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ABSTRACT 
Dynamic software optimization methods are becoming increasingly 
popular for improving software performance and power. The first 
step in dynamic optimization consists of detecting frequently 
executed code, or “critical regions.” Previous critical region 
detectors have been targeted to desktop processors. We introduce a 
critical region detector targeted to embedded processors, with the 
unique features of being very size and power efficient, and being 
completely non-intrusive to the software’s execution – features 
needed in timing-sensitive embedded systems. Our detector not only 
finds the critical regions, but also determines their relative 
frequencies, a potentially important feature for selecting among 
alternative dynamic optimization methods. Our detector uses a tiny 
cache coupled with a small amount of logic. We provide results of 
extensive explorations across seventeen embedded system 
benchmarks. We show that highly accurate results can be achieved 
with only a 0.02% power overhead and acceptable size overhead. 
Our detector is currently being used as part of a dynamic 
hardware/software partitioning approach, but is applicable to a 
wide-variety of situations. 

Categories and Subject Descriptors 
B.3.2 [Memory Structures]: Design Styles – Cache memories. 

General Terms: Design. 

Keywords: Frequent value profiling, runtime profiling, on-chip 
profiling, hardware profiling, frequent loop detection, hot spot 
detection, dynamic optimization. 

1. INTRODUCTION 
Dynamic software optimization methods are becoming increasingly 
popular for improving software performance and power. The main 
reason for this trend is that dynamic optimizations have several 
important advantages over static approaches. Dynamic optimizations 
allow for a system to be optimized based on runtime behavior and 
values, which may be hard to determine using static methods or 
costly simulations, and which also may change during runtime. 
Furthermore, dynamic optimizations require no designer 
intervention and are applied transparently during runtime, meaning 
there is no disruption to standard software tool flows. 

Recent dynamic optimization research has introduced dynamic 
hardware/software partitioning [26]. During execution of an 
application, an on-chip profiling method detects critical regions of 
code for hardware implementation. An on-chip tool transparently re-
implements those regions on an on-chip FPGA. Subsequent 
executions of the application execute the critical regions of code in 
the FPGA, speeding up those regions by a factor of 10 or more, 
resulting in good overall speedups of the application. 

Researchers have explored many other dynamic optimization 
approaches. For instance, Dynamo performs dynamic software 
optimizations on the most frequently executed regions of code [3]. 
The ProfileMe approach [8] specializes subroutines for common 
inputs and determines by runtime profiling which configuration to 
call for the best performance. Pettis and Hansen [24] improve 
performance by re-mapping frequently executed regions of code to 
non-interfering cache locations. Other approaches reduce high 
power memory accesses through instruction compression [10][13] 
or by locking instructions into a special low-power cache [4][9]. 
Dynamic binary translation methods store translation results from 
frequent code regions to improve performance as well as power 
[16]. Value profiling [6] determines runtime invariant variables for 
constant propagation and code specialization for optimized 
performance, or even for reduced energy. 

For dynamic optimizations to be most effective, optimizations 
are typically applied to the most frequently executed regions of 
code. In embedded system applications, much of the execution time 
is spent in a small amount of code. Figure 1 shows the percentage of 
execution time spent in the corresponding percentage of code size 
for a large selection of MediaBench benchmarks [17]. 
Approximately 90% of the execution time is spent in only 10% of 
the code, obeying the well-known 90-10 rule. This phenomena was 
demonstrated for an even wider set of applications in [27]. We will 
refer to the 10% of code as critical regions of code. Detecting the 
critical regions of a program during run-time is an important part of 
any dynamic optimization approach.  

Previous profiling methods are mostly targeted for a desktop 
computing environment, incurring runtime overhead that can be 
unacceptable in an embedded environment, especially for real-time 
embedded systems with very tight timing constraints. The most 
common techniques generally insert additional instructions into the 
binary to record profiling information or interrupt the processor at 
regular intervals to sample register values.  

To overcome problems associated with earlier profiling 
methods, embedded system designers have previously relied on 
logic analyzers to non-intrusively profile their system. However with 
current systems-on-a-chip (SOCs), designers can no longer connect 
a logic analyzer to internal signals. 
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an interrupt [33]. However, this method has the same disadvantages 
 
To assist in internal signal monitoring, SOCs typically come 
with a means of reading internal registers via external pins utilizing 
the JTAG standard [12]. However, the processor must be interrupted 
to read the internal register values and transfer them to external pins, 
incurring runtime overhead and potentially altering execution 
behavior. This method is typically used for testing and debugging 
and not system profiling. Fortunately the increase in transistor 
capacity has also enabled on-chip profiling environments. Recent 
methods have been introduced that use specialized on-chip logic to 
profile executing applications [22][31].  

In this paper, we present a new on-chip profiler that determines 
critical regions for use in dynamic optimizations. The profiler 
improves upon previous approaches by being non-intrusive, small, 
and low power, and also by providing information on the percentage 
of execution time spent in each region – information useful for 
guiding on-chip dynamic optimization decisions. The profiling 
methodology described in this paper has been shown to be very 
effective as the profiling step of the dynamic hardware/software 
partitioning approach presented in [26].  

2. RELATED WORK  
The most common methods for runtime profiling are software 
based. One such method is code instrumentation [7][11], wherein 
code is added to a program to count the execution frequencies of 
subroutines, loops or even blocks. While popular in desktop 
systems, instrumentation imposes program and data memory 
overhead and performance overhead – overheads not acceptable in 
many tightly constrained embedded systems. Furthermore, 
instrumentation may pollute instruction and data caches, and may 
cause register spills, resulting in very different timing behavior. 
Instrumentation also requires special compilers or binary 
instrumentation tools. 

Another software-based profiling method is sampling. At certain 
intervals, the microprocessor is interrupted and register values are 
sampled [1][8], resulting in a statistical profile. Sampling reduces 
code and data overhead, and the sampling rate can be reduced to 
minimize performance overhead at the expense of accuracy. 
However, interrupting is intrusive and can cause problems in real-
time systems. Furthermore, care must also be taken to avoid 
undesirable correlations between the sampling rate and the 
program’s task periods, which could lead to aliasing problems. A 
method similar to interrupt-based sampling assumes a multitask 
environment where an additional task performs profiling in place of 

as the interrupt based approach. 
Another approach to profiling uses simulation. This approach 

uses an instruction set simulator to run the application and keep 
track of profiling information. Whereas a simulation-based approach 
can give accurate profiling information if a realistic input stimulus is 
available, complex external environments may be difficult, if not 
impossible, to model accurately – setting up an accurate simulation 
often takes longer than designing the application itself. Furthermore, 
simulation of entire systems can be extremely slow, especially for 
SOCs, with hours or days of simulation time correlating to only 
seconds of real execution time. 

Many processors today come with hardware event counters that 
count various hardware events, such as cache misses, pipeline stalls 
and branch mispredictions [30][32]. Though non-intrusive, event 
counters do not by themselves detect critical regions of code – 
sampling must be used to read the counters at given intervals, thus 
again introducing performance overhead. 

Recently, hardware-based non-intrusive profiling methods have 
been introduced. One method [22] utilizes a cache to determine 
critical regions, or “hot spots”. Branch addresses and their execution 
frequencies are stored in a cache-like structure. Frequent branches 
are determined when branch frequencies reach a defined threshold 
value. Further analysis of branch frequencies is done to determine 
collections of branches that form hot spots in the code. However, 
this method does not focus on power efficiency and also does not 
store relative frequencies. 

Another hardware-based methodology [29] proposes dynamic 
loop detection for control speculation in multithreaded processors. 
This method uses a stack to monitor the currently executing loops, 
with the innermost nested loop stored at the top of the stack and all 
remaining loops stored according to nesting order. When execution 
leaves a loop, information about loop behavior is stored into two 
fully-associative tables. Whereas the methodology presented may be 
modified to provide the loop information we require, the design was 
not intended for an embedded environment where power and area 
must be considered during the design of the profiler.  

Yang and Gupta [31] proposed a very simple profiling method 
with low power embedded systems in mind. However, this profiling 
method was intended for data profiling, not code profiling. The 
method monitors data cache accesses and stores data values in a 
fully-associative table along with a small counter (2-3 bits). Each 
use of the data value causes the counter to be incremented. Upon 
counter saturation, the saturated data value is swapped with the data 
value in the location directly above the saturated data value in the 
table, effectively sorting the table, leaving the more frequent values 
near the top. The frequent value table is small, simple, low power 
and non-intrusive. However, we found that the swapping method is 
not accurate for code profiling, which we will elaborate on in 
Section 3.2. 

3. FREQUENT LOOP DETECTION 
ARCHITECTURE 
3.1 Problem Overview and Motivation 
Our studies of the Powerstone [21] and MediaBench [17] 
benchmark suites show that about 85% of the critical regions of 
code are small inner loops (or near-inner loops) with the remaining 
15% of the critical regions being subroutines with no inner loops. 

 

 

 

 

 

 

Figure 1: Average percentage of execution time spent in 
corresponding percentage of code size for the top N most critical 

code regions, for five MediaBench benchmarks. 
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Since 85% of the critical regions can be determined by simply 
finding the most frequently executed inner loops, we translate the 
critical code region detection problem to that of detecting frequent 
loops. However, in the case of benchmarks containing critical 
regions in the form of subroutines with no inner loops, the frequent 
loop detection methodology described here may be easily adapted to 
identify subroutines as well as loops. 

A loop in an application is typically denoted by the last 
instruction being a short backwards branch (sbb) that jumps to the 
first instruction of the loop [9][18]. The sbb instruction is not a 
special instruction; rather an sbb is any jump instruction with a 
small negative offset. We examined the output of several popular C 
and C++ compilers using standard optimizations, and found that 
they indeed generate code using sbb’s. In fact, we found no inner 
loops that were not formed using sbb’s in the seventeen benchmarks 
we examined. However, unstructured assembly code generated by 
hand, or certain compiler optimizations, could result in loops with 
different structures. We leave frequent loop detection in these 
situations as future work. 

In addition to detecting the most frequent loops, we also want to 
know those loops’ percentage contribution to total execution time. 
Knowing the percentage contribution is important for optimization 
decisions. For example, suppose application X has the following 
loop execution breakdown: loop A 80%, loop B 5%, and loop C 
5%, and application Y has the following loop execution breakdown: 
loop A 25%, loop B 25%, and loop C 25%. If just the order of 
frequent loops is known and optimizations are to be done only on 
the single most frequent loop, application X would yield 
optimizations on 80% of the execution time and application Y 
would yield optimizations on only 25% of the execution time. If the 
execution frequencies are known along with the loop ordering, 
optimizations on application Y can be done on the top three loops 
yielding optimizations on 75% of the execution time. Furthermore, 
with knowledge that application X’s A loop takes 80% of execution 
time, we might perform more aggressive optimizations – such a 
frequent loop might be a candidate for partitioning to hardware, for 
example. Certain optimizations may only be applied when certain 
percentage thresholds are met. 

We have imposed several operational requirements for our 
frequent loop detector: non-intrusion, low power, and small area. 
Non-intrusion is important for real-time systems where changes in 
execution behavior could significantly affect the performance of the 
system. Additionally, non-intrusion minimizes the impact on current 
tool chains, avoiding special compilers or binary modification tools. 
Minimal impact is important in commercial environments where 
significant capital may already be invested in a development 

environment. Minimizing power is important in low-power 
embedded systems, such as battery-operated systems or systems 
with limited cooling capabilities. Small area is also important, but is 
becoming less significant given the large transistor capacities of 
recent and future chips [15]. Another concern is that of accuracy, 
but our loop detector does not require exact results – instead, just 
reasonable accuracy is acceptable. 

3.2 Methods Considered 
We initially considered many methods for determining frequent 
loops. We first attempted to satisfy only our first requirement of 
detecting the ordering of the most frequent loops by modifying the 
frequent data value detector design by Yang and Gupta [31]. We 
adapted the design so that sbb addresses would be counted instead 
of data values. However, we found that the frequent loops were not 
ordered correctly at the top of the table. We determined that the 
reason for the inaccurate results was because swapping of items 
occurs whenever an item’s small counter saturates, even though the 
item further up in the table may have had a much higher frequency. 
The frequent data value method is concerned with detecting the top 
set of values and is not concerned with their actual ordering. We 
explored larger counter fields, but then the counter saturations did 
not happen frequently enough to allow swapping to order the 
frequent loops in the table. 

Next we tried using a fully-associative memory to store the 
frequent loop addresses and their frequencies. The sbb address 
would be used as the tag and the tag’s associated data would be 
incremented upon a hit. However, a fully-associative memory raised 
many questions such as the tradeoff between a large enough memory 
to give accurate results and the power consumption of that memory, 
as well as finding an efficient replacement policy when the memory 
becomes full. 

We also looked into using a hash table to store frequent loops 
and their associated frequencies. Sbb addresses would be hashed 
using a subset of the address bits. By using a simple hash function 
and not doing too much probing, the hash table is a reasonable 
solution. The hashing and match detection would have to be 
hardware based to be non-intrusive. Incorporating hashing and 
match detection in hardware began to lead to a design that looked 
very much like a cache, which ultimately led us to the cache-based 
approach described in the following section. 

3.3 Cache-Based Architecture 
Our loop detection architecture can be seen in Figure 2. The 
frequent loop cache is a simple cache used to store frequency counts 
and is indexed into using sbb instruction addresses. The cache has 
an added feature, to be described later, that will shift every data 
value right by one, which is achieved by asserting the saturation 
signal to the cache. The frequent loop cache controller orchestrates 
updates to the frequent loop cache. An incrementor is also included 
to increment the frequency count. An additional signal, sbb, is 
required from the microprocessor, similar to that implemented in 
Motorola’s M*CORE microprocessor [25], and that signal is 
asserted whenever an sbb is taken. Alternatively, if the sbb signal is 
not available, the cache controller could determine when an sbb is 
taken by replicating a small portion of the instruction decode logic. 

The frequent loop cache controller handles the operation of the 
frequent loop cache. When the sbb signal is asserted, a read of the 
frequent loop cache is done using the sbb address as the index. If the 

 
 
 
 
 
 
 

 
Figure 2: Frequent loop detection architecture. 
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result is a hit, the frequency is read from the cache, incremented, and 
written back in the next cycle. If the result is a compulsory miss, the 
instruction is added to the cache with a frequency data value of one. 
If there is a conflict miss, the new address replaces the old address in 
the cache. 

On a conflict miss, replacing the old address in the cache with 
the new address could cause inaccurate results, especially if two 
frequent loops map to the same location in the cache. One solution 
is to add associativity to the cache. Associativity will allow for 
multiple frequent loops to map to the same set without conflict. If 
conflicts still occur, the replacement policy used will replace the 
least frequent value in the set with the new incoming sbb. Whereas 
associativity may alleviate cache contention, situations may occur 
where the most frequent loops are continually replaced in the cache 
– a situation known as thrashing. A victim buffer may be added to 
the architecture to deal with cache contentions that are not solved by 
associativity. However, in the benchmarks we studied, a victim 
buffer was not necessary to achieve accurate results. 

When an increment results in a frequency counter saturating, all 
frequency counts in the cache are divided by two using a simple 
right shift. The right shift operation is implemented as a special 
feature of the cache architecture. Such division keeps the frequency 
ratios reasonably accurate. While the right shifting operation can be 
quite power expensive, we will show that the infrequency of 
saturations makes the power consumed by the right shift operation 
insignificant with regards to the increase in average power 
consumption of the system.  

4. EXPERIMENTS 
We performed extensive experiments to determine the best size, 
associativity, and frequency count field width of our cache 
architecture. We used benchmarks from both the Powerstone [21] 
benchmark suite running on a 32-bit MIPS instruction set simulator, 
and the MediaBench [17] benchmark suite running on SimpleScalar 
[5]. The benchmarks are listed in Table 1. 

To model power consumption of the cache memory itself, we 
used the Artisan memory compiler [2]. We modeled the additional 
logic and functionality in synthesizable VHDL using the Synopsys 
Design Compiler [28]. Both tools used UMC 0.18-micron CMOS 
technology running at 250 MHz at 1.8 V. 

To determine the accuracy of each possible cache configuration, 
we wrote a trace simulator for the cache architecture in C++. The 
simulator reads in an instruction trace file for each benchmark and 
simulates each possible cache configuration, outputting a list of loop 
addresses and frequencies for each configuration.  

We simulated 336 different cache configurations for each 
benchmark. We tested cache sizes of 16, 32, and 64 entries with 
direct-mapped, 2-, 4-, and 8-way associativities, and we varied the 
frequency counter field width from 4 to 32 bits. We determined the 
accuracy of the results by calculating the average difference between 
the actual loop execution time percentage and the calculated loop 
execution time percentage. For each cache configuration, we use the 
following formula to compute the averaged sum of differences 
(SOD) for the ten most frequently executed loops: 
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Table 1: Benchmark descriptions 
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enchmark Size of assembly  
in bytes 

Description 

adpcm 7,648 Voice Encoding 
blit 4,180 Graphics Application 

compress 7,480 Data Compression Program 
crc 4,248 Cyclic Redundancy Check 
des 6,124 Data Encryption Standard 

engine 4,440 Engine Controller 
epic* 154,016 Image Compression 

fir 4,232 FIR Filtering 
g3fax 4,384 Group Three Fax Decode 
g721* 95,024 Voice Compression 
jpeg 5,968 JPEG Compression 

eg decode* 355,072 JPEG Compression 
peg decode* 197,328 MPEG Compression 
awcaudio* 199,920 Voice Encoding 
summin 4,144 Handwriting Recognition 
ucbqsort 4,848 U.C.B Quick Sort 

v42 6,396 Modem Encoding/Decoding 

diaBench 
   
10

%%
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1

2/1

 ∑ −
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%execactual is the actual percent of execution time of a loop and 
ecpredicted is the predicted percent of execution time output by our 
lator for the same loop for a given cache configuration. The 

al and predicted execution times are both in decimal 
esentation. The result of the SOD formula gives a value between 
d 1, with 0 being perfect accuracy, meaning no difference 
een the actual and predicted execution percentages. To further 
lize differences between actual and predicted execution times, 

difference between the two is raised to the ½ power. Raising the 
rence to the ½ power may at first seem counter intuitive, 
ever keep in mind that the percentages are in decimal form and 
ish to keep the value between 0 and 1. 

Originally, we computed the average SOD for all loops. 
ever, for benchmarks with a large number of loops, we found 

SOD did not accurately represent the ability of the approach to 
ulate execution percentage of the most frequent loops.  
Figure 1 shows that the first eight frequent loops comprise over 
 of the execution time while the remaining infrequent loops 
sibly hundreds) share 10% of the execution time. If a critical 
 detector does not identify the frequency of an infrequent loop 
ectly, the difference between the actual percentage of execution 
 and the predicted percentage of execution time will be very 
ll. Since we are only interested in predicting the frequent loops, 
g the averaged SOD for all loops can be misleading in 
hmarks with many infrequent loops. The reason that the 
aged SOD is misleading for benchmarks with many infrequent 
s is because the slight difference in mispredictions of many 
quent loop execution times may dominate over the greater 
rence in mispredictions of frequent loop execution times. For 



better analysis of our frequent loop detector, we will only consider 
the top ten most frequent loops in our average SOD calculations. 

The average SOD results over all benchmarks in each 
benchmark suite can be seen in Figure 3. The x-axis shows the 
cache configuration, giving the number of ways, followed by the 
cache size in number of entries, followed by the frequency width in 
bits. For brevity, only frequency widths of 8, 12, 16, 24, and 32 bits 
are listed. The y-axis shows one minus the SOD so that a perfect 
accuracy will result in a value of 1. 

As we do not require that the results be 100% correct (90% or 
so is likely acceptable), we see that a good cache for both 
benchmark suites can be very small. By varying the frequency 
counter width, we are able to determine the smallest possible cache 
necessary to give good results, because each cache entry only 
contains one counter. The best cache configuration for Powerstone 
is a 2-way 16-entry cache with a frequency width of 16 bits, and the 
best cache configuration for MediaBench is a 2-way 32-entry cache 
with a frequency width of 24 bits. Overall, we conclude that the best 
overall cache configuration is a 2-way 32-entry cache with a 
frequency width of 24 bits. We will refer to this cache configuration 
as the best cache configuration. The best cache configuration is the 
smallest cache size that gives good results for both benchmarks 
suites. The 2-way/32-entry/24-bit cache yields accuracies near 95% 
and 90% for Powerstone and MediaBench benchmarks suites, 
respectively. 

Figure 3 also shows that the Powerstone benchmarks tend to 
perform better with smaller cache configurations than does 
MediaBench. Thus, larger examples could require a larger cache. 
However, we point out that the rate of increase of the necessary 
cache size is low. A 16-entry cache (good for Powerstone) captures 
on average only 1.2% of the instructions for each Powerstone 
benchmark, while a 32-entry cache (good for MediaBench) captures 
on average only 0.13% of the instructions for each MediaBench 
benchmark. For even larger examples, the cache size may need to be 

increased, but the cache size increase is much less than the program 
size increase. 

We now consider the power overhead of the frequent loop 
detector. We consider the MIPS32 4Kp microprocessor core [23], a 
small, low power embedded processor with a cache, having an area 
of 1.7 mm2. The average power consumption for the 4Kp running at 
240 MHz in 0.18-micron technology is 528 mW. The frequent loop 
detection hardware with the best cache configuration consumes 142 
mW for each frequent loop cache read and increment, and consumes 
156 mW for each frequent loop cache write, averaged over both 
benchmark suites. However, since only sbb instructions cause 
updates to the frequent loop cache, cache updates only occur an 
average of 4.25% of the time across all benchmarks. One saturation 
operation consumes 20.7 mW of power, and saturations occur only 
0.000051% of the time for the best cache configuration. Thus, the 
resulting increase in average power consumption of the total system 
with the frequent loop detector is only 2.4%. 

The frequent loop cache controller, incrementor and additional 
control/steering logic consists of 1400 gates, or an area of 0.012 
mm2. Additionally, the cache has an area of 0.167 mm2 including 
saturation logic. The resulting area overhead is 10.5% compared to 
the reported size of the MIPS 4Kp [23]. Area actually varies greatly 
depending on technology libraries, foundry, etc., and thus we expect 
that actual area overheads would be much smaller (numbers for our 
cache are pessimistic, while reported microprocessor areas are likely 
optimistic). Nevertheless, area is becoming less constrained in 
nanoscale technologies. 

The power consumed by the frequent loop cache can further be 
reduced using known methods to decrease cache power 
consumption, such as phased lookup or pseudo set-associative 
caching. Phased lookup accesses the tag arrays first, and then only 
accesses the hit data way. Pseudo set-associative lookup [14] 
essentially accesses one way (tag and data) first, and only accesses 
the other way upon a miss. Each technique reduces dynamic power 
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Figure 3: Sum of differences results for (a) Powerstone and (b) MediaBench. The x-axis shows the cache 
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by 25% to 50%, at the expense of multi-cycle lookups – not a 
problem in our case since sbb’s do not occur every cycle. Thus, we 
can easily reduce our 2.4% system power overhead to something 
closer to 1.5%. 

5. REDUCING POWER OVERHEAD VIA 
FREQUENCY UPDATE COALESCING 
5.1 Coalescing Methodology 
The previously described method gives very good results with little 
power overhead, but we can further reduce power with no loss in 
accuracy. Frequently executed loops tend to iterate many times, 
causing the same sbb frequency value to be incremented in the cache 
many times in a row. Therefore, we can coalesce successive 
increments into one addition. For example, if a frequent loop 
executes 300 times in a row, the 300 cache frequency increments 
can be coalesced into one cache update with the addition of 300 to 
the frequency value. 

We determined the potential for cache update reductions. For 
each benchmark, we processed the execution trace files and 
coalesced all of the sbb instructions. The results in Figure 4 shows 
average cache update reductions near 80% for both benchmark 
suites. 

By only coalescing consecutive sbb increments, nested loops 
may in some cases not benefit from coalescing, with the worst case 
being a very highly iterated outer loop with an inner loop that 
iterates only a few number of times, thus alternating the sbb 
addresses. Coalescing could be extended to allow sbb addresses to 
be coalesced with, for instance, any of the last N sbb addresses seen, 
where N could be 2, 3, etc. We processed the trace files again 
allowing for sbb addresses to be coalesced with different ranges of 
previously seen sbb addresses. However, we found that extended 
coalescing did not improve significantly on the already 80% savings 
achieved by consecutive sbb address coalescing. Thus, we decided 
to extend our frequent loop cache architecture to have the ability to 
coalesce only consecutive sbb increments. 

5.2 Coalescing Architecture  
To implement the coalescing architecture, we added only a small 
amount of hardware to the original frequent loop detection 
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configuration. With the addition of the coalescing hardware, cache 
updates now only occur on average 0.91% of the time across all 
benchmarks. Coalescing one sbb consumes only 2.3 mW of power 
and coalescing occurs on average 3.3% of the time across all 
benchmarks. The resulting increase in average power consumption 
of the total system with the frequent loop detector with coalescing is 
now reduced to a mere 0.53%, i.e., less than 1% power overhead. 

Along with the benefit of reduced power consumption, the 
coalescing hardware still preserves the fidelity of the results. Since 
no instruction executions are lost, only coalesced, the accuracy of 
the SOD results for each cache configuration is identical to those 
achieved with the frequent loop detector without coalescing. 

6. SAMPLING FOR FURTHER REDUCED 
POWER OVERHEAD 
In conjunction with coalescing, sbb instruction sampling can also be 
used to further reduce the power overhead, at the expense of some 
accuracy. Instead of tallying every sbb instruction executed, only 
sbbs that occur at fixed sampling intervals will be included in the 
frequency counts. This method does not require interrupting of the 
microprocessor, as previous sampling methods required. The 
frequent loop cache controller will only tally sbbs that occur on the 
sampling interval – such sampling is easily implemented using a 
small (e.g., 6-bit) counter. 

To see the impact of sbb instruction sampling on the accuracy of 
the results, we simulated the best cache configuration for sampling 
intervals of 1, 5, 25 and 50 sbb instructions. The results can be seen 
in Figure 6 for each benchmark. For all Powerstone benchmarks 
(except jpeg), the average trend is the degradation of accuracy as the 
sampling rate gets larger. On average for the Powerstone benchmark 
suite, 5% of accuracy is lost when going from a sampling interval of 
1 to 50. However, for the MediaBench benchmark suite, the average 
trend is for the accuracy of the results to improve by approximately 
2% with a sampling rate of 50. The reason for the improvement in 
accuracy is because sampling causes a decrease in saturations. For 
MediaBench, saturations cause more information to be lost than 
sampling does.  

At a sampling rate of 50, the cache updates and coalesces 
decrease even further to rates of 0.03% and 0.06% respectively with 
no saturations. Coalescing plus sampling (at a rate of 50) reduces the 

average system power overhead to a mere 0.02% (0.05% without 
coalescing). 

7. EXAMPLE USE: WARP PROCESSING 
The frequent loop detector described in this paper can be used in a 
variety of situations. The detector has been successfully 
incorporated into a novel prototype system-on-a-chip architecture 
performing what is presently known as a warp processor 
[19][20][26], also developed at the University of California, 
Riverside. The architecture consists of microprocessors coupled 
with field-programmable gate arrays (FPGAs), along with a single 
dynamic partitioning module that itself contains a lean 
microprocessor. The dynamic partitioning module monitors the 
software executing on each regular microprocessor (one 
microprocessor at a time), detects the critical software kernels, and 
automatically remaps those kernels to an FPGA coprocessor. Such 
remapping typically speeds up a kernel by a factor of 10 or more.  

The warp processor architecture designers successfully 
incorporated our frequent loop detector into their architecture and 
use that detector to find the critical kernels. Overall application 
speedups obtained by remapping of those kernels from a 75 MHz 
ARM to FPGA are presently between 2 and 3, but substantially 
faster speedups are projected as more aggressive transformations 
(e.g., loop unrolling, loop pipelining) and more efficient FPGA 
fabrics are developed. For highly parallel examples, estimated 
speedups of greater than 10 can be achieved when performing 
aggressive optimizations. 

The frequent loop detector is presently being incorporated into 
another project’s architecture (a joint project between the University 
of California, Riverside and the University of California, Irvine), in 
which a prototype platform SOC is used to help speed up desktop 
CAD algorithms. The detector will be incorporated onto the 
platform, with the results fed back to desktop tools used to obtain 
profiles and to guide hardware/software partitioning, cache 
configuration, and other algorithms. 

8. CONCLUSIONS 
We introduced a small, power efficient architecture for accurately 
and non-intrusively detecting the most frequent loops of an 
executing program, while accurately providing the relative 

 

 

 

 

 

 

 

 

 

 

Figure 6: Sum of differences compared to the perfect loop frequencies for the best cache, a 2-way set-associative 32 entry cache with a 
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frequencies of those loops. We displayed the effectiveness of the 
architecture using numerous benchmarks. The architecture uses a 2-
way set-associative 32-entry cache with each entry storing a 24-bit 
frequency counter. We show that power overhead of our loop 
detector is only 1-2% compared to a 32-bit embedded processor, 
and is easily reducible to well below 0.1% using simple coalescing 
and sampling methods. Future work involves extending the design 
to find critical subroutines as well as critical loops. 
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