
A Way-Halting Cache for Low-Energy High-Performance Systems
Chuanjun Zhang*, Frank Vahid**, Jun Yang, and Walid Najjar

*Department of Electrical Engineering, Department of Computer Science and Engineering
University of California, Riverside

{chzhang, vahid, junyang,najjar@cs.ucr.edu}
**Also with the Center for Embedded Computer Systems, UC Irvine

Abstract: We have designed a low power four-way set-
associative cache that stores the four lowest-order bits of all way’s
tags into a fully associative memory, which we call the halt tag
array. The comparison of the halt tag array with the desired tag
occurs concurrently with the address decoding that determines
which tag and data ways to read from. The halt tag array pre-
determines most tags that cannot match due to their low-order
four bits mismatching. Further accesses to ways with known
mismatching tags are then halted, thus saving power. Our halt
tag array has the additional feature of using static logic only,
rather than dynamic logic used in highly-associative caches,
making our cache consumes even less power. Our result shows
55% savings of memory access related energy over a conventional
four-way set-associative cache. We show nearly 2x energy savings
compared with highly associative caches, while imposing no
performance overhead and only 2% cache area overhead.

I. INTRODUCTION
Caches may consume nearly 50% of a microprocessor’s
power [9][12]. Cache designers, for both high-end and
embedded processors, must compromise between
performance, cost, size, and power/energy dissipation.

In this paper, we introduce a new cache design, which we
call a way-halting cache that reduces the cache’s internal
activities to access nearly the ideal minimum tag and data
ways without any performance overhead – neither in the
cache access time nor in the hit rate. Our cache is four-way
set-associative, though the method can be applied to an
arbitrary set associativity. We divide each of the four tag
arrays into two sub-arrays: the first sub-array (the halt tag
array) holds only the low-order 4 bits of each tag and the
other sub-array (the main tag array) holds the remaining bits
of each tag. A way-halting cache checks all the (four-bit)
tags in the halt tag array in parallel with address index
decoding, in contrast to traditional approaches that only
check the tags in the cache set specified by the decoded
address index. In a way-halting cache, the decoded index
activates only the main tag array and data arrays of ways that
have not been predetermined by the halt tag array check to be
a mismatch – predetermined mismatches effectively halt the
access to a way’s main tag array and data array. Note that
way-halting does not impact the hit rate, as the hit rate is
identical to that of a four-way cache – we’ve merely caused
early terminations of accesses to ways that are pre-
determined to be misses. Furthermore, through careful

This work was supported by the National Science Foundation (CCR-
0203829) and by the Semiconductor Research Corporation
Manuscript submitted: 21 Aug. 2003. Manuscript accepted: 23 Sept. 2003.
Final manuscript received: 30. Sept. 2003.

design, we can design the halt tag array to guarantee that the
access and comparisons of the halt tag array do not extend
the cache’s critical path. We will show that a way-halting
cache comes very close to halting three ways on a hit (and
hence accessing only one full tag and data way), and to
halting all ways on a miss (and hence accessing no full tag or
data ways) – both approaching the ideal minimums of cache
access.

Our way-halting cache uses a fully-associative memory
for the four-bit-wide halt tag array. We took special care to
design that memory using static circuits for the ease of
implementation, in contrast to the dynamic circuits used in
the content-addressable memories (CAMs) found in some
modern highly associative cache architectures of embedded
processors. Fortunately, address locality found in
applications means that the static circuit inputs do not switch
much. Since CMOS power consumption comes mostly from
switching, our fully associative halt tag array memory
consumes very little power.

 A closely-related work is the adaptive serial-parallel
highly-associative cache [5] that reduces tag access power by
checking the least four significant tag bits of each tag (stored
in CAMs using dynamic logic) in the first cycle, and
checking the remaining bits if the first four match in the
second cycle. This design prolongs cache access time
resulting 25% slowdown as reported in [5]. A way-halting
cache (which was developed independently), in contrast, has
no performance overhead, and uses only static logic.

II. WAY-HALTING CACHE ARCHITECTURE

A. Base architecture
Our way-halting cache architecture is shown in Figure 1. We

Figure 1: Way-halting four-way set-associative cache architecture.
Four bits of each tag is stored in a separate halt tag array for each
way. The first inverter of the word line driver is replaced by a
NAND gate.

decoder
index

H
alt tag array

H
alt tag array

tag’ data tag’ data

= =

mux and output driver

tag

INV

NAND

SA SA SA SA
tag

tag tag

utilize a four-way set-associative cache as our base
architecture, since four-way yields a sufficiently good hit rate
for most applications. We use an 8 Kbyte total cache size and
a 32-byte line size, though our approach can be applied
straightforwardly to caches with other configurations. For
such a cache, a memory address will be divided into 6 index
bits to determine the set, 21 tag bits to determine a match,
and 5 offset bits to extract the appropriate bytes from a line.
The index bits from a desired address are fed into the
decoder. One decoder output will become high, and is
strengthened by a word line driver consisting of a pair of
cascaded inverters, activating four cache lines of the one
cache set. Four tag and data arrays are thus read out
simultaneously through the sense amplifiers. Four
comparators compare the desired address tag with the tags
read from the tag array to see which way (if any) is a hit. The
data of the hit way is sent to microprocessor through the mux
and output driver.

B. Main idea – early detection of misses
Given a four-way set-associative cache, four tags are
checked for each cache access. At most one of those tags
may match, with the other three being mismatches. We
observed that usually the mismatches occur in the low order
tag bits because of the spatial locality of access. Therefore, if
we can somehow check the low-order bits of a tag early, we
can detect most misses early. Consequently, we can
terminate the access to the full 17 bits of tag as well as to the
data array banks before they consume power.

C. Basic architecture
To enable early detection of misses, we store the low-order 4
bits of each tag in a separate 4-bit-wide memory. We call this
memory the halt tag array (see Figure 1). We call the
remaining 17-bit-wide tag array, shown as tag in the figure,
the main tag array. In a conventional cache, the index of the
desired address is first decoded. Then the resulting decoder
output line activates the read of the appropriate tags from the
tag arrays. The tags are next compared with the desired tag to
determine a hit or a miss. Decoding takes some time, during
which we have the opportunity to check the halt tag array
without increasing the tag path delay. Since the address has
not been decoded yet, we do not know which tag in the halt
tag array to read and compare – we therefore compare all the
halt tags with the four bits of the desired address’ tag. We
accomplish this by implementing the halt tag array as a fully-
associative memory, which we point out is only 4 bits wide
(and 64 rows long), making such a memory feasible in terms
of size and power.

In a conventional cache, the address decoder would assert
a single output line high, and that line would be strengthened
by the word line driver enabling reading the appropriate row
from the tag and data arrays. In our way-halting cache, that
output line should be ANDed by the results of the halt tag
array comparison for that row. In other words, only if the
low-order four bits match should the cache continue to
access the main tag array and the data array; if the halt tag
was a mismatch, the output line should not go high.

Adding an AND gate after the double inverters would
lengthen the critical path. Instead, we can achieve the same
logic by replacing the first inverter by a NAND gate as
shown in Figure 1; the second inverter makes the total logic
an AND. A NAND gate would normally be slower than an
inverter. However, the first inverter of the cascaded inverters
is typically small – the second inverter is instead
appropriately sized larger to drive the signal. Thus, when
replacing the first inverter by a NAND gate, we can increase
the size of the NAND gate so that the gate’s switching speed
is the same as the original inverter. The identical technique
of replacing the first inverter by a resized NAND gate was
used in the way-concatenate cache in [13], with detailed
layout and timing analysis results showing no lengthening of
the critical path.

III. DESIGNING THE HALT TAG ARRAY
The most important component in a way-halting cache is the
halt tag array. It must be designed not only to be faster than
the index decoder, but also to consume low enough energy so
that we obtain overall energy savings. The two most
important considerations in the design of the halt tag array
are: (1) What bit width should the array be, and (2) how
should the comparisons be implemented in the fully-
associative memory.

A. Bit width of the halt tag array
We examined the impact of the halt tag array’s bit width on
the number of ways halted. We wanted to find the minimum
number of bits that halts nearly three of the four ways per hit,
or conversely stated, activates only one of the four ways per
hit. We tried bit widths varying from 2 to 4. We simulated a
variety of benchmarks for an 8 Kbyte, 32-byte line size cache
using SimpleScalar [2]. The benchmarks included programs
from Motorola’s Powerstone suite [9] MediaBench [8] and
eleven programs from Spec2000 [6] .We used the reference
input vectors with each benchmark as program stimuli. For
Spec 2000 benchmarks, we fast forwarded the first one
billion instructions to warm up the caches and simulated the
next 500M instructions.

0

1

2
pj

pe
g

pa
dp

cm

au
to

2

bc
nt

bi
lv

bi
na

ry bl
it

br
ev cr

c

uc
bq

so
rt fir

g3
fa

x

v4
2

A
ve

_p
s

g7
21

jp
eg

m
pe

g2

ad
pc

m

ep
ic

pe
gw

it

A
ve

_m
d

gc
c ar
t

m
cf

pa
rs

er vp
r

bz
ip

gz
ip

m
es

a

eq
ua

ke

am
m

p

vo
te

x

A
ve

_s
p

2 bits 3 bits 4 bits ideal

Figure 2:Average number of ways of instruction cache activated when 2-bit, 3-bit, and 4-bit are compared in parallel with address decoder.
Ave_ps, Ave_md, and Ave_sp stand for average of Powerstone, Mediabench, and Spec 2000 respectively.

Powerstone Mediabench Spec2000

Energy will be saved if the number of ways, both tag
and data, activated are reduced. We collected the average
number of cache ways activated using a halt tag array width
of 2, 3 and 4 bits. Results are shown in Figure 2 for
instruction cache (results for data cache are not shown due to
space limits) with averages for each benchmark suite circled.
We see that a bit width of 4 is very close to the ideal
situation of only accessing one way per hit. We also
experimented with 16 Kbyte and 32 Kbyte caches and
obtained similar results.

B. Halt tag array design
Each halt tag array is a 64x4 fully associative memory. If we
do not design that array properly, it may consume too much
energy and hence mitigate savings obtained from halting
ways.

We originally designed the halt tag array using traditional
10-transistor CAM cells, utilizing dynamic circuit
techniques, as found in highly-associative CAM-tag based
caches. We laid out the halt tag array, as well as the rest of
the cache including the main tag array and the data array
SRAM, in a TSMC 0.18 micron CMOS technology obtained
through MOSIS [10]. We utilized several low power SRAM
design techniques such as pulse word line control to limit the
bit line swing, and word line segmentation such that only one
word (32 bits) is read [1] on each read access.

 However, we found that designing the halt tag array as a
fully-associative memory built using static circuit (SRAM-
based) techniques resulted in a lower energy per access.
Initially, one might be surprised at this statement, because
static circuits typically consume more power than dynamic
circuits. However, spatial locality works in our favor here. In
particular, a static circuit only consumes power (dynamic
power, that is) when its inputs change. Spatial locality
implies that the halt tag address is usually the same from one
access to another, in which case no dynamic power is
consumed in the halt tag array. We measured the percentage
of back-to-back changes in the dynamic halt tag address
streams and plotted the results in Figure 3. Furthermore, even
when there is a change in the address, only a few static
comparators’ output bits change, keeping the dynamic power
low for our static circuit comparator. Another advantage of
using static circuit design is that the SRAM cell and the logic
tools are available off-the-shelf. Note that data cache tags
change more frequently due to less spatial locality than
instruction cache, but are still low.

Our halt tag array design is shown in Figure 4. One word
of the array is depicted, which consists of four standard
SRAM cells (two are shown), and a static comparator.

The static comparator component must execute as fast as
the address decoder component to avoid lengthening the
critical path. Both components have two levels of gates. We
designed our XOR and NOR gates of the comparator with
big enough transistors to be as fast as the address decoder.
The size of one static comparator is 3 µm × 16µm. The total
area overhead is less than 2% of the total cache area.

IV. EXPERIMENTS
In this section, we show the experiments result and compare
the energy consumption of the way-halting cache with
previously proposed low-power cache architectures,
including CAM-based highly associative, direct-mapped,
way prediction, phased, and pseudo-set-associative caches.

A. Energy evaluation
We compute the overall energy consumption taking into
account the off-chip memory and the processor core. The
energy model is given in the following equations:
1. overall_energy = no_of_hits * hit_energy + no_of_misses *

miss_energy
2. miss_energy = offchip_access_energy + uP_stall_energy +

cache_block_fill_energy

In the first equation, the no_of_hits and no_of_misses are
obtained by running SimpleScalar with different cache
configurations. The hit_energy is computed through
simulation of circuits extracted from our layout of SRAM
cache using Cadence [3].

Determining the miss_energy in the second equation is
more involved. The offchip_access_energy value is the
energy for accessing off-chip memory and the
uP_stall_energy is the energy for the microprocessor when it

0%
20%
40%
60%
80%

100%

pj
pe

g

pa
dp

cm

au
to

2

bc
nt

bi
lv

bi
na

ry bl
it

br
ev cr
c

us
or

t fir

g3
fa

x

v4
2

A
ve

_p
s

g7
21

jp
eg

m
pe

g2

ad
pc

m

ep
ic

pe
gw

it

A
ve

_m
d

gc
c ar
t

m
cf

pa
rs

er vp
r

bz
ip

gz
ip

m
es

a

eq
ua

ke

am
m

p

vo
te

x

A
ve

_s
p

D$ I$

Figure 3:Tag address change frequency of data and instruction cache.

XOR

NOR

sram

tag

sram_inv output

tag_inv

tag

Figure 4: Design of a fully associative memory for the halt tag array,
based on a static circuit only. The sixteen input static comparator is
composed of four XOR gates and one NOR gate. Eight inputs come
from the SRAM cells that store the halt tag, while the other eight
inputs come from the desired address’ least four-tag bits.

XOR

Powerstone Mediabench Spec2000

is stalled due to cache misses. The cache_block_fill_energy
is the energy to fill the cache with a new block. The first two
terms are highly dependent on the memory model and
microprocessor model used in a system. Results from one
real system may be entirely different from another.
Therefore, we choose instead to create a “realistic” system,
and then to vary the configurations to see the impacts on
energy distribution. We examined all three terms in equation
2 for typical commercial memories and microprocessors. We
found that miss_energy is 50 to 200 times the hit_energy.
Thus, we remodeled the miss_energy using the following
equation:

3. miss_energy = k_miss_energy * hit_energy

We will consider the situations where k_miss_energy is equal
to 50 and 200 respectively.

B. Comparisons with other low power cache architectures
Figure 5 compares the energy dissipation of way-halting with
CAM-based highly-associative [14], direct mapped, way
predicting [11], phased [7], and pseudo-set-associative
caches [4], using k_miss_energy = 50. The energy is
normalized with respect to a conventional four-way set-
associative cache equaling 100%. We see that a way-halting
cache is most energy efficient. Although the energy
difference compared with some of the other cache designs
may seem small, bear in mind that these savings come with
no performance penalty compared to a four-way cache.

We also generated the data for k_miss_energy = 200.
Way-halting still dissipated the least energy on average,
although highly-associative was more competitive due to the
low miss rate of the high associativity – a high energy
penalty (200) for off-chip access means that the lower miss
rate due to high-associativity saves more energy from off-
chip memory accesses than the case of just a high penalty of
50.

V. CONCLUSION
A way-halting cache is able to save, across three different
benchmark suites, an average 45% to 60% of the energy of a
conventional four-way set-associative cache, with only 2%
area overhead, and no performance penalty – neither more
cycles nor longer critical path. That energy savings is better
than previous low-power cache approaches, and although the
energy savings are only slightly better than some of those
approaches, all those other approaches introduce
performance overhead. Way-halting also saves energy over a
highly-associative cache, adopting only static circuits that

can be designed using standard memory compilers and tools.
We designed the way-halting cache using a combination of
architectural and layout methods. A key feature of our design
is the use of a small fully-associative memory for the halt tag
array based on a static circuit rather than a dynamic one,
saving power because of the tendency of address tags to stay
the same.

REFERENCES
[1] B. Amrutur and M. Horowitz, “A replica technique for word

line and sense control in low-power SRAM’s,” IEEE Journal
of Solid-State Circuits, vol. 33, no. 8, pp.1208-1218, Aug.1998

[2] D. Burger and T.M. Austin, “The SimpleScalar Tool Set,
Version 2.0,” Univ. of Wisconsin-Madison Computer Sciences
Dept. Technical Report #1342, June 1997.

[3] Cadence, http://www.cadence.com
[4] B.Calder, D. Grunwall, and J. Emer, “Predictive Sequential

Associative Cache,” Int. Symp. on High Performance
Computer Architecture, Feb. 1996.

[5] A. Efthymiou and J.D. Garside, “An Adaptive Serial-Parallel
CAM Architecture for Low-Power Cache Blocks,”
Proceedings of the Int. Symp. on Low Power Electronics and
Design, 2002.

[6] http://www.specbench.org/osg/cpu2000/
[7] A. Hasegawa, I.Kawasaki, K.Yamada, S.Yoshioka, S.

Kawasaki, and P. Biswas, “SH3: High code density, low
power,” IEEE Micro, Dec. 1995.

[8] C. Lee, M. Potkonjak and W. Mangione-Smith, “MediaBench:
A Tool for Evaluating and Synthesizing Multimedia and
Communications Systems,” Int. Symp. on Microarchitecture,
1997.

[9] A. Malik, B. Moyer and D. Cermak, “A Low Power Unified
Cache Architecture Providing Power and Performance
Flexibility,” Int. Symp. on Low Power Electronics and Design,
June 2000.

[10] The MOSIS Service, http://www.mosis.org
[11] M. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi, and K.

Roy, “Reducing Set-Associative Cache Energy via Way-
Prediction and Selective Direct-Mapping,” Int. Symp. on
Microarchitecture, 2001.

[12] S. Segars, “Low power design techniques for
microprocessors,” Int. Solid-State Circuits Conf. Tutorial,
2001

[13] C. Zhang, F. Vahid, and W. Najjar, “A Highly-Configurable
Cache Architecture for Embedded Systems,” Int. Symp. on
Computer Architecture, 2003

[14] M. Zhang and K. Asanović, “Highly-Associative Caches for
Low-Power Processors,” Kool Chips Workshop, in
conjunction with Int. Symp. On Microarchitecture, Dec. 2000.

170%

0%

50%

100%

150%
pj

pe
g

pa
dp

cm

au
to

2

bc
nt

bi
lv

bi
na

ry bl
it

br
ev cr
c

uc
bq

so
rt fir

g3
fa

x

v4
2

A
ve

_p
s

g7
21

jp
eg

m
pe

g2

ad
pc

m

ep
ic

pe
gw

it

A
ve

_m
d

gc
c ar
t

m
cf

pa
rs

er vp
r

bz
ip

gz
ip

m
es

a

eq
ua

ke

am
m

p

vo
te

x

A
ve

_s
p

way halting highly asso. way prediction direct mapped phase pseudo

Figure 5:Energy for various cache designs, for Powerstone benchmarks, normalized to a conventional 4-way cache.

Powerstone Mediabench Spec2000

