SPECIFICATION AND DESIGN
OF
EMBEDDED SYSTEMS

Daniel D. Gajski
Frank Vahid
Sanjiv Narayan
Jie Gong

University of California at Irvine

1994

Contents

Preface

Acknowledgements

1 Imntroduction

1.1
1.2
1.3
1.4
1.5

Design Representation
Levels of abstraction
Current design methodologies
System-level methodology L.

System specification and design L.

2 Models and Architectures

2.1
2.2
2.3

2.4

25

Introduction Lo
Model taxonomy
State-oriented modelso
2.3.1 Finite-state machine
232 Petrimet.
2.3.3 Hierarchical concurrent finite-state machine
Activity-oriented models oL L
2.4.1 Dataflowgraph
2.4.2 Flowcharts

Structure-oriented models L.

iii

xiii

xvil

iv

SPECIFICATION AND DESIGN OF EMBEDDED SYSTEMS

2.5.1 Component-connectivity diagram 32
2.6 Data-oriented models 0oL 34
2.6.1 Entity-relationship diagram 34
2.6.2 Jackson’s diagramo 35
2.7 Heterogeneous models o000 36
2.7.1 Control/data flow graph L. 36
2.7.2 Structure chart 39
2.7.3 Programming language paradigm 40
2.7.4 Object-oriented model 42
2.7.5 Program-state machine 43
2.7.6 Queueing modelo 45
2.8 Architecture taxonomyo 47
2.9 Application-specific architectures L. 47
2.9.1 Controller architecture 47
2.9.2 Datapath architecture 48
2.9.3 Finite-state machine with datapath 50
2.10 Processorso 51
2.10.1 Complex instruction set computer 51
2.10.2 Reduced instruction set computer 53
2.10.3 Vector machine L. 55
2.10.4 Very long instruction word computer 56
2.11 Parallel processorso 58
2.12 Conclusion 60
2.13 Exercises 61
Specification Languages 63
3.1 Introduction 63
3.2 Characteristics of conceptual models 65
3.2.1 Concurrency 65

3.2.2 State transitions 69

CONTENTS A

3.2.3 Hierarchy 70
3.2.4 Programming constructs 74
3.2.5 Behavioral completion 75
3.2.6 Communication L0 77
3.2.7 Synchronization 80
3.2.8 Exception handling 83
3.2.9 Non-determinism L. 83
3.210 Timing 84

3.3 Specification requirements for embedded systems 86
3.4 Survey of specification languages 88
341 VHDL 88
342 Verilog. 92
3.43 HardwareC L 93
344 CSP ... 96
3.45 Statecharts oL 97
346 SDL 100
347 Silage 101
348 Esterel o 103

3.5 SpecCharts 104
3.5.1 Language description 104
3.5.2 FEmbedded system specification in SpecCharts 108
3.5.3 Equivalent graphical version 110
3.5.4 Possible language extensions 111

3.6 Conclusion and future directions 113
3.7 Exercises 114
4 A Specification Example 117
4.1 Imtroduction 117
4.2 Telephone answering machine 118

4.3 Specification capture with SpecCharts 121

vi

SPECIFICATION AND DESIGN OF EMBEDDED SYSTEMS

4.4 Sample testbencho 129
4.5 Advantages of executable specification 132
4.6 Strengths of the PSM model 133
46.1 Hierarchy 134
4.6.2 State transitions Lo 134
4.6.3 Programming constructs 134
4.6.4 Concurrencyo 135
4.6.5 Exception handling 135
4.6.6 Completion Lo o 135
4.6.7 Equivalence of state decomposition and code 136
4.7 Experiments 136
4.7.1 Specification capture 136
4.7.2 Specification comprehension 137
4.7.3 Specification quantification 138
474 Designquality 140
48 Conclusion 140
4.9 Exercises 142
Translation to VHDL 145
5.1 Introduction 145
5.2 State-transitions 149
5.3 Message-passing communication. L. 152
5.3.1 Blocking message passing 152
5.3.2 Non-blocking message passing 154
5.4 Concurrency 156
5.4.1 Dataflow 156
5.4.2 Forko 159
5.5 Exception handlingo 0oL 161
5.6 Program-state machines totasks 0oL 164

5.6.1 Overview 164

CONTENTS vii

5.6.2 Algorithm 165
5.6.3 Time-shift L 167
5.6.4 Synthesis L 168

5.7 Conclusion and future directions 168
5.8 Exercises L 169
6 System Partitioning 171
6.1 Introduction o 171
6.2 Structural versus functional partitioning 172
6.2.1 Structural partitioning Lo 172
6.2.2 Functional partitioning 175

6.3 Partitioning issues Lo oo 176
6.3.1 Specification abstraction-level 177
6.3.2 Granularity oo 179
6.3.3 System-component allocation 180
6.3.4 Metrics and estimations 180
6.3.5 Objective functions and closeness functions 182
6.3.6 Partitioning algorithms 183
6.3.7 Output 184
6.3.8 Flow of control and designer interaction 185
6.3.9 Typical system configuration 186

6.4 Basic partitioning algorithms00 0oL 186
6.4.1 Random mapping 187
6.4.2 Hierarchical clustering 187
6.4.3 Multi-stage clustering 190
6.4.4 Group migrationo 191
6.45 Ratiocut L 194
6.4.6 Simulated annealing00 196
6.4.7 Genetic evolution oL 198

6.4.8 Integer linear programming 200

viii

SPECIFICATION AND DESIGN OF EMBEDDED SYSTEMS
6.5 Functional partitioning for hardware 201
6.5.1 Yorktown Silicon Compiler 201
6.5.2 BUD 205
6.5.3 Aparty 209
6.5.4 Other techniques 213
6.6 Hardware/software partitioning algorithms 214
6.6.1 Greedy algorithms 214
6.6.2 Hill-climbing algorithms 216
6.6.3 A binary constraint-search algorithm 217
6.7 Functional partitioning for systems 219
6.7.1 Vulcan o 219
6.7.2 Cosyma 221
6.7.3 SpecSyn 222
6.7.4 Other techniques L. 225
6.8 Exploring tradeoffso 0oL 225
6.9 Conclusion and future directions 227
6.10 Exercises 228
Design Quality Estimation 233
7.1 Introduction o 233
7.1.1 Accuracy versus speed L. 235
7.1.2 Fidelity of estimation 236
7.2 Quality metricso 238
7.2.1 Hardware cost metrics 238
7.2.2 Software cost metrics.o 239
7.2.3 Performance metrics 240
724 Other metrics L 246
7.3 Hardware estimation 0L oL 249
7.3.1 Hardware estimation model 249

7.3.2 Clock cycle estimation 251

CONTENTS ix

7.3.3 Control step estimation 260
7.3.4 Execution time estimation00 268
7.3.5 Communication rate estimation 272
7.3.6 Areaestimation. 274
7.3.7 Pinestimation 288

7.4 Software estimation 0L 0oL 290
7.4.1 Software estimation model 290
7.4.2 Program execution time 295
7.4.3 Program memory size 296
7.4.4 Datamemorysize 297

7.5 Estimation techniques in system-level tools 208
751 BUD o 298
7.5.2 Aparty 300
753 Vulean 301
7.5.4 SpecSyn 302

7.6 Conclusion and future directions 304
7.7 Exercises 305
8 Specification Refinement 309
8.1 Introduction Lo 309
8.2 Refining variable groupings oL 310
8.2.1 Variablefolding 310
8.2.2 Memory address translation 312

8.3 Channel refinemento 0oL 313
8.3.1 Characterizing channels and buses 314
8.3.2 Problem definition oL 315
8.3.3 Busgeneration L0 315
8.3.4 Protocol generation oL 326

8.4 Resolving access conflicts o000 330

8.4.1 Arbitrationmodels L. 330

SPECIFICATION AND DESIGN OF EMBEDDED SYSTEMS

8.4.2 Arbitration schemeso 332
8.4.3 Arbiter generation oL 333
8.5 Refining incompatible interfaces 0oL 335
8.5.1 Problem definition 337
8.5.2 Specifying communication protocols 338
8.5.3 Interface process generation 342
8.5.4 Other approaches for protocol compatibility 350
8.6 Refining hardware/software interfaces 354
8.6.1 Target architecture Lo 356
8.6.2 Variable distributiono 357
8.6.3 Interface generation 361
8.6.4 Data access refinement oo 363
8.6.5 Control access refinement 366
8.7 Conclusion and future directions 369
8.8 Exercises 370
System-Design Methodology 373
9.1 Introduction o 373
9.2 Basic concepts 374
9.3 An example design methodology 375
9.3.1 Current practice 379
9.3.2 System-level methodology 381
9.4 A generic synthesis system o000 384
9.4.1 System synthesis 387
9.4.2 ASIC synthesis 389
9.4.3 Logic and sequential synthesis 393
9.4.4 Physical design Lo 395
9.4.5 Software synthesis 395
9.4.6 System database L. 397
9.5 Conceptualization environment for system design 397

CONTENTS xi

9.6 Conclusion and future directions 402
9.7 Exercises 403
A Answering machine in English 405
B Answering machine in SpecCharts 409
Bibliography 424
Glossary 440

Index 445

xii SPECIFICATION AND DESIGN OF EMBEDDED SYSTEMS

Preface

Rationale

In the last ten years, VLSI design technology, and the CAD industry
in particular, have been very successful, enjoying an exceptional growth
that has been paralleled only by the advances in IC fabrication. Since the
design problems at the lower levels became humanly intractable and time
consuming earlier than those at higher abstraction levels, researchers and
the industry alike were forced to devote their attention first to problems
such as circuit simulation, placement, routing and floorplanning. As
these problems became more manageable, CAD tools for logic simula-
tion and synthesis were developed successfully and introduced into the
design process. As design complexities have grown and time-to-market
requirements have shrunk drastically, both industry and academia have
begun to focus on levels of design that are even higher than logic and
layout. Since these higher levels of abstraction reduce by an order of
magnitude the number of objects that a designer needs to consider, they
have allowed industry to design and manufacture complex application
specific integrated circuits (ASICs) in shorter periods of time.

Following in the footsteps of logic synthesis, behavioral synthesis has
contributed to raising the abstraction levels in the design methodology.
Behavioral synthesis, however, is used for the design of single ASICs.
These ASICs, along with standard processors and memories, are used as
components in systems whose design methodology requires even higher
levels of abstraction. A system-level methodology focuses on the speci-
fication of systems in terms of computations to be executed on abstract
data types, as well as the transformation or refinement of that specifica-
tion into a set of connected components, including compiling software for

xiii

xiv SPECIFICATION AND DESIGN OF EMBEDDED SYSTEMS

standard processors and synthesizing hardware for custom components.
To this point, however, in spite of the fact that systems have been man-
ufactured for years, industry and academia have not been sufficiently
focused on developing and formalizing a system-level methodology, even
though there is a clear need for it. In order to manage complexity and
shorten design cycles, industry has recently focused on developing a co-
herent system-level design methodology.

The main reason for emphasizing more abstract, system-level method-
ology is the fact that high-level abstractions are closer to a designer’s
usual way of thinking. It would be difficult to imagine, for example, how
a designer could specify, document and communicate a system design
by means of a circuit schematic with 100,000 gates, or a logic descrip-
tion with 100,000 Boolean expressions. The more complex the design,
the more difficult it is for the designer to comprehend its functionality
when it is specified with circuit, logic or register-level schematics. On
the other hand, when a system is described as a series of complex com-
putations that operate on abstract data types and communicate results
through abstract channels, the designer will find it much easier to specify
and verify proper functionality and to evaluate various implementations
using different technologies.

It must be acknowledged that research on system design did start
many years ago; at the time, however, it remained rather focused to
specific domains and communities. For example, the computer archi-
tecture community has considered ways of mapping computations and
algorithms to different architectures, such as systolic arrays, hypercubes,
multiprocessors, and massively parallel processors. The software engi-
neering community has been developing methods for specifying and en-
gineering software code. The CAD community has focused on system
issues such as interface synthesis, memory management, specification
capture and design exploration. However, many problems still remain
open, the most important of which are the lack of a universally accepted
theoretical framework and the lack of CAD environments that support
system design methodologies. In spite of these open problems, system
design technology has matured to the point that a book summarizing the
basic concepts and results developed so far will help students and prac-
titioners in system design. In this book, we have tried to include ideas
and results from a wide variety of research projects. However, due to the

PREFACE XV

relative youth of this field, we may have overlooked certain interesting
and useful projects; for this we apologize in advance, and hope to hear
about those projects so they may be incorporated into future editions.
Also, there are several important system-level topics that, for various
reasons, we have not been able to cover in detail here, including formal
verification, design for test, and cosimulation. Nevertheless, we believe
that a book on system specification and design will help the electronic
system design automation (ESDA) community to grow and prosper in
the future.

Audience

This book is intended for three different groups within the computer
science and engineering communities. First, it should appeal to system
designers and engineering managers, who may be interested in ASIC and
system design methodology, software-hardware codesign and design pro-
cess management. Second, this book can also be used by CAD-tool de-
velopers, who may want to use some of its concepts in existing or future
tools for specification capture, design exploration, and system model-
ing and refinement. Finally, since this book surveys the basic concepts
in system design and presents the principles of system-design method-
ologies, including software and hardware, it could also be valuable for
an advanced undergraduate or graduate course targeting students who
want to specialize in computer architecture, design automation and/or
software engineering.

Textbook Organization

This book has been organized into nine chapters that can be divided
into four parts. Chapters 1 and 2 present the basic issues in system
design and discuss various conceptual models that can be used in cap-
turing system behavior and its implementation. Chapters 3, 4, and 5
deal with the languages used for specifying system functionality, as well
as with the different issues involved in verifying a system’s functional-
ity through simulation. Chapters 6, 7, and 8 provide a survey of al-
gorithms and techniques for system partitioning, estimation and model
refinement, and Chapter 9 combines all of these topics into a consistent
design methodology, including a discussion of the general environments
for system design.

xvi SPECIFICATION AND DESIGN OF EMBEDDED SYSTEMS

Given an understanding of the basic concepts defined in Chapters 1
and 2, each chapter should be self-contained and can be read indepen-
dently. We have used the same writing style and organization in each
chapter of the book. A typical chapter includes an introductory example,
defines the basic concepts and describes the main problems to be solved.
It contains a description of several well-known algorithms or solutions to
the problems that have been posed, and explains the advantages and dis-
advantages of each approach. Fach chapter also includes a short survey
of other work in the field and some open problems.

At the end of each chapter we have included several exercises, which
are divided into three categories: homework problems, project problems
and thesis problems. The homework problems are designed to test the
reader’s understanding of the basic material in the chapter. To solve the
project problems, indicated by an asterisk, the reader will need a more
thorough understanding of the topic based on some literature research;
these problems may require several weeks of student work. The thesis
problems, indicated by a double asterisk, are open problems that could
result in an M.S. or even a Ph.D. thesis if researched thoroughly.

This book could be used in two different courses. One course, for
example, could concentrate on system specification, documentation, and
verification, omitting the algorithms in Chapter 6, 7, and 8. A sec-
ond course could emphasize design methodology and design-exploration
techniques, omitting the material on languages and simulation. In which
ever way it is used, though, we feel that this book will help to fill the
vacuum in computer science and engineering curricula where we should
be teaching system design techniques in addition to covering material on
circuit and logic design, and computer architecture.

We hope that the material selection and the writing style will ap-
proach your expectations; we welcome your suggestions and comments.

Daniel Gajski, Frank Vahid, Sanjiv Narayan, Jie Gong
Irvine, California
1994

