hw/sw partitioning determines the regions of the
binary that will be implemented in hardware, possibly using
profiling information and hardware/software performance
estimation. Synthesis then converts the regions selected for
hardware into a hardware netlist. The binary updater modifies
the original software binary to remove the software
implementation of regions moved to hardware in addition to
adding new instructions to communicate with the hardware
regions. Finally, the binary-level hw/sw partitioner combines the
updated binary with the hardware netlist to form a bitfile that
configures the microprocessor/FPGA platform.

2.1 Decompilation
Binary partitioning uses decompilation to recover high-level
information that the synthesis tool needs to synthesize efficient
hardware. Without the necessary high-level information
available in the original code, synthesis of software binaries
would produce hardware much slower than would be synthesized
by compiler-based approaches. For example, compilers
commonly unroll loops to expose parallelism. Without
decompilation, binary synthesis approaches cannot unroll loops,
losing potential parallelism, because the loop structure is not
explicit at the binary level.

Decompilation for binary synthesis consists of several steps.
Initially, binary parsing converts the binary into an instruction
set independent representation that allows all of the following
steps to be performed for any instruction set [5]. The decompiler
next analyzes the instruction-set independent representation and
creates a control/data flow graph (CDFG). The decompiler then
performs control structure recovery [5] to identify regions of the
CDFG that correspond to loops and if statements. Next, the
decompiler performs array recovery to determine the regions of
memory that correspond to arrays. The decompiler also
performs optimizations that remove overhead introduced by the
instruction set, in addition to undoing optimizations that were

Figure 1: Binary-level hardware/software partitioning.

Decompilation

Profiling Hw/Sw
estimation

Hw/Sw Partitioning

Sw Executable (Binary)

Updated
Binary

Hw Netlists

Hw Regions

Synthesis

Sw Regions

Binary
Updater

Any Compiler

Micro-
Processor

FPGA

Binary

Binary-level Hw/Sw
Partitioner

Bitstream

Any
High-level
Language

Libraries,
Assembly,
and Object

Code

applied by the software compiler that may obscure some of the
high-level constructs in the binary.

Previous work [14] has shown that in some cases,
decompilation is successful enough to recover enough high-level
information to allow binary partitioning to achieve identical
results as a compiler-based approach. In fact, if decompilation is
able to recover the original representation, then binary synthesis
is equivalent to synthesis from C.

Although decompilation can commonly recover all necessary
information for partitioning, decompilation does have limitations
that can result in an incomplete recovery of high-level
information. One limitation of decompilation is the inability to
statically analyze control flow in the presence of indirect jumps.
Indirect jumps typically result from function pointers and switch
statements. Another limitation of decompilation is the inability
to guarantee array recovery. Array recovery relies on memory
access patterns to determine regions of memory that correspond
to arrays. If an array is not accessed in a regular pattern, the
decompiler may fail to identify the array. The inability to
recover all arrays may be a disadvantage for binary partitioning
because ideally these arrays could be stored in multiple
memories on the FPGA, allowing for parallel accesses to
individual array elements. Fortunately, much of the code
typically considered for hardware implementation is written in a
way that is ideal for decompilation.

2.2 Hardware/Software Partitioning
Due to Amdahl’s Law, selecting hardware regions based on
percentage of execution time guarantees the largest potential
speedup. Although selecting hardware regions solely based on
percentage of execution time does not guarantee satisfaction of
area constraints, in this study we are mainly concerned with
obtaining the maximum speedup. Therefore, we used a
simplified partitioning technique that uses profiling results to
sort the functions of the application based on the percentage of
total execution time. We also consider loops in addition to
functions, but for the H.264 decoder, the body of most of the
functions was just a loop, so we chose to partition the entire
function. Our partitioning technique selects functions for
hardware implementation in order of the profiling results until
the performance benefits from additional functions is negligible.
If a function doesn’t benefit from hardware implementation, our
partitioning technique skips the inappropriate function and
moves to the next most frequent function. We could of course
extend our approach to meet specific area constraints by
investigating different hardware implementations of each
function or by using partial implementations of functions that
have certain regions not appropriate for hardware.

3. H.264
H.264 is a video codec included in the MPEG4 standard as
MPEG4-Part 10, also known as advanced video coding (AVC).
H.264 is capable of compressing a video using up to three times
fewer bits than MPEG2 and results in much higher quality for
encoded videos. This section provides a brief overview of the
differences between H.264 and previous standards.

H.264 achieves significant compression improvements by
refining each step from previous standards, as opposed to adding
entirely new steps. Unlike MPEG2, H.264 can perform both
intraprediction and interprediction to predict the samples in
macroblocks. For intraprediction, H.264 utilizes nine prediction
modes for luma values and four prediction modes for chroma
values in order to predict a macroblock based on other
macroblocks within the same frame. Intraprediction can predict
either entire 16x16 macroblocks or smaller 4x4 blocks.

Interprediction uses a more flexible form of motion
compensation than in previous standards that is capable of
predicting regions ranging from 16x16 samples to 4x4 samples.
Also, unlike MPEG2, interprediction in H.264 may utilize up to
32 reference frames. H.264 also supports sub-pixel motion
compensation up to one-quarter pixel for luma samples and one
eighth of a pixel for chroma samples. In addition to predicting
macroblocks using motion compensation, H.264 utilizes the high
correlation of motion vectors to predict the values of motion
vectors, further reducing the size of each predicted frame.

Whereas previous standards utilized the discrete cosine
transform on 8x8 samples, H.264 supports three different
transforms based on the data being coded. H.264 utilizes a 4x4
transform for luma DC coefficients, a 2x2 transform for chroma
DC coefficients, and an additional 4x4 transform for all other
data. These transforms are integer transforms and can be
implemented using only shifts and adders. The transforms can
also be inverted exactly without mismatches.

H.264 applies a deblocking filter during decoding to improve
blocking distortion that occurs from transforms using smaller
block sizes. In addition to improving image quality, the
deblocking filter is applied by the encoder to all reference frames
used in interprediction to help reduce the size of residual data in
predicted frames.

H.264 supports two possible entropy coding techniques.
Context-adaptive variable length coding (CAVLC) encodes
transform coefficients by adaptively choosing from multiple
variable-length code word tables. CAVLC encodes non-
transform coefficient data using a single table. Context-adaptive
binary arithmetic coding (CABAC) is a more complex method of
entropy coding capable of achieving better compression at the
cost of longer decoding/encoding execution times.

4. CASE STUDY OF H.264 DECODE
4.1 Experimental Setup
The target architecture for our experiments is a hypothetical
platform consisting of an ARM9 microprocessor running at 200
MHz and a Xilinx Virtex II FPGA running at 100 MHz. The
communication model used by the microprocessor and FPGA
uses shared memory and memory-mapped registers within the
FPGA. Hardware within the FPGA accesses main memory using
DMA or by directly reading from the data cache. The
communication model maintains data coherency by requiring the
execution of the microprocessor and FPGA to be mutually
exclusive. The FPGA writes to memory through the cache to
prevent the microprocessor from reading old values after
resuming software execution. The microprocessor copies all
registers that are needed as input to the hardware to registers in
the FPGA before hardware execution and reads modified
registers back before resuming software execution.

We generated a software binary by compiling the H.264
decoder using gcc ported to the ARM, using the highest level of
software optimizations (-O3).

We performed profiling of the decoder using the LOOAN
profiler, which we developed ourselves. This profiler uses
instruction traces from an ARM version of the SimpleScalar [3]
simulator. The output of the profiler is a list of all functions and
loops in the application and their corresponding percentages of
total execution time.

To perform binary partitioning of the decoder, we developed
tools that implement the steps described in Section 2, requiring
approximately 30,000 lines of C code. The output of the tools is
register-transfer-level (RTL) VHDL. The execution time of the
tools running on a 2.8 GHz Pentium IV is typically several

seconds. After obtaining the RTL VHDL, we use Xilinx ISE to
synthesize the code to a netlist for the Virtex II FPGA.

To obtain C-level partitioning results, we manually created
hardware for each of the functions to guarantee the best possible
hardware for the C code. Current commercial tools are limited
to the use of specific C constructs and may not create efficient
hardware if other constructs appear in the code. Instead, our 2-
month manual analysis ensured the hardware represented close
to the ideal hardware that could be synthesized from C. Manual
analysis was possible because the average function consisted of
only 20-50 lines of code. To manually generate the hardware,
we first created a control/data flow graph and then analyzed all
dependencies to determine the potential parallelism of the code.
We unrolled loops to increase parallelism if dependencies were
not violated. When possible, we copied data from main memory
into multiple FPGA memories to increase the memory bandwidth
during computational kernels that needed fast access to multiple
array elements. We performed standard compiler optimizations
such as strength reduction, tree-height reduction, etc. We
scheduled each operation in the CDFG, and then created a
controller and datapath to implement the operations.

4.2 Profiling Results
Table 1 shows a summary of the profiling results for the H.264
decoder. Function Name specifies the name of the function,
%Size specifies the percentage of the total application size in
terms of assembly instructions for the specified function, %TimeI
is the percentage of total execution time spent in the individual
function, %TimeC is the cumulative percentage of total execution
time spent in the specified function and every more frequent
function. SIdeal is the ideal speedup assuming that the specified
function and all more frequent functions execute in zero time.

Many embedded applications typically spend the majority of
execution time in a few small loops [14], implying that a
partitioning tool can obtain the majority of speedup by
implementing the several most frequent loops in hardware.
However, the profiling results shown in Table 1 for the H.264
decoder show that the several most frequent regions are
responsible for less than 20% of total execution time,
corresponding to an ideal speedup of only 1.25.

Upon further analysis of the profiling results, we found that
the H.264 decoder does follow the well-known 90-10 rule, which
states that 90% of execution time is typically spent in 10% of the
code. More specifically, H.264 decode spends 93% of execution
time in 14% of the code. The 14% percent of the code represents
6,110 instructions out of a total of 42,835 instructions. We
determined that most of the speedup could be obtained by
partitioning the 52 most frequent functions to hardware, allowing
for an ideal speedup of 21.2. The relationship between the ideal
speedup and the number of functions implemented in hardware is
shown in Figure 2. The ideal speedup begins to increase very
rapidly after approximately 43 functions are implemented in
hardware, which corresponds to approximately 90% of execution
time. Although the ideal speedup continues to increase past the
52 most frequent functions that we implement in hardware, the
actual speedups tend to level off around 52 hardware functions,
as will be shown in the following sections.

4.3 Partitioning Results
The actual speedups obtained compared to a 200 MHz ARM9 by
partitioning the H.264 decoder at both the binary level and the C
level are shown in Figure 2. The figure shows how the actual
speedup increases as more functions are implemented in
hardware. The overall application speedup from binary
partitioning was 2.48 when the 52 most frequent regions were

implemented in hardware. C-level partitioning achieved only a
slightly larger speedup of 2.53.

C-level partitioning outperformed binary partitioning
because several of the functions implemented in hardware used
switch statements, resulting in indirect jumps that the decompiler
was unable to remove. Binary partitioning was unable to obtain
any speedup for these functions. Also, for several of the
functions, the decompiler was unable to recover arrays
successfully. Array recovery failed because the functions
accessed global arrays using indices that were parameters to the
function. At the binary level, there is no known way of
determining the existence of an array in such an instance. These
arrays could potentially be implemented in memories on the
FPGA during C-level partitioning. However, a binary
partitioning approach must fetch the appropriate array elements
from main memory each time the code accesses an array
element. One would likely expect the speedup of binary
partitioning to be much less because of the incomplete recovery
of high-level information. However, the results were similar
because the functions where high-level information could not be
recovered consisted of a small percentage of total execution
time.

For both binary partitioning and C-level partitioning, the
main limitation of speedup was memory bandwidth. Many of
the functions implemented in hardware contained parallelizable
loops. However, the synthesis tools could not take advantage of
this parallelism because the hardware had to wait for the data
needed by the loops to be fetched from memory. Our binary
synthesis tools fetch data for the hardware by copying the data
from main memory into multiple memories in the FPGA, as
early as dependencies allow. However, much of the data needed
by these loops is passed to a function as a pointer. If other
pointers are passed into the function, local alias analysis is

Table 1: Profiling results showing the percentage of total size,
percentage of total execution time, cumulative percentage of execution

time, and ideal speedup for the most frequent functions in H.264
decode. The total size of the decoder was 42,835 instructions.

Function Name %Size %TimeI %TimeC SIdeal

MotionComp_00 0.1% 6.76% 6.76% 1.1
InvTransform4x4 0.1% 5.77% 12.53% 1.1
FindHorizontalBS 0.1% 4.15% 16.68% 1.2
GetBits 0.1% 4.09% 20.78% 1.3
FindVerticalBS 0.1% 3.93% 24.70% 1.3
MotionCompChromaFullXF 0.1% 3.91% 28.61% 1.4
FilterHorizontalLuma 1.3% 3.91% 32.52% 1.5
FilterVerticalLuma 1.1% 3.32% 35.84% 1.6
FilterHorizontalChroma 0.3% 3.12% 38.96% 1.6
CombineCoefsZerosInvQua 0.2% 3.06% 42.02% 1.7
memset 0.0% 2.85% 44.87% 1.8
MotionCompensate 0.4% 2.79% 47.66% 1.9
FilterVerticalChroma 0.3% 2.66% 50.32% 2.0
MotionCompChromaFracXF 0.1% 2.66% 52.98% 2.1
ReadLeadingZerosAndOne 0.1% 2.60% 55.58% 2.3
DecodeCoeffTokenNormal 0.2% 1.97% 57.54% 2.4
DeblockingFilterLumaRow 0.6% 1.88% 59.42% 2.5
DecodeZeros 0.2% 1.87% 61.29% 2.6
MotionComp_23 0.7% 1.67% 62.96% 2.7
DecodeBlockCoefLevels 0.1% 1.61% 64.57% 2.8
MotionComp_21 0.7% 1.60% 66.17% 3.0
FindBoundaryStrengthPMB 0.1% 1.49% 67.66% 3.1

unable to determine if copying the data to FPGA memories will
violate the dependencies of the original code. Global alias
analysis may allow for further optimization, but global analysis
is very difficult and time consuming and is rarely performed by
existing synthesis tools. In order to obtain larger speedups, we
have to modify the original C code to allow for the synthesis tool
to determine aliases. Improved alias analysis could allow for
data to be fetched by the FPGA much earlier and in some cases
the data could be completely moved to the FPGA without ever
having to refetch the data from main memory.

Performance of both C-level hardware and binary-level
hardware was also limited by the use of software algorithms
when hardware algorithms would be more appropriate. One of
the functions, “GetBits”, handled fetching a specified number of
bits from a buffer. This function could easily be implemented as
a shift register or even as wires if the synthesis tool applied
function specialization. However, based on the C description,
the code synthesizes to hardware that requires many additional
cycles. A synthesis tool could potentially implement another
function, ReadLeadingZerosAndOne, as a priority encoder,
requiring only a single cycle. However, the C description results
in a state machine that requires seven cycles.

Another reason for poor hardware performance was because
the C code contained constructs that were inappropriate for
synthesis. The C code contained multiple uses of function
pointers and global variables, which complicated dependency
analysis and limited the amount of parallelism in the hardware.

4.4 Partitioning Results after Code Rewrite
The limited speedups reported in the previous sections were
caused largely in part by the C constructs and coding style of the
H.264 decoder. To see the potential speedup of H.264 decode in
general, we performed an in-depth study of how the code could
be rewritten to achieve improved performance for hardware
synthesized from both the C code and the software binary. We
developed guidelines for improving C code used for synthesis,
and applied these guidelines to the H.264 decoder.

We addressed the memory bandwidth issues by rewriting
small sections of the code to implement pass by value-return in
order to make alias analysis easier for the synthesis tool, which
allowed data to be efficiently moved to the FPGA. We first

identified groups of functions that executed consecutively and
operated on the same data. We then declared a local array and
explicitly copied all data that was needed by the hardware into
this local array, allowing for alias analysis to more easily
determine the validity of moving the data to the FPGA. We
minimized the overhead from copying data into the local array
by amortizing the overhead over multiple functions that needed
the data. Theoretically, a synthesis tool may be able to automate
this process, but existing tools would require an explicit rewrite.
This simple rewrite resulted in large speedups in many of the
functions. For example, many of the motion compensation
functions performed operations on a macroblock. By copying
the data for the macroblock into a local array and then using the
data in the array for several functions, we were able to unroll the
loops in the motion compensation functions and obtain much
more parallelism. The speedups of the motion compensation
functions increased from an average of 6.5 to 89.5 after the
rewrite.

We manually performed function specialization in cases
where specific input values resulted in efficient hardware. Many
of the motion compensation functions contained loops that could
be completely unrolled. However, the bounds of the loops were
passed to the function containing the loop. To be able to
determine the bounds of the loops statically, we had to perform
function specialization for common bounds. The synthesis tool
could theoretically perform this function specialization by
performing value profiling, but manually performing the
specialization guaranteed that the loops were unrolled.

We also rewrote the code to perform algorithmic
specialization for hardware, by replacing algorithms more
appropriate for software with more parallel algorithms. For the
function ReadLeadingZerosAndOne we rewrote the code to
model a priority encoder, resulting in a speedup of 7 for that
function.

In some cases, we performed hardware-targeted
reimplementation of the existing algorithm to obtain more
efficient hardware. For the GetBits function, the code originally
used a struct that contained a variable to store a buffer of bits and
an integer to store the number of valid bits within the buffer.
Ideally, the code could be implemented in hardware as a shift
register. However, the synthesis tool was unable to determine a

Figure 2: Speedup when implementing multiple functions in hardware. The figure shows that binary partitioning is competitive with C-
level partitioning and that simple rewrites of the original code can improve speedups for both binary partitioning and C-level partitioning.

0

1

2

3

4

5

6

7

8

9

10
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Number of Functions in Hardware

Sp
ee

du
p

Ideal Speedup (Zero-time Hw Execution)
Speedup After Rewrite (C Partitioning)
Speedup After Rewrite (Binary Partitioning)
Speedup from C Partititioning
Speedup from Binary Partitioning

relationship between the variables that stored the buffer and the
size of the buffer. We rewrote the code to modify the value of
the buffer when bits were read from the buffer. Through data
flow analysis, the synthesis tool was then able to determine that
the buffer could be implemented as a shift register, resulting in a
speedup of more than 5 for that function.

We also performed global array elimination to replace
global arrays of constants with logical expressions that could
calculate the appropriate constant value based on the index of the
array. For example, one global array was used to efficiently
implement clipping a value between 0 and 255. We rewrote
accesses to this array with if statements that assigned values
greater than or less than 0 and 255 to be 0 or 255. When
synthesized, this code only required a comparator and a mux. A
synthesis tool could further optimize this code by performing
logic synthesis to convert the code to Boolean expressions. We
removed other global variables from the code by adding
additional inputs to the functions that used global variables.

We performed hoisting and sinking of error checking code to
remove error checking within computation kernels. In many
cases, the error checking greatly limited the parallelism of the
synthesized hardware. Whenever possible, we moved the error
checking before or after the computation. When the error
checking had to be performed during the computation, we simply
set a flag to signal that an error occurred, and then checked the
flag after the computation completed to see if the output of the
computation was valid.

Whenever possible, we performed conversion to explicit
control flow to replace all function pointers with if-else
statements. After the rewrite, functions with modified control
flow obtained an average speedup of 4.0.

Ideally, we would rewrite the code so that each stage of the
H.264 decoder could be pipelined. Such an implementation
would result in a large increase in throughput. However,
synthesis tools generally cannot determine coarse-grained
parallelism that is not explicit in the code. We do not consider
explicit coarse-grained parallelism as part of the rewrite because
there are multiple thread packages for C. We could of course
implement synthesis for a specific thread package, but we
consider this to be a restriction on tool flow, which contradicts
the purpose of binary partitioning.

The increased overall application speedups from rewriting
the code are shown in Figure 2 for both binary partitioning and
C-level partitioning. The speedups for binary partitioning and C-
level partitioning were almost identical, with binary partitioning
achieving a speedup of 6.55 and C-level partitioning achieving a
speedup of 6.56. Binary partitioning was able to achieve a
similar speedup compared to C partitioning because
decompilation recovered almost all important high-level
information from the original C code. These results imply that if
code is written in a way that is suitable for hardware synthesis,
then the performance of hardware generated from binary
partitioning and C-level partitioning should be almost identical.

5. CONCLUSIONS
In this paper, we presented a case study showing that binary
hardware/software partitioning is competitive with source-level
compiler-based partitioning. Unlike previous work, which
performed binary partitioning on simple benchmarks, we
partitioned large, highly-optimized commercial code for an
H.264 decoder. Binary partitioning and compiler-based
partitioning achieved almost identical speedups of 2.5 compared
to an ARM9 microprocessor. In addition, we also found that
simple rewrites to the original code following several proposed

guidelines resulted in much larger speedups of 6.5, both at the
binary level and source level. These guidelines included using
pass by value-return, function specialization, algorithmic
specialization, hardware-targeted reimplementation, global array
elimination, hoisting and sinking of error checking, and
conversion to explicit control flow. Of course, rewriting the
original code is not possible for all binary partitioning
approaches, such as partitioning of legacy code and hand-
optimized assembly.

Binary partitioning will likely never achieve equal results to
compiler-based partitioning on all benchmarks. However, by
achieving reasonably competitive results, binary partitioning can
expand the market of hardware/software partitioning to include
more software developers.

6. ACKNOWLEDGMENTS
This research was supported in part by the National Science
Foundation (CCR-0203829) and by the Semiconductor Research
Corporation (2003-HJ-1046G). The source code for the H.264
decoder was provided by Freescale Semiconductor.

7. REFERENCES
[1] C. Scott Ananian. SiliconC: A Hardware Backend for SUIF.

http://flex-compiler.lcs.mit.edu/SiliconC.
[2] W. Böhm, J. Hammes, B. Draper, M. Chawathe, C. Ross, R. Rinker,

and W. Najjar. Mapping a Single Assignment Programming
Language to Reconfigurable Systems. The Journal of
Supercomputing, vol. 21, pp. 117-130, 2002.

[3] D. Burger and T.M. Austin. The SimpleScalar Tool Set, Version
2.0. University of Wisconsin-Madison Computer Sciences
Department Technical Report #1342. June, 1997.

[4] CatapultC. http://www.mentor.com/products/c-based_design/
[5] C. Cifuentes, M. Van Emmerik, D.Ung, D. Simon, T. Waddington.

Preliminary Experiences with the Use of the UQBT Binary
Translation Framework. Proceedings of the Workshop on Binary
Translation, Newport Beach, USA, October 1999.

[6] CriticalBlue. http://www.criticalblue.com.
[7] P. Eles, Z. Peng, K. Kuchchinski and A. Doboli. System Level

Hardware/Software Partitioning Based on Simulated Annealing and
Tabu Search. Kluwer's Design Automation for Embedded Systems,
vol2, no 1, pp. 5-32, Jan 1997.

[8] A. Fin, F. Fummi, M. Signoretto. SystemC: A Homogenous
Environment to Test Embedded Systems. CODES 2001.

[9] Freescale Semiconductor. http://www.freescale.com/.
[10] J. Henkel. A Low Power Hardware/Software Partitioning

Approach for Core-Based Embedded Systems. Proceedings of the
36th ACM/IEEE conference on Design automation conference, pp.
122-127, June 1999.

[11] G. Mittal, D. Zaretsky, X. Tang and P. Banerjee. Overview of the
FREEDOM Compiler for Mapping DSP Software to FPGAs. IEEE
Symposium on Field-Programmable Custom Computing Machines.
April 2004.

[12] OXFORD Hardware Compilation Group, The Handel language,
Technical Report, Oxford University 1997.

[13] G. Stitt, R. Lysecky, F. Vahid. Dynamic Hardware/Software
Partitioning: A First Approach. IEEE/ACM 40th Design
Automation Conference (DAC), June 2003.

[14] G. Stitt and F. Vahid. A Decompilation Approach to Partitioning
Software for Microprocessor/FPGA Platforms. Design and Test
Europe Conference (DATE), 2005.

[15] G. Stitt and F. Vahid. Hardware/Software Partitioning of Software
Binaries. IEEE/ACM International Conference on Computer
Aided Design, November 2002.

[16] XPRES Compiler. http://www.tensilica.com/html/xpres.html.

