
Frequent Loop Detection Using Efficient Non-Intrusive
On-Chip Hardware

Ann Gordon-Ross and Frank Vahid*
Department of Computer Science and Engineering, University of California, Riverside

{ann/vahid}@cs.ucr.edu, http://www.cs.ucr.edu/~vahid
*Also with the Center for Embedded Computer Systems at UC Irvine

ABSTRACT
Dynamic software optimization methods are becoming increasingly
popular for improving software performance and power. The first
step in dynamic optimization consists of detecting frequently
executed code, or “critical regions.” Previous critical region
detectors have been targeted to desktop processors. We introduce a
critical region detector targeted to embedded processors, with the
unique features of being very size and power efficient, and being
completely non-intrusive to the software’s execution – features
needed in timing-sensitive embedded systems. Our detector not only
finds the critical regions, but also determines their relative
frequencies, a potentially important feature for selecting among
alternative dynamic optimization methods. Our detector uses a tiny
cache coupled with a small amount of logic. We provide results of
extensive explorations across seventeen embedded system
benchmarks. We show that highly accurate results can be achieved
with only a 0.02% power overhead and acceptable size overhead.
Our detector is currently being used as part of a dynamic
hardware/software partitioning approach, but is applicable to a
wide-variety of situations.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles – Cache memories.

General Terms: Design.

Keywords: Frequent value profiling, runtime profiling, on-chip
profiling, hardware profiling, frequent loop detection, hot spot
detection, dynamic optimization.

1. INTRODUCTION
Dynamic software optimization methods are becoming increasingly
popular for improving software performance and power. The main
reason for this trend is that dynamic optimizations have several
important advantages over static approaches. Dynamic optimizations
allow for a system to be optimized based on runtime behavior and
values, which may be hard to determine using static methods or
costly simulations, and which also may change during runtime.
Furthermore, dynamic optimizations require no designer
intervention and are applied transparently during runtime, meaning
there is no disruption to standard software tool flows.

Recent dynamic optimization research has introduced dynamic
hardware/software partitioning [26]. During execution of an
application, an on-chip profiling method detects critical regions of
code for hardware implementation. An on-chip tool transparently re-
implements those regions on an on-chip FPGA. Subsequent
executions of the application execute the critical regions of code in
the FPGA, speeding up those regions by a factor of 10 or more,
resulting in good overall speedups of the application.

Researchers have explored many other dynamic optimization
approaches. For instance, Dynamo performs dynamic software
optimizations on the most frequently executed regions of code [3].
The ProfileMe approach [8] specializes subroutines for common
inputs and determines by runtime profiling which configuration to
call for the best performance. Pettis and Hansen [24] improve
performance by re-mapping frequently executed regions of code to
non-interfering cache locations. Other approaches reduce high
power memory accesses through instruction compression [10][13]
or by locking instructions into a special low-power cache [4][9].
Dynamic binary translation methods store translation results from
frequent code regions to improve performance as well as power
[16]. Value profiling [6] determines runtime invariant variables for
constant propagation and code specialization for optimized
performance, or even for reduced energy.

For dynamic optimizations to be most effective, optimizations
are typically applied to the most frequently executed regions of
code. In embedded system applications, much of the execution time
is spent in a small amount of code. Figure 1 shows the percentage of
execution time spent in the corresponding percentage of code size
for a large selection of MediaBench benchmarks [17].
Approximately 90% of the execution time is spent in only 10% of
the code, obeying the well-known 90-10 rule. This phenomena was
demonstrated for an even wider set of applications in [27]. We will
refer to the 10% of code as critical regions of code. Detecting the
critical regions of a program during run-time is an important part of
any dynamic optimization approach.

Previous profiling methods are mostly targeted for a desktop
computing environment, incurring runtime overhead that can be
unacceptable in an embedded environment, especially for real-time
embedded systems with very tight timing constraints. The most
common techniques generally insert additional instructions into the
binary to record profiling information or interrupt the processor at
regular intervals to sample register values.

To overcome problems associated with earlier profiling
methods, embedded system designers have previously relied on
logic analyzers to non-intrusively profile their system. However with
current systems-on-a-chip (SOCs), designers can no longer connect
a logic analyzer to internal signals.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’03, Oct. 30 – Nov. 1, 2003, San Jose, California, USA.
Copyright 2003 ACM 1-58113-676-5/03/0010…$5.00.

117

an interrupt [33]. However, this method has the same disadvantages

To assist in internal signal monitoring, SOCs typically come
with a means of reading internal registers via external pins utilizing
the JTAG standard [12]. However, the processor must be interrupted
to read the internal register values and transfer them to external pins,
incurring runtime overhead and potentially altering execution
behavior. This method is typically used for testing and debugging
and not system profiling. Fortunately the increase in transistor
capacity has also enabled on-chip profiling environments. Recent
methods have been introduced that use specialized on-chip logic to
profile executing applications [22][31].

In this paper, we present a new on-chip profiler that determines
critical regions for use in dynamic optimizations. The profiler
improves upon previous approaches by being non-intrusive, small,
and low power, and also by providing information on the percentage
of execution time spent in each region – information useful for
guiding on-chip dynamic optimization decisions. The profiling
methodology described in this paper has been shown to be very
effective as the profiling step of the dynamic hardware/software
partitioning approach presented in [26].

2. RELATED WORK
The most common methods for runtime profiling are software
based. One such method is code instrumentation [7][11], wherein
code is added to a program to count the execution frequencies of
subroutines, loops or even blocks. While popular in desktop
systems, instrumentation imposes program and data memory
overhead and performance overhead – overheads not acceptable in
many tightly constrained embedded systems. Furthermore,
instrumentation may pollute instruction and data caches, and may
cause register spills, resulting in very different timing behavior.
Instrumentation also requires special compilers or binary
instrumentation tools.

Another software-based profiling method is sampling. At certain
intervals, the microprocessor is interrupted and register values are
sampled [1][8], resulting in a statistical profile. Sampling reduces
code and data overhead, and the sampling rate can be reduced to
minimize performance overhead at the expense of accuracy.
However, interrupting is intrusive and can cause problems in real-
time systems. Furthermore, care must also be taken to avoid
undesirable correlations between the sampling rate and the
program’s task periods, which could lead to aliasing problems. A
method similar to interrupt-based sampling assumes a multitask
environment where an additional task performs profiling in place of

as the interrupt based approach.
Another approach to profiling uses simulation. This approach

uses an instruction set simulator to run the application and keep
track of profiling information. Whereas a simulation-based approach
can give accurate profiling information if a realistic input stimulus is
available, complex external environments may be difficult, if not
impossible, to model accurately – setting up an accurate simulation
often takes longer than designing the application itself. Furthermore,
simulation of entire systems can be extremely slow, especially for
SOCs, with hours or days of simulation time correlating to only
seconds of real execution time.

Many processors today come with hardware event counters that
count various hardware events, such as cache misses, pipeline stalls
and branch mispredictions [30][32]. Though non-intrusive, event
counters do not by themselves detect critical regions of code –
sampling must be used to read the counters at given intervals, thus
again introducing performance overhead.

Recently, hardware-based non-intrusive profiling methods have
been introduced. One method [22] utilizes a cache to determine
critical regions, or “hot spots”. Branch addresses and their execution
frequencies are stored in a cache-like structure. Frequent branches
are determined when branch frequencies reach a defined threshold
value. Further analysis of branch frequencies is done to determine
collections of branches that form hot spots in the code. However,
this method does not focus on power efficiency and also does not
store relative frequencies.

Another hardware-based methodology [29] proposes dynamic
loop detection for control speculation in multithreaded processors.
This method uses a stack to monitor the currently executing loops,
with the innermost nested loop stored at the top of the stack and all
remaining loops stored according to nesting order. When execution
leaves a loop, information about loop behavior is stored into two
fully-associative tables. Whereas the methodology presented may be
modified to provide the loop information we require, the design was
not intended for an embedded environment where power and area
must be considered during the design of the profiler.

Yang and Gupta [31] proposed a very simple profiling method
with low power embedded systems in mind. However, this profiling
method was intended for data profiling, not code profiling. The
method monitors data cache accesses and stores data values in a
fully-associative table along with a small counter (2-3 bits). Each
use of the data value causes the counter to be incremented. Upon
counter saturation, the saturated data value is swapped with the data
value in the location directly above the saturated data value in the
table, effectively sorting the table, leaving the more frequent values
near the top. The frequent value table is small, simple, low power
and non-intrusive. However, we found that the swapping method is
not accurate for code profiling, which we will elaborate on in
Section 3.2.

3. FREQUENT LOOP DETECTION
ARCHITECTURE
3.1 Problem Overview and Motivation
Our studies of the Powerstone [21] and MediaBench [17]
benchmark suites show that about 85% of the critical regions of
code are small inner loops (or near-inner loops) with the remaining
15% of the critical regions being subroutines with no inner loops.

Figure 1: Average percentage of execution time spent in
corresponding percentage of code size for the top N most critical

code regions, for five MediaBench benchmarks.

0%

20%

40%
60%

80%

100%

1 2 3 4 5 6 7 8 9 10
Critical Regions

Execution
time
Code
Size

118

Since 85% of the critical regions can be determined by simply
finding the most frequently executed inner loops, we translate the
critical code region detection problem to that of detecting frequent
loops. However, in the case of benchmarks containing critical
regions in the form of subroutines with no inner loops, the frequent
loop detection methodology described here may be easily adapted to
identify subroutines as well as loops.

A loop in an application is typically denoted by the last
instruction being a short backwards branch (sbb) that jumps to the
first instruction of the loop [9][18]. The sbb instruction is not a
special instruction; rather an sbb is any jump instruction with a
small negative offset. We examined the output of several popular C
and C++ compilers using standard optimizations, and found that
they indeed generate code using sbb’s. In fact, we found no inner
loops that were not formed using sbb’s in the seventeen benchmarks
we examined. However, unstructured assembly code generated by
hand, or certain compiler optimizations, could result in loops with
different structures. We leave frequent loop detection in these
situations as future work.

In addition to detecting the most frequent loops, we also want to
know those loops’ percentage contribution to total execution time.
Knowing the percentage contribution is important for optimization
decisions. For example, suppose application X has the following
loop execution breakdown: loop A 80%, loop B 5%, and loop C
5%, and application Y has the following loop execution breakdown:
loop A 25%, loop B 25%, and loop C 25%. If just the order of
frequent loops is known and optimizations are to be done only on
the single most frequent loop, application X would yield
optimizations on 80% of the execution time and application Y
would yield optimizations on only 25% of the execution time. If the
execution frequencies are known along with the loop ordering,
optimizations on application Y can be done on the top three loops
yielding optimizations on 75% of the execution time. Furthermore,
with knowledge that application X’s A loop takes 80% of execution
time, we might perform more aggressive optimizations – such a
frequent loop might be a candidate for partitioning to hardware, for
example. Certain optimizations may only be applied when certain
percentage thresholds are met.

We have imposed several operational requirements for our
frequent loop detector: non-intrusion, low power, and small area.
Non-intrusion is important for real-time systems where changes in
execution behavior could significantly affect the performance of the
system. Additionally, non-intrusion minimizes the impact on current
tool chains, avoiding special compilers or binary modification tools.
Minimal impact is important in commercial environments where
significant capital may already be invested in a development

environment. Minimizing power is important in low-power
embedded systems, such as battery-operated systems or systems
with limited cooling capabilities. Small area is also important, but is
becoming less significant given the large transistor capacities of
recent and future chips [15]. Another concern is that of accuracy,
but our loop detector does not require exact results – instead, just
reasonable accuracy is acceptable.

3.2 Methods Considered
We initially considered many methods for determining frequent
loops. We first attempted to satisfy only our first requirement of
detecting the ordering of the most frequent loops by modifying the
frequent data value detector design by Yang and Gupta [31]. We
adapted the design so that sbb addresses would be counted instead
of data values. However, we found that the frequent loops were not
ordered correctly at the top of the table. We determined that the
reason for the inaccurate results was because swapping of items
occurs whenever an item’s small counter saturates, even though the
item further up in the table may have had a much higher frequency.
The frequent data value method is concerned with detecting the top
set of values and is not concerned with their actual ordering. We
explored larger counter fields, but then the counter saturations did
not happen frequently enough to allow swapping to order the
frequent loops in the table.

Next we tried using a fully-associative memory to store the
frequent loop addresses and their frequencies. The sbb address
would be used as the tag and the tag’s associated data would be
incremented upon a hit. However, a fully-associative memory raised
many questions such as the tradeoff between a large enough memory
to give accurate results and the power consumption of that memory,
as well as finding an efficient replacement policy when the memory
becomes full.

We also looked into using a hash table to store frequent loops
and their associated frequencies. Sbb addresses would be hashed
using a subset of the address bits. By using a simple hash function
and not doing too much probing, the hash table is a reasonable
solution. The hashing and match detection would have to be
hardware based to be non-intrusive. Incorporating hashing and
match detection in hardware began to lead to a design that looked
very much like a cache, which ultimately led us to the cache-based
approach described in the following section.

3.3 Cache-Based Architecture
Our loop detection architecture can be seen in Figure 2. The
frequent loop cache is a simple cache used to store frequency counts
and is indexed into using sbb instruction addresses. The cache has
an added feature, to be described later, that will shift every data
value right by one, which is achieved by asserting the saturation
signal to the cache. The frequent loop cache controller orchestrates
updates to the frequent loop cache. An incrementor is also included
to increment the frequency count. An additional signal, sbb, is
required from the microprocessor, similar to that implemented in
Motorola’s M*CORE microprocessor [25], and that signal is
asserted whenever an sbb is taken. Alternatively, if the sbb signal is
not available, the cache controller could determine when an sbb is
taken by replicating a small portion of the instruction decode logic.

The frequent loop cache controller handles the operation of the
frequent loop cache. When the sbb signal is asserted, a read of the
frequent loop cache is done using the sbb address as the index. If the

Figure 2: Frequent loop detection architecture.

M

ic
ro

pr
oc

es
so

r Frequent Loop
Cache

Frequent Loop
Cache

Controller

++

rd/wr
addr

data data

To L1 Memory

rd/wr
addr

sbb

data
saturation

119

result is a hit, the frequency is read from the cache, incremented, and
written back in the next cycle. If the result is a compulsory miss, the
instruction is added to the cache with a frequency data value of one.
If there is a conflict miss, the new address replaces the old address in
the cache.

On a conflict miss, replacing the old address in the cache with
the new address could cause inaccurate results, especially if two
frequent loops map to the same location in the cache. One solution
is to add associativity to the cache. Associativity will allow for
multiple frequent loops to map to the same set without conflict. If
conflicts still occur, the replacement policy used will replace the
least frequent value in the set with the new incoming sbb. Whereas
associativity may alleviate cache contention, situations may occur
where the most frequent loops are continually replaced in the cache
– a situation known as thrashing. A victim buffer may be added to
the architecture to deal with cache contentions that are not solved by
associativity. However, in the benchmarks we studied, a victim
buffer was not necessary to achieve accurate results.

When an increment results in a frequency counter saturating, all
frequency counts in the cache are divided by two using a simple
right shift. The right shift operation is implemented as a special
feature of the cache architecture. Such division keeps the frequency
ratios reasonably accurate. While the right shifting operation can be
quite power expensive, we will show that the infrequency of
saturations makes the power consumed by the right shift operation
insignificant with regards to the increase in average power
consumption of the system.

4. EXPERIMENTS
We performed extensive experiments to determine the best size,
associativity, and frequency count field width of our cache
architecture. We used benchmarks from both the Powerstone [21]
benchmark suite running on a 32-bit MIPS instruction set simulator,
and the MediaBench [17] benchmark suite running on SimpleScalar
[5]. The benchmarks are listed in Table 1.

To model power consumption of the cache memory itself, we
used the Artisan memory compiler [2]. We modeled the additional
logic and functionality in synthesizable VHDL using the Synopsys
Design Compiler [28]. Both tools used UMC 0.18-micron CMOS
technology running at 250 MHz at 1.8 V.

To determine the accuracy of each possible cache configuration,
we wrote a trace simulator for the cache architecture in C++. The
simulator reads in an instruction trace file for each benchmark and
simulates each possible cache configuration, outputting a list of loop
addresses and frequencies for each configuration.

We simulated 336 different cache configurations for each
benchmark. We tested cache sizes of 16, 32, and 64 entries with
direct-mapped, 2-, 4-, and 8-way associativities, and we varied the
frequency counter field width from 4 to 32 bits. We determined the
accuracy of the results by calculating the average difference between
the actual loop execution time percentage and the calculated loop
execution time percentage. For each cache configuration, we use the
following formula to compute the averaged sum of differences
(SOD) for the ten most frequently executed loops:

%ex
simu
actu
repr
0 an
betw
pena
the
diffe
how
we w

How
the
calc

90%
(pos
loop
corr
time
sma
takin
benc
aver
loop
infre
diffe

Table 1: Benchmark descriptions

B

jp
m

r

*Me

120
enchmark Size of assembly
in bytes

Description

adpcm 7,648 Voice Encoding
blit 4,180 Graphics Application

compress 7,480 Data Compression Program
crc 4,248 Cyclic Redundancy Check
des 6,124 Data Encryption Standard

engine 4,440 Engine Controller
epic* 154,016 Image Compression

fir 4,232 FIR Filtering
g3fax 4,384 Group Three Fax Decode
g721* 95,024 Voice Compression
jpeg 5,968 JPEG Compression

eg decode* 355,072 JPEG Compression
peg decode* 197,328 MPEG Compression
awcaudio* 199,920 Voice Encoding
summin 4,144 Handwriting Recognition
ucbqsort 4,848 U.C.B Quick Sort

v42 6,396 Modem Encoding/Decoding

diaBench

10

%%
10

1

2/1

 ∑ −
=i

exec iexec i predictedactual

%execactual is the actual percent of execution time of a loop and
ecpredicted is the predicted percent of execution time output by our
lator for the same loop for a given cache configuration. The

al and predicted execution times are both in decimal
esentation. The result of the SOD formula gives a value between
d 1, with 0 being perfect accuracy, meaning no difference
een the actual and predicted execution percentages. To further
lize differences between actual and predicted execution times,

difference between the two is raised to the ½ power. Raising the
rence to the ½ power may at first seem counter intuitive,
ever keep in mind that the percentages are in decimal form and
ish to keep the value between 0 and 1.

Originally, we computed the average SOD for all loops.
ever, for benchmarks with a large number of loops, we found

SOD did not accurately represent the ability of the approach to
ulate execution percentage of the most frequent loops.
Figure 1 shows that the first eight frequent loops comprise over
 of the execution time while the remaining infrequent loops
sibly hundreds) share 10% of the execution time. If a critical
 detector does not identify the frequency of an infrequent loop
ectly, the difference between the actual percentage of execution
 and the predicted percentage of execution time will be very
ll. Since we are only interested in predicting the frequent loops,
g the averaged SOD for all loops can be misleading in
hmarks with many infrequent loops. The reason that the
aged SOD is misleading for benchmarks with many infrequent
s is because the slight difference in mispredictions of many
quent loop execution times may dominate over the greater
rence in mispredictions of frequent loop execution times. For

better analysis of our frequent loop detector, we will only consider
the top ten most frequent loops in our average SOD calculations.

The average SOD results over all benchmarks in each
benchmark suite can be seen in Figure 3. The x-axis shows the
cache configuration, giving the number of ways, followed by the
cache size in number of entries, followed by the frequency width in
bits. For brevity, only frequency widths of 8, 12, 16, 24, and 32 bits
are listed. The y-axis shows one minus the SOD so that a perfect
accuracy will result in a value of 1.

As we do not require that the results be 100% correct (90% or
so is likely acceptable), we see that a good cache for both
benchmark suites can be very small. By varying the frequency
counter width, we are able to determine the smallest possible cache
necessary to give good results, because each cache entry only
contains one counter. The best cache configuration for Powerstone
is a 2-way 16-entry cache with a frequency width of 16 bits, and the
best cache configuration for MediaBench is a 2-way 32-entry cache
with a frequency width of 24 bits. Overall, we conclude that the best
overall cache configuration is a 2-way 32-entry cache with a
frequency width of 24 bits. We will refer to this cache configuration
as the best cache configuration. The best cache configuration is the
smallest cache size that gives good results for both benchmarks
suites. The 2-way/32-entry/24-bit cache yields accuracies near 95%
and 90% for Powerstone and MediaBench benchmarks suites,
respectively.

Figure 3 also shows that the Powerstone benchmarks tend to
perform better with smaller cache configurations than does
MediaBench. Thus, larger examples could require a larger cache.
However, we point out that the rate of increase of the necessary
cache size is low. A 16-entry cache (good for Powerstone) captures
on average only 1.2% of the instructions for each Powerstone
benchmark, while a 32-entry cache (good for MediaBench) captures
on average only 0.13% of the instructions for each MediaBench
benchmark. For even larger examples, the cache size may need to be

increased, but the cache size increase is much less than the program
size increase.

We now consider the power overhead of the frequent loop
detector. We consider the MIPS32 4Kp microprocessor core [23], a
small, low power embedded processor with a cache, having an area
of 1.7 mm2. The average power consumption for the 4Kp running at
240 MHz in 0.18-micron technology is 528 mW. The frequent loop
detection hardware with the best cache configuration consumes 142
mW for each frequent loop cache read and increment, and consumes
156 mW for each frequent loop cache write, averaged over both
benchmark suites. However, since only sbb instructions cause
updates to the frequent loop cache, cache updates only occur an
average of 4.25% of the time across all benchmarks. One saturation
operation consumes 20.7 mW of power, and saturations occur only
0.000051% of the time for the best cache configuration. Thus, the
resulting increase in average power consumption of the total system
with the frequent loop detector is only 2.4%.

The frequent loop cache controller, incrementor and additional
control/steering logic consists of 1400 gates, or an area of 0.012
mm2. Additionally, the cache has an area of 0.167 mm2 including
saturation logic. The resulting area overhead is 10.5% compared to
the reported size of the MIPS 4Kp [23]. Area actually varies greatly
depending on technology libraries, foundry, etc., and thus we expect
that actual area overheads would be much smaller (numbers for our
cache are pessimistic, while reported microprocessor areas are likely
optimistic). Nevertheless, area is becoming less constrained in
nanoscale technologies.

The power consumed by the frequent loop cache can further be
reduced using known methods to decrease cache power
consumption, such as phased lookup or pseudo set-associative
caching. Phased lookup accesses the tag arrays first, and then only
accesses the hit data way. Pseudo set-associative lookup [14]
essentially accesses one way (tag and data) first, and only accesses
the other way upon a miss. Each technique reduces dynamic power

0.50
0.60
0.70
0.80
0.90
1.00

1-
w

ay
 1

6x
8

1-
w

ay
 1

6x
12

1-
w

ay
 1

6x
16

1-
w

ay
 1

6x
24

1-
w

ay
 1

6x
32

2-
w

ay
 1

6x
8

2-
w

ay
 1

6x
12

2-
w

ay
 1

6x
16

2-
w

ay
 1

6x
24

2-
w

ay
 1

6x
32

4-
w

ay
 1

6x
8

4-
w

ay
 1

6x
12

4-
w

ay
 1

6x
16

4-
w

ay
 1

6x
24

4-
w

ay
 1

6x
32

8-
w

ay
 1

6x
8

8-
w

ay
 1

6x
12

8-
w

ay
 1

6x
16

8-
w

ay
 1

6x
24

8-
w

ay
 1

6x
32

1-
w

ay
 3

2x
8

1-
w

ay
 3

2x
12

1-
w

ay
 3

2x
16

1-
w

ay
 3

2x
24

1-
w

ay
 3

2x
32

2-
w

ay
 3

2x
8

2-
w

ay
 3

2x
12

2-
w

ay
 3

2x
16

2-
w

ay
 3

2x
24

2-
w

ay
 3

2x
32

4-
w

ay
 3

2x
8

4-
w

ay
 3

2x
12

4-
w

ay
 3

2x
16

4-
w

ay
 3

2x
24

4-
w

ay
 3

2x
32

8-
w

ay
 3

2x
8

8-
w

ay
 3

2x
12

8-
w

ay
 3

2x
16

8-
w

ay
 3

2x
24

8-
w

ay
 3

2x
32

1-
w

ay
 6

4x
8

1-
w

ay
 6

4x
12

1-
w

ay
 6

4x
16

1-
w

ay
 6

4x
24

1-
w

ay
 6

4x
32

2-
w

ay
 6

4x
8

2-
w

ay
 6

4x
12

2-
w

ay
 6

4x
16

2-
w

ay
 6

4x
24

2-
w

ay
 6

4x
32

4-
w

ay
 6

4x
8

4-
w

ay
 6

4x
12

4-
w

ay
 6

4x
16

4-
w

ay
 6

4x
24

4-
w

ay
 6

4x
32

8-
w

ay
 6

4x
8

8-
w

ay
 6

4x
12

8-
w

ay
 6

4x
16

8-
w

ay
 6

4x
24

8-
w

ay
 6

4x
32

0.50
0.60
0.70
0.80
0.90
1.00

1-
w

ay
 1

6x
8

1-
w

ay
 1

6x
12

1-
w

ay
 1

6x
16

1-
w

ay
 1

6x
24

1-
w

ay
 1

6x
32

2-
w

ay
 1

6x
8

2-
w

ay
 1

6x
12

2-
w

ay
 1

6x
16

2-
w

ay
 1

6x
24

2-
w

ay
 1

6x
32

4-
w

ay
 1

6x
8

4-
w

ay
 1

6x
12

4-
w

ay
 1

6x
16

4-
w

ay
 1

6x
24

4-
w

ay
 1

6x
32

8-
w

ay
 1

6x
8

8-
w

ay
 1

6x
12

8-
w

ay
 1

6x
16

8-
w

ay
 1

6x
24

8-
w

ay
 1

6x
32

1-
w

ay
 3

2x
8

1-
w

ay
 3

2x
12

1-
w

ay
 3

2x
16

1-
w

ay
 3

2x
24

1-
w

ay
 3

2x
32

2-
w

ay
 3

2x
8

2-
w

ay
 3

2x
12

2-
w

ay
 3

2x
16

2-
w

ay
 3

2x
24

2-
w

ay
 3

2x
32

4-
w

ay
 3

2x
8

4-
w

ay
 3

2x
12

4-
w

ay
 3

2x
16

4-
w

ay
 3

2x
24

4-
w

ay
 3

2x
32

8-
w

ay
 3

2x
8

8-
w

ay
 3

2x
12

8-
w

ay
 3

2x
16

8-
w

ay
 3

2x
24

8-
w

ay
 3

2x
32

1-
w

ay
 6

4x
8

1-
w

ay
 6

4x
12

1-
w

ay
 6

4x
16

1-
w

ay
 6

4x
24

1-
w

ay
 6

4x
32

2-
w

ay
 6

4x
8

2-
w

ay
 6

4x
12

2-
w

ay
 6

4x
16

2-
w

ay
 6

4x
24

2-
w

ay
 6

4x
32

4-
w

ay
 6

4x
8

4-
w

ay
 6

4x
12

4-
w

ay
 6

4x
16

4-
w

ay
 6

4x
24

4-
w

ay
 6

4x
32

8-
w

ay
 6

4x
8

8-
w

ay
 6

4x
12

8-
w

ay
 6

4x
16

8-
w

ay
 6

4x
24

8-
w

ay
 6

4x
32

(a)

(b)
Figure 3: Sum of differences results for (a) Powerstone and (b) MediaBench. The x-axis shows the cache

configuration with the number of ways followed by the cache size and frequency width in bits

121

by 25% to 50%, at the expense of multi-cycle lookups – not a
problem in our case since sbb’s do not occur every cycle. Thus, we
can easily reduce our 2.4% system power overhead to something
closer to 1.5%.

5. REDUCING POWER OVERHEAD VIA
FREQUENCY UPDATE COALESCING
5.1 Coalescing Methodology
The previously described method gives very good results with little
power overhead, but we can further reduce power with no loss in
accuracy. Frequently executed loops tend to iterate many times,
causing the same sbb frequency value to be incremented in the cache
many times in a row. Therefore, we can coalesce successive
increments into one addition. For example, if a frequent loop
executes 300 times in a row, the 300 cache frequency increments
can be coalesced into one cache update with the addition of 300 to
the frequency value.

We determined the potential for cache update reductions. For
each benchmark, we processed the execution trace files and
coalesced all of the sbb instructions. The results in Figure 4 shows
average cache update reductions near 80% for both benchmark
suites.

By only coalescing consecutive sbb increments, nested loops
may in some cases not benefit from coalescing, with the worst case
being a very highly iterated outer loop with an inner loop that
iterates only a few number of times, thus alternating the sbb
addresses. Coalescing could be extended to allow sbb addresses to
be coalesced with, for instance, any of the last N sbb addresses seen,
where N could be 2, 3, etc. We processed the trace files again
allowing for sbb addresses to be coalesced with different ranges of
previously seen sbb addresses. However, we found that extended
coalescing did not improve significantly on the already 80% savings
achieved by consecutive sbb address coalescing. Thus, we decided
to extend our frequent loop cache architecture to have the ability to
coalesce only consecutive sbb increments.

5.2 Coalescing Architecture
To implement the coalescing architecture, we added only a small
amount of hardware to the original frequent loop detection

architecture. The new freq
coalescing hardware is show
we added two sets of regis
and coal freq) and the hold
We also added an incremen
done in the coalescing regi
sbb address matches the pr
of steering logic. We re
connected to the frequent lo
adder to perform variable si
the cache. We also modifie
drive the new hardware.

The coalescing hardwa
sbb, the current address is
register. If there is a match
tally this execution. If there
in the coalescing registers a
the new sbb address is writt
the frequent loop cache is t
holding registers. Cache hit
as they were in the frequ
Furthermore, saturations in
right shift by one in both
currently stored in the frequ

5.3 Coalescing Res
The experimental setup for
coalescing is the same a
coalescing. We modeled
synthesizable VHDL, result
2300 gates or an area of 0.0
and arithmetic units are inc
cache itself remains the sam
coalescing. The cache with
increase to the area overhead

A power savings of 98
instead of doing one cach
savings being 97.5% and
frequency size. Thus, the
insignificant compared to a

To see total system pow
determine the new power
using the MIPS system des

Figure 5: Frequent loop d
branch coalescing. Addit

have load and

Figure 3: Percent reduction in cache updates due to the coalescing
of short backwards branch increments for Powerstone and

MediaBench benchmarks.

M

ic
ro

pr
oc

es
so

r

Frequent Loop
Cache

Frequent Loop
Cache

Controller

add

rd/wr

addr

data data

To L1 Cache

rd
addr

sbb

coal
coa

=
equal?

data

++

saturation

0%

20%

40%

60%

80%

100%

ad
pc

m bl
it

co
m

pr
es

s
cr

c
de

s
en

gi
ne fir

g3
fa

x
jp

eg
su

m
m

in
uc

bq
so

rt
v4

2
P

S
 a

vg
ep

ic
g7

21
jp

eg
de

co
de

m
pe

gd
ec

od
e

ra
w

ca
ud

io
M

B
 a

vg

Powerstone MediaBench

122

 addr
l freq

hold addr
hold freq
uent loop detection architecture with
n in Figure 5. To implement coalescing,

ters: the coalescing registers (coal addr
ing registers (hold addr and hold freq).
tor to implement the coalescing that is

sters, a comparator to see if the current
evious sbb address, and a small amount
placed the incrementor, which was
op cache in the previous design, by an
zed additions to the frequency values in
d the frequent loop cache controller to

re operates as follows. For each taken
 compared with the coalescing address
, the coalescing freq is incremented to
 is no match, the address and frequency
re moved into the holding registers and
en to the coalescing register. The data in
hen updated to reflect the values in the
s and misses are handled the same way
ent loop detector without coalescing.

the coalescing frequency register cause a
 the coalescing register and all values
ency cache.

ults
 the frequent loop cache detector with
s the setup for the design without

the additional coalescing hardware in
ing in an area overhead of approximately
20 mm2. Control/steering logic, registers
luded in the gate count. The area of the
e as the frequent loop detector without
coalescing hardware represents an 11%
 of the MIPS 4Kp.

.9% is achieved by coalescing one sbb
e update, with the lowest and highest
 99.7% respectively, depending on
 power consumed by coalescing is

cache update.
er savings by using coalescing, we must

overhead related to total system power
cribed in Section 4 and the best cache

etection architecture with backwards
ionally, registers and arithmetic units
enable signals respectively.

configuration. With the addition of the coalescing hardware, cache
updates now only occur on average 0.91% of the time across all
benchmarks. Coalescing one sbb consumes only 2.3 mW of power
and coalescing occurs on average 3.3% of the time across all
benchmarks. The resulting increase in average power consumption
of the total system with the frequent loop detector with coalescing is
now reduced to a mere 0.53%, i.e., less than 1% power overhead.

Along with the benefit of reduced power consumption, the
coalescing hardware still preserves the fidelity of the results. Since
no instruction executions are lost, only coalesced, the accuracy of
the SOD results for each cache configuration is identical to those
achieved with the frequent loop detector without coalescing.

6. SAMPLING FOR FURTHER REDUCED
POWER OVERHEAD
In conjunction with coalescing, sbb instruction sampling can also be
used to further reduce the power overhead, at the expense of some
accuracy. Instead of tallying every sbb instruction executed, only
sbbs that occur at fixed sampling intervals will be included in the
frequency counts. This method does not require interrupting of the
microprocessor, as previous sampling methods required. The
frequent loop cache controller will only tally sbbs that occur on the
sampling interval – such sampling is easily implemented using a
small (e.g., 6-bit) counter.

To see the impact of sbb instruction sampling on the accuracy of
the results, we simulated the best cache configuration for sampling
intervals of 1, 5, 25 and 50 sbb instructions. The results can be seen
in Figure 6 for each benchmark. For all Powerstone benchmarks
(except jpeg), the average trend is the degradation of accuracy as the
sampling rate gets larger. On average for the Powerstone benchmark
suite, 5% of accuracy is lost when going from a sampling interval of
1 to 50. However, for the MediaBench benchmark suite, the average
trend is for the accuracy of the results to improve by approximately
2% with a sampling rate of 50. The reason for the improvement in
accuracy is because sampling causes a decrease in saturations. For
MediaBench, saturations cause more information to be lost than
sampling does.

At a sampling rate of 50, the cache updates and coalesces
decrease even further to rates of 0.03% and 0.06% respectively with
no saturations. Coalescing plus sampling (at a rate of 50) reduces the

average system power overhead to a mere 0.02% (0.05% without
coalescing).

7. EXAMPLE USE: WARP PROCESSING
The frequent loop detector described in this paper can be used in a
variety of situations. The detector has been successfully
incorporated into a novel prototype system-on-a-chip architecture
performing what is presently known as a warp processor
[19][20][26], also developed at the University of California,
Riverside. The architecture consists of microprocessors coupled
with field-programmable gate arrays (FPGAs), along with a single
dynamic partitioning module that itself contains a lean
microprocessor. The dynamic partitioning module monitors the
software executing on each regular microprocessor (one
microprocessor at a time), detects the critical software kernels, and
automatically remaps those kernels to an FPGA coprocessor. Such
remapping typically speeds up a kernel by a factor of 10 or more.

The warp processor architecture designers successfully
incorporated our frequent loop detector into their architecture and
use that detector to find the critical kernels. Overall application
speedups obtained by remapping of those kernels from a 75 MHz
ARM to FPGA are presently between 2 and 3, but substantially
faster speedups are projected as more aggressive transformations
(e.g., loop unrolling, loop pipelining) and more efficient FPGA
fabrics are developed. For highly parallel examples, estimated
speedups of greater than 10 can be achieved when performing
aggressive optimizations.

The frequent loop detector is presently being incorporated into
another project’s architecture (a joint project between the University
of California, Riverside and the University of California, Irvine), in
which a prototype platform SOC is used to help speed up desktop
CAD algorithms. The detector will be incorporated onto the
platform, with the results fed back to desktop tools used to obtain
profiles and to guide hardware/software partitioning, cache
configuration, and other algorithms.

8. CONCLUSIONS
We introduced a small, power efficient architecture for accurately
and non-intrusively detecting the most frequent loops of an
executing program, while accurately providing the relative

Figure 6: Sum of differences compared to the perfect loop frequencies for the best cache, a 2-way set-associative 32 entry cache with a
frequency width of 24 bits, for Powerstone and MediaBench benchmarks with short backwards branch sampling intervals of 1, 5, 25 and

50 instructions.

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

ad
pc

m bli
t

co
mpre

ss crc de
s

en
gin

e fir
g3

fax jpe
g

su
mmin

uc
bq

so
rt v4

2
AVG

ep
ic

g7
21

jpe
gd

ec
od

e

mpe
gd

ec
od

e

raw
ca

ud
io

AVG

1

5

25

50

Powerstone MediaBench

123

frequencies of those loops. We displayed the effectiveness of the
architecture using numerous benchmarks. The architecture uses a 2-
way set-associative 32-entry cache with each entry storing a 24-bit
frequency counter. We show that power overhead of our loop
detector is only 1-2% compared to a 32-bit embedded processor,
and is easily reducible to well below 0.1% using simple coalescing
and sampling methods. Future work involves extending the design
to find critical subroutines as well as critical loops.

9. ACKNOWLEDGEMENTS
This work was supported in part by the U.S. National Science
Foundation (grants CCR-0203829 and CCR-9876006) and a
Department of Education GAANN fellowship.

10. REFERENCES
[1] Anderson, J., Berc, L.M., Dean, J., Ghemawat, S., Henzinger,

M.R., Leung, S.T.A., Sites, R.L., Vandevoorde, M.T.,
Waldspurger, C.A., Weihl, W.E. Continuous profiling: where
have all the cycles gone? 16th ACM Symp. of Operating Systems
Design, 1997.

[2] Artisan, http://www.artisan.com.
[3] Bala, V., Duesterwald, E., Banerjia. Dynamo: a transparent

dynamic optimization system. Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implemenation, 2000.

[4] Bellas, N., et al. Energy and performance improvements in
microprocessor design using a loop cache. ICCD, pp. 378-383,
1999.

[5] Burger, D., Austin, T., Bennet, S. Evaluating future
microprocessors: the simplescalar toolset. University of
Wisconsin-Madison. Computer Science Department Tech.
Report CS-TR-1308, July 2000.

[6] Calder, B., Feller, P., Eustace, A. Value profiling. MICRO
pp. 259-267, 1997.

[7] Cmelik, R., SpixTools – introduction and user’s manual,
Sun Microsystems Laboratories, Inc. Technical Report SMLI
TR 93-6, 2/93.

[8] Dean, J., Hicks, J., Waldspurger, C.A., Weihl, W.E., Chrysos,
G. ProfileMe: Hardware support for instruction level profiling on
out-of-order processors, MICRO 1997.

[9] Gordon-Ross, A., Cotterell, S., Vahid, F. Exploiting fixed
programs in embedded systems: a loop cache example. IEEE
Computer Architecture Letters, Vol 1, January 2002.

[10] Govindarajan, S.C., Ramaswamy, G., Mehendale, M. Area and
power reduction of embedded DSP systems using instruction
compression and re-configurable encoding. International
Conference on Computer Aided Design, 2001.

[11] Grahm, S.L., Kessler, P.B., McKusick, M.K. Gprof: a call
graph execution profiler. SIGPLAN Symp. on Compiler
Construction, 1982.

[12] IEEE, IEEE 1149.1 Standard Test Access Port and Boundary-
Scan Architecture, http://standards .ieee.org, 2001.

[13] Ishihara, Y., Yasuura, H. A power reduction technique with
object code merging for application specific embedded
processors. Design Automation and Test in Europe, March
2000.

[14] Hennessy, J.L. and Patterson, D.A. Computer architecture:
a quantitative approach. Morgan Kaufmann, 1990.

[15] Kiefendorff, K.. Transistor Budgets Go Ballistic. Microprocessor
Report, Volume 12, Number 10, August 1998, pp. 34-43.

[16] Klaiber, A. The technology behind crusoe processors. Transmeta
Technical Brief. January 2000.

[17] Lee, C., Potkonjak, M., Mangione-Smith, W.H. MediaBench:
a tool for evaluating and synthesizing multimedia and
communication systems. Proc 30th Annual International
Symposium on Microarchitecture, Dec 1997.

[18] Lee, L.H., Moyer, B., Arends, J. Instruction fetch energy
reduction using loop caches for embedded applications with
small tight loops. International Symposium On Low Power
Electronics and Design, 1999.

[19] Lysecky, R, Vahid, F. A codesigned on-chip logic minimizer.
First IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis
(CODES+ISSS), 2003.

[20] Lysecky, R., Vahid, F. On-chip logic minimization. Proceedings
of the 40th ACM/IEEE Conference on Design Automation
(DAC), 2003.

[21] Malik, A., Moyer, W., Cermak, D. A low power unified cache
architecture providing power and performance flexibility.
ISLPED, 2000.

[22] Merten, M.C., Trick, A. R., George, C.N., Gyllenhaal, J., Hwu,
W.W. A hardware-driven profiling scheme for identifying
program hot spots to support runtime optimization. ISCA 1999.

[23] MIPS Technologies,
http://www.mips.com/content/Products/Cores/32-
BitCores/MIPS324KFamily/ProductCatalog/P_MIPS324KFamil
y/productBrief

[24] Pettis, K., Hansen, R.C. Profile guided code positioning. ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), June 1990.

[25] Scott, J., Lee, L.H., Chin, A., Arends, J., Moyer, W. Designing
the M*CORE M3 CPU architecture. IEEE International
Conference on Computer Design (ICCD), 1999.

[26] Stitt, G., Lysecky, R., Vahid, F. Dyanmic hardware/software
partitioning: a first approach. Proceedings of the 40th ACM/IEEE
Conference on Design Automation (DAC), 2003.

[27] Suresh, D.C., Najjar, W.A., Vahid, F., Villarreal, J.R., Stitt, G.
Profiling tools for hardware/software partitioning of embedded
applications. Languages, Compilers and Tools for Embedded
Systems (LCTES), 2003, pp. 189-198.

[28] Synopsys Inc., http://www.synopsys.com.
[29] Tubella, J., Gonzalez, A. Control speculation in multithreaded

processors through dynamic loop detection. In Proceedings of
the Fourth International Symposium On High Performance
Computer Architecture (HPCA), 1998.

[30] Vtune Environment, Intel Corp., http://developer.intel.com/vtune
[31] Yang, J., Gupta, Rajiv. Energy efficient frequent value data cache

design. MICRO 2002.
[32] Zagha, M., Larson, B., Turner, S., Itzkowitz, M. Performance

analysis using the MIPS R10000 performance counters.
Supercomputing, Nov. 1996.

[33] Zhang, X., et al. System support for automatic profiling and
optimizations. Proceedings of the 16th Symposium on Operating
System Principles, 1997.

124

