
Paper ID #21439

An Analysis of Common Errors Leading to Excessive Student Struggle on
Homework Problems in an Introductory Programming Course

Nabeel Alzahrani, University of California, Riverside

Nabeel Alzahrani is a computer science PhD student at the University of California, Riverside. Nabeel’s
research interests include causes of student struggle, and debugging methodologies, in introductory com-
puter programming courses.

Prof. Frank Vahid, University of California, Riverside

Frank Vahid is a Professor of Computer Science and Engineering at the Univ. of California, Riverside.
His research interests include embedded systems design, and engineering education. He is a co-founder
of zyBooks.com.

Dr. Alex Daniel Edgcomb, zyBooks

Alex Edgcomb finished his PhD in computer science at UC Riverside in 2014. Alex works in research and
development at zyBooks.com, a startup that develops interactive, web-native textbooks in STEM. Alex
has also continued working as a research specialist at UC Riverside, studying the efficacy of web-native
content for STEM education.

Prof. Roman Lysecky, University of Arizona

Roman Lysecky is an Associate Professor of Electrical and Computer Engineering at the University of
Arizona. He received his Ph.D. in Computer Science from the University of California, Riverside in 2005.
His research interests include embedded systems, runtime optimization, non-intrusive system observation
methods, data-adaptable systems, and embedded system security. He has recently coauthored multiple
textbooks, published by zyBooks, that utilize a web-native, interactive, and animated approach, which
has been shown to increase student learning and achievements.

Dr. Susan Lysecky, zyBooks

Susan received her PhD in Computer Science from the University of California, Riverside in 2006. She
served as a faculty member at the University of Arizona from 2006-2014. She has a background in design
automation and optimization for embedded systems, as well as experience in the development of accessi-
ble engineering curricula and learning technologies. She is currently the Director of Content at zyBooks,
a startup that develops highly-interactive, web-native textbooks for a variety of STEM disciplines.

c©American Society for Engineering Education, 2018

An Analysis of Common Errors Leading to Excessive Student Struggle on
Homework Problems in an Introductory Programming Course

Abstract

Students make many errors in an introductory programming course (aka CS 1). While previous
research reports common errors, some errors are normal, being corrected by students in a
reasonable amount of time, and being part of the learning process. However, some errors may
lead to frustration due to excessive struggle, which may lead to student attrition. We defined a
struggle metric using a combination of excessive time spent and excessive attempts, relative to
other students in a course and reasonable thresholds. We analyzed struggle on 78 short,
auto-graded coding homework problems for an 80-student Spring 2017 introductory C++
programming course at a research university. We found the struggle rate to be 10-15%. Our main
focus was to determine the errors that led to such struggle, and thus we manually examined the
student submissions for the 10 homework problems having the highest struggle rates. We
described the errors and potential underlying student misconceptions that seemed to lead to that
struggle. We found that most common errors belong to the following: nested loops, else-if vs.
multiple if, random range, input/output, for loop and vector, for loop and if, vector index,
negated loop expression, and boolean expressions. Having a deeper understanding of these
common errors may aid teachers and authors to help students avoid or correct such errors, thus
reducing struggle, which may reduce frustration and potential attrition.

Introduction

Frustration is a common source of attrition or dissatisfaction in introductory programming
courses [1][2], also known as CS 1 courses. A common cause of frustration is getting “stuck”,
what we call struggling, on programming tasks, wherein students spend excessive time or make
excessive attempts on a problem with little progress.

Previous work examined common errors encountered by students in introductory programming
courses [3][4][7][8][9][11]. Spohrer [3] analyzed programming errors using a cognitive science
model. Spohrer used a Goal And Plan tree to trace the root causes of errors, which defined plans
(steps/procedures) as the techniques to solve the problem, and the goals as the desired result to
achieve or accomplish. Spohrer found that once there is a mismatch between a plan and a goal,
an error occurs. Yarmish used a similar approach but added more components to a plan [4].

Other work suggests that errors occur due to inaccurate mental models about program state
[3][4][7][13][14]. Horstmann [5] presents a list of common errors when introducing C++
programming concepts and constructs. Horstmann presents common errors in each chapter,
which may help students avoid such errors. Oualline [6] devises debug examples that ask the
reader to find and correct those errors. Ginat suggests learning from student errors by building
debugging examples based on students misconceptions of object oriented programming [10].

We focus specifically on errors that lead to student struggle in a CS 1 course. A closely related
work is Cherenkova [12], who strives to find challenging errors in programming. Cherenkova's
metric is number of attempts. Our metric considers both total time and number of attempts, and
normalizes by comparing with the top 20% of students in a given class, and include reasonable
thresholds to ensure the normalizations are reasonable. We note that many errors are not
necessarily problematic. Students naturally make errors when learning new programming
constructs, and in many cases quickly notice the error, correct the error, and learn from the
experience. Problematic errors are those errors that seem to cause students to struggle, meaning
the student was spending a lot of time or making numerous attempts on a problem. Such a
situation could potentially cause the student to become frustrated, to feel out of place, or to feel
alone, etc. Thus, we sought to focus not on any errors, but specifically on errors that caused large
amounts of struggle.

In this paper, we describe our study of errors leading to struggle on auto-graded homework
problems in an introductory C++ course. We introduce the type of homework problem used in
the study. We define a quantitative metric for “struggle” and show the struggle rates across all 78
homework problems in our course of 80 students. We highlight the homework problems having
the highest struggle rates, and summarize our manual investigation of the programming errors
that seemed to lead to such struggle.

Knowing those errors may help teachers and publishers develop techniques or content that helps
students avoid such errors. As an example, we showed that adding a hint to certain homework
problems reduced struggle rates by 17%; more aggressive prevention and intervention should see
even more reductions.

To be clear, we believe some struggle is a normal part of learning to program. Our goal is to
reduce excessive struggle that goes beyond normal learning and instead may cause frustration
and ultimately attrition.

Homework problems

We used online content that had several coding homework problems per content section [15].
Each homework problem is called a coding activity (CA). Each CA has the student complete
some existing code to achieve a goal, typically only requiring about 1-10 lines of student code.

The student cannot modify the template code except in the region indicated. The student can
submit their solution, and the system automatically compiles the program and runs the program
with various test values, comparing with expected output. The student can re-attempt each
activity as many times as desired. Figure 1 shows an example CA, on the hard end of the
spectrum, requiring the student to create nested loops; many students struggled with this activity.

Figure 1 shows a sample CA, 5_3_2_Nested_loops_Print_seats, with a link “Download student
submissions”. A teacher clicks that link to get all student submissions for that CA. Table 1 shows
a tiny snapshot of that file, showing the corresponding submissions for one particular student for
CA 5_3_2_Nested_loops_Print_seats. The downloaded file has 4 columns: time of submission
(timestamp), user ID# (occluded above as 0xxxx), whether the answer is correct (Yes/No), and
the actual code submitted by the student (including whitespace).

The course was CS 1 in C++, having 80 students who were all non-computing majors, mostly in
engineering (chemical engineering, bioengineering, etc.) and science (biology, chemistry,
physics, math, etc.). The university is a research institution, and the CS department is typically
ranked around 50-70 among U.S. CS programs. The content had 78 code activities, distributed
through 9 chapters, covered in 9 weeks of a 10-week course. The chapters were:
Intro/Input/Output, Variables/Assignments, Branches, Strings/Loops1, Loops2, Functions1,
Functions2, Vectors1, and Vectors2. The CAs were due on the Sunday at the end of the week the
subject was covered in class, and worth 5% of the course grade. On average, student completion
of CAs each week was: 98%, 96%, 95%, 85%, 87%, 88%, 88%, 82%, and 74%.

Figure 1: Coding activity _3_2_Nested_loops_Print_seats, on which many students struggled

due to the need for nested loops.

Struggle rate as a metric

We desired a metric that would highlight CAs that caused students to struggle. Informally,
struggle means a student works on a problem inefficiently, using excessive time or repeated
attempts, and causing frustration. Ideally, we would measure struggle directly by observing the
student and/or asking the student, but such data is not available and hard to obtain. Instead, we
need a way to measure the struggle from the data we have, which involves every submission
(wrong or right) of every student, each submission’s date/time, and the submission’s correctness.

One struggle measure is time spent. But, some activities require more time than others, so time
alone is insufficient. Another measure is number of attempts. But, some activities may involve
students detecting and correcting simple errors, converging quickly to a correct solution. Thus,
we define a struggle metric that combines time and number of attempts. And, to avoid
considering naturally long activities as having struggle, we consider the ratio of time and
attempts compared to the “top” 20% of students for each CA. “Baseline time” is the average of
the top 20% of student times for a CA. “Baseline attempts” is the average of the top 20% of the
student attempts for a CA. Because CA’s are designed to take 5-7 minutes, as a catch-all we also
define 15 or more minutes as struggle.

Time of submission User # Answer correct Submitted solution

5/7/2017 11:50:03 PM 0xxxx No for (i=0; i <= numRows; ++i) {
 for (j=0; j<= numCols; ++j) {
 return static_cast<char>('A' - 1 + i);
 cout << i << j;}}

... 0xxxx No ...

5/7/2017 11:52:54 PM 0xxxx No for (i=0; i <= numRows; ++i) {
 for (j=0; j<= numCols; ++j) {
 cout << i << j << " ";
 }}

... 0xxxx No ...

5/8/2017 12:01:37 AM 0xxxx Yes for (i=1; i <= numRows; ++i) {
 for (j=0; j< numCols; ++j) {
 cout << i << static_cast<char>('A' + j) << " ";
 }}

Table 1: A snapshot of rows of one particular student’s submission for the CA
5_3_2_Nested_loops_Print_seats.

Figure 2 illustrates our struggle metric calculation. For a CA, we consider each student
individually. Student1 has n submissions, each with a time, and the nth being correct. (We
ignored any submissions from a student following a correct submission, as that student was

likely just experimenting). For Student1, we compute the total time for that student as the nth
submission’s time minus the first submission’s time. Note that this time may be an
underestimate, as the time doesn’t include the time the student spent reading the instructions and
developing the first submission. If two successive submissions are separated by at least 10
minutes, we assume the student was perhaps taking a break (this is not a perfect measure but the
best we can do as we cannot directly observe the student), and thus we exclude that time from
the total time. For every student (two are shown in Figure 2), such total time is computed. We
then compute the average of the shortest 20% of such times to yield the baseline time. The same
approach is done for the number of attempts per student.

Figure 2: Definition of struggle rate for a particular CA.

Figure 2’s bottom part shows how we define that a particular student struggled on a particular
CA. The key features are that the student spent more than 2x the baseline time and more than 2x
the baseline attempts. Furthermore, to account for very easy CAs, we also require the time be
more than 5 min. And to account for the fact that a few errors on any CA are normal, we require
more than 3 attempts. If all four of the above are true, we classify the student as having struggled
on that CA. Also, any student spending more than 15 minutes is classified as struggling, since
each CA was designed to take about 5-7 minutes. Given that definition of a struggling student,
the struggle rate for a particular CA is then just the number of struggling students for that CA
divided by the total number of students who attempted that CA.

Struggle rates for the CA’s
For reference, Figure 3 shows average time and average number of attempts, along with struggle
rate, for CAs sorted by struggle rate. While time or number of attempts obviously correlates with
struggle rate, the struggle rate metric provides a more pronounced measure. Time alone, or

number of attempts alone, may fluctuate due to the inherent complexity of the particular CA, not
necessarily indicating student struggle. As we see in Figure 3, some CAs have low number of
attempts and spent time but has high struggle rate. For example, CA
3_3_2_If-else_statement_Fix_errors (which is represented by a blue and yellow dot on the x-axis
coding activity 50 value), has low average attempts (less than 3 times) and low average spent
time (less than 3 minutes), but has high struggle rate (above 10%). Figure 4 shows struggle rates
for all CA’s. The last bar is the average struggle rate: 12.3%.

Figure 3: Coding activities versus average attempts, average time, and struggle rate (ordered by

struggle rate).

Student errors for challenge activities with the highest struggle rates
Our goal was to understand what errors seemed to cause students to struggle, so that teachers or
authors can devise appropriate means for students to avoid or fix those errors and thus reduce
struggle (of course while balancing providing help with letting students figure things out
themselves).

Table 2 highlights the 10 CAs with the highest struggle rates, all being above 25%. For each CA,
the table presents the struggle rate, the CA name, the CAs sample correct code, one sample of
wrong code from a student, and our conclusion of what errors yielded such struggle based on our
manual code analysis of student submissions.

Figure 4: Struggle rates for the 78 CAs, in the order the CAs appeared in the 9 chapters of course

content

% CA name Sample correct code Sample wrong code Common errors yielding
struggle

46% 4_2_3_Using_fi
nd()

if (userInput.find("darn") !=
string::npos) {
 cout << "Censored" << endl;}
else {
 cout << userInput << endl;}

if (userInput.find("darn")) {
cout << "Censored" << endl;
}
else {
 cout << userInput << endl;}

• Missing if statement
condition to check if the
word is found or not

46% 5_3_1_Nested
_loops_Indent_t
ext

for (i = 0; i <= userNum; i++) {
 for (j = 0; j < i; j++) {
 cout << " ";}
 cout << i << endl;}

for(i = 0; i <= userNum; i++) {
 for(j = 0; j <= userNum; j++) {
cout << j << endl;}
 cout << " "; }

• Wrong inner loop
condition
• Wrong cout() locations
and arguments

40% 5_3_2_Nested
_loops_Print_se
ats

char currColLet = 'A';
for (currRow = 1; currRow <=
numRows; currRow = currRow + 1) {
 currColLet = 'A';
 for (currCol = 1; currCol <=
numCols; currCol = currCol + 1) {
 cout << currRow << currColLet
<< " ";
 currColLet = currColLet + 1; }}

 char letter = 'A';

 for (i=1;i<=numRows;++i) {
 cout << i ;
 for (j=0;j<=i;++j){
 cout << letter +1 << endl;
 }
 }

• Missing initialization of
“letter” in the outer loop.
• Wrong initialization of
“j” in the inner loop
• Wrong condition for inner
loop
• Missing “letter”
increment

37% 4_4_2_Whitesp
ace
_replace

if (isspace(passCode.at(0))) {
 passCode.at(0) = '_';
}
if (isspace(passCode.at(1))) {
 passCode.at(1) = '_';
}

if (isspace(passCode.at(0))) {
passCode.replace(0,1,"_");
 }
 else if (isspace(passCode.at(1))) {
 passCode.replace(1,1,"_");}

• Using else if instead of
multiple if

37% 5_2_2_rand
_function_Seed
_and_then_get
_random_numb
ers

srand(seedVal);
cout << (rand() % 10) << endl;
cout << (rand() % 10) << endl;

srand(time(0));
cout << (rand() % 9) << endl; cout
<< (rand() % 9) << endl;

• Using seed of time(0)
(taught earlier) rather than
obeying the instruction to
use seedVal
• Using %9 instead of %10

34% 2_11_2_Success
ive
_letters

char letterStart;

cin >> letterStart;
cout << letterStart;
letterStart = letterStart + 1;
cout << letterStart << endl;

char letterStartA = 'a';
 char letterStartB = 'b';

 letterStartB = letterStartA + 1;
 cout << letterStartA <<
letterStartB << endl;

• Missing cin()
• Missing cout() after
cin()
• Missing incrementing
the only variable
• Missing printing that
variable

34% 9_1_2_Copy_an
d
_modify_vector
_elements

for (i = 0; i < SCORES_SIZE; ++i)
{
 if (i != (SCORES_SIZE-1)) {
 newScores.at(i)=
oldScores.at(i+1);
 }
 else{
newScores.at(i) =oldScores.at(0);}}

for (i = 0; i < SCORES_SIZE - 1;
i++) {
 newScores.at(0) =
oldScores.at(oldScores.size() - 1);
 newScores.at(i) =oldScores.at(i -
1);
 }

• Wrong for-loop
condition
• Missing if statement to
update a variable in a
loop
• Wrong use of vector
index to update variable

32% 8_8_2_Resizing
_a_vector

countDown.resize(newSize);

for (i = 0; i < newSize; ++i) {
 countDown.at(i) = newSize - i;
}

for(i = 0; i < SCORES_SIZE - 1;
i++){
if(i == 0){
 newScores.at(i) =
oldScores.at(oldScores.size() -
1);}
 else{
 newScores.at(i) = oldScores.at(i -
1);} }

• Missing resize of the
vector
• Wrong condition for
the for-loop
• Wrong code to change
the vector elements

28% 5_5_2_Do-whil
e_loop_to_prom
pt_user_input

do {
 cout << "Enter a number (<100):
\n";
 cin >> userInput;
} while (!(userInput < 100));

cin >> userInput;
 do {
cout << "Enter a number (<100):
" << endl;
cin >> userInput;
 } while (userInput < 100);

• Wrong condition

27% 3_5_2_Bool_in
_branching
_statements

if (isBalloon && !isRed) {
 cout << "Balloon" << endl;
}
else if (isBalloon && isRed) {
 cout << "Red balloon" << endl;
}
else {
 cout << "Not a balloon" << endl;}

if ((isBalloon != false) && isRed
) {
 cout << "Balloon" << endl;
 }
 if ((isBalloon = true) && (isRed
= true)) {
 cout << "Red balloon" <<
endl;
 }
 else {cout << "Not a balloon"<<
endl; }

• Incorrect use of if
statement
• Incorrect condition for
the if statement

Table 2: The CAs with the highest struggle rates, and our analysis of the errors leading to the
struggle.

We considered errors as falling into two categories. “Core errors” are errors that likely would
occur for a wide variety of courses and programming languages. “Specialized errors” are errors
that seem rather specific to a particular function or language feature.

Some common core errors were:

● Nested loops: Students had trouble defining the inner loop’s initialization and expression,
and knowing how to produce output within such loops.

● Else-if vs. multiple if: Students used else-if in cases where multiple if statements were
needed, and vice-versa.

● Random range: Students often used % N rather than % (N+1) to generate random
numbers in the range 0 to N.

● Input/output: Students early on had trouble putting output and input statements in the
correct order.

● For loop and vector: Students had trouble creating a for loop header when the iteration
wasn’t through every element.

● For loop and if: Students had difficulty using an if statement inside a for loop when
iterating through all elements.

● Vector index: Students had trouble when vector element updates weren’t simple
assignments while iterating through a vector, using the loop’s counter variable as the
vector index.

● Negated loop expression: Students often negated a loop expression, using while (x) rather
than while (!x).

● Boolean expressions: Students struggled writing simple expressions with Booleans,
comparing with false or true unnecessarily, increasing complexity and thus mistakes.

Some common specialized errors were:

● C++ find() function: Students did not understand C++’s unusual return value of the find()
function, namely std::npos.

● Character increment: Students had trouble understanding that incrementing a character
variable holding a letter yields the next letter in the alphabet.

● Random seeding: Students often improperly seeding a random function, by copying a
particular example in our content that seeded with current time, rather than following
instructions to seed with a particular variable’s value.

Reducing struggle
The above information can be used in many ways, such as spending more time in lecture going
over examples focused on avoiding a common error, creating more content for teaching a
particular subject matter, improving code auto-graders to detect common errors and provide
specific hints (perhaps after the student has spent at least a few minutes trying on their own), etc.
The purpose of this paper is to summarize the common errors so that others can adjust their
teaching/content accordingly.

However, we happened to have some historical data that was relevant to this work, and thus we
chose to include that data. In particular, for 10 CAs that we’d noticed in the past that students
asked the most questions on (so not based on a struggle metric, which we had not developed at
that time), we in January 2017 added a hint link that discussed common errors. For those CAs,

we obtained submission data from before the hints were added, and after the hints were added. In
fact, we obtained the data from our university which used the same CAs. The analysis compared
Spring 2016 (262 students) and Spring 2017 (175 students).

Figure 5 shows the effectiveness of adding hints to some CAs (CA1 to CA8). The blue and
orange bars represent the struggle rate for a CA before and after adding a hint, respectively. The
hint drops the struggle rate modestly for most CAs, with a substantial drop for some. On average,
the struggle rate for those CAs dropped from 23% to 19%, representing a 17% decrease in the
number of struggling students. Note that some CAs had low struggle rates even before the hints
were added, indicating that students asking questions about a problem does not necessarily mean
that students are struggling on those problems.

As a reminder, adding a hints link is just one way, and a fairly modest way, to strive to reduce
struggle rates. We suggest that more aggressive techniques be utilized.

Figure 5: CAs versus struggle rate, without hints (blue) and with hints (orange).

Conclusion
We measured student struggle rates on homework problems (coding activities / CAs) in an
introductory CS 1 programming course. We found struggle rates to be 10-15%, and as high as
30-40% for some CAs. We listed common errors that led to struggle, such as errors related to
nested loops, use of else-if rather than multiple ifs, etc. We analyzed historical data showing that
adding hints to particular CAs could reduce struggle rate. We hope that our publishing these
common errors on homework problems of a CS 1 class will aid teachers and publishers to devise
aggressive approaches to help students avoid or fix such errors. To be clear, we believe some
struggle is necessary to learn programming; our goal is to address errors that lead to excessive
struggle. Hints are one way to reduce struggle but others ways exist. Also, we do not believe that
automatically providing hints for every student error, as done in some auto-grading homework

systems, is the best approach, as that approach may lead to excessive dependency and may
hamper critical thought or effort. Our goal instead is to focus in on the specific errors that yield
excessive struggle. In future work, we will build debugging activities focused on reducing the
errors found in this paper. We also hope to automatically detect these common errors and to
provide custom hints. Both approaches we hope will reduce student struggle.

References

[1] Mahmoud, Q. H.; Dobosiewicz, W. & Swayne, D. Making computer programming fun and
accessible Computer, IEEE, 2004, 37, 106-108.
[2] Beaubouef, T. & Mason, J. Why the high attrition rate for computer science students: some
thoughts and observations, ACM SIGCSE Bulletin, ACM, 2005, 37, 103-106.
[3] Spohrer, J. C.; Soloway, E. & Pope, E. A goal/plan analysis of buggy Pascal programs,
Human--Computer Interaction, Taylor & Francis, 1985, 1, 163-207.
[4] Yarmish, G. & Kopec, D. Revisiting novice programmer errors, ACM SIGCSE Bulletin,
ACM, 2007, 39, 131-137.
[5] Horstmann, C. & Budd, T. Big C++, Wiley, 2004.
[6] Oualline, S. How not to program in C++: 111 broken programs and 3 working ones, or why
does 2+ 2. No Starch Press, 2003.
[7] Denny, P.; Luxton-Reilly, A. & Tempero, E. All syntax errors are not equal, Proceedings of
the 17th ACM annual conference on Innovation and technology in computer science education,
2012, 75-80.
[8] Becker, B. A. An effective approach to enhancing compiler error messages, Proceedings of
the 47th ACM Technical Symposium on Computing Science Education, 2016, 126-131.
[9] Altadmri, A. & Brown, N. C. 37 million compilations: Investigating novice programming
mistakes in large-scale student data, Proceedings of the 46th ACM Technical Symposium on
Computer Science Education, 2015, 522-527.
[10] Ginat, D. & Shmalo, R. Constructive use of errors in teaching CS1, Proceeding of the 44th
ACM technical symposium on Computer science education, 2013, 353-358.
[11] Alqadi, B. S. & Maletic, J. I. An Empirical Study of Debugging Patterns Among Novices
Programmers, Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education, 2017, 15-20.
[12] Cherenkova, Y.; Zingaro, D. & Petersen, A. Identifying challenging CS1 concepts in a large
problem dataset, Proceedings of the 45th ACM technical symposium on Computer science
education, 2014, 695-700.
[13] Hertz, M. & Jump, M. Trace-based teaching in early programming courses, Proceeding of
the 44th ACM technical symposium on Computer science education, 2013, 561-566.
[14] O'Dell, D. H. The debugging mind-set, Communications of the ACM, ACM, 2017, 60,
40-45.
[15] zyBooks. https://www.zybooks.com/, accessed Mar, 2018.

