Message-Based Hardware/Software Communication
in HDL/C Environments

Linus Tauro
Quickturn Design Systems, Inc.
440 Clyde Ave.
Mountain View, CA 94043
tauro@cs.ucr.edu

Abstract

Implementing communication between hardware and
software components can be a time-consuming and error-
prone task. We describe a set of VHDL routines, with
accompanying C routines, that can be used to greatly
simplify the high-level specification and implementation
of communication between hardware and software pro-
cessor components. The routines come close to present-
ing the programmer with the abstraction of message-
passing communication using send/receive primitives.
Because they use existing language constructs, the rou-
tines are fully simulatable using standard VHDL simu-
lators, and can be converted to implementations using
existing VHDL synthesis tools. We demonstrate the
use of the routines in several examples involving the PC
ISA bus protocol. We also demonstrate the need for ad-
ditional routines, beyond just send/receive, to support
communication in real design examples.

1 Introduction

Systems often consist of a combination of processing
components, such as microprocessors, microcontrollers,
and custom ASIC/FPGA processors. Ideally, a system
designer would be able to write and simulate software
(C, C++) and hardware (VHDL, Verilog) programs us-
ing abstract send/receive primitives for communication
between processes running on those processors; such
communications could occur not only within software or
within hardware, but also between hardware and soft-
ware. Later, the designer would bind those commu-
nications to physical ports using particular protocols.
Finally, the designer would compile the C or C++ and
synthesize the VHDL or Verilog to implementations.
Common languages like VHDL, Verilog, C and C++,
do not include such communication primitives. To solve
this shortcoming, we are developing a set of communica-
tion libraries in C, C++ and VHDL. These libraries con-
sist of routines and data objects built from existing lan-
guage constructs without any language extensions, and
therefore can be input to existing compilers, simulators,
and synthesis tools. For a given existing communication
protocol, such as the PC ISA bus protocol, a collection
of data and routines is created (we’ll call this collection
a “class,” from C++’s object terminology) and added

Frank Vahid

Department of Computer Science

University of California
Riverside, CA 92521

vahid@cs.ucr.edu, www.cs.ucr.edu

to the library. A designer needs to declare and initialize
a communication channel of a given class, and can then
apply what appear to be send/receive primitives over
that channel. In reality, the primitives are actually rou-
tines that carry out the communication over ports, so
are simulatable in existing environments. Those prim-
itives have also been pre-tested (through synthesis or
compilation), so provide a simple path to implementa-
tion. We refer to the library as OOCL (Object-Oriented
Communication Library). OOCL classes are being de-
veloped for numerous common protocols, such as 12C,
PC ISA, RS232 serial, PC parallel, PCI, as well as cus-
tom protocols typically used between multiple custom
hardware processors.

The OOCL approach complements related codesign
interface research. In [1], a solution is proposed that au-
tomates the hardware-software interface using minimum
glue logic, while satisfying timing constraints. To com-
municate with a peripheral device, the processor gener-
ates a sequence of signals (SEQs) that read and write
the device’s ports. Symphony [2] defines a standard
communication protocol for all processor components,
using send and receive operations with a synchronous
wait protocol, where the sender asserts a ready signal
and then waits for the receiver to assert its own ready
signal. In [3], a codesign methodology is discussed us-
ing process communication primitives that allow three
types of process interaction: synchronized data trans-
fer, unsynchronized data transfer and synchronization
without data transfer. In [4], a system design method-
ology is discussed using abstract send/receive channels
for communication. In all of these approaches, OOCL
can be used to encapsulate the communication using
send/receive primitives, while implementing the proto-
col, without any modification to the C or VHDL lan-
guages. Other related work includes techniques to in-
terface incompatible protocols by generating an inter-
face process [5] or by synthesizing interface hardware
[6]. Some other works have suggested extensions to ex-
isting languages.

In this paper, we present details of OOCL routines
for one particular protocol, the PC ISA bus, demon-
strate their practical use on two examples, and show
why some routines in addition to just send/receive are
necessary to support somewhat complex examples.

2 ISA communication

The PC-XT/AT bus, also called the industry standard
architecture (ISA) bus [7], supports 8 and 16 bit data-
paths, and 20 to 24 bit addressing. Today’s increasingly
popular PCI standard includes within the PCI subsys-
tem, a PCI/ISA bridge that supports the current 8 and
16 bit peripherals used in PCs. Most PC cards are ISA
compatible. The PC is typically the master of the bus,
initiating reads or writes of memory or input/output
(I/0) devices by placing an address on the bus and as-
serting the appropriate control signals.

OOCL classes have been developed for the ISA bus 8
and 16-bit I/O device read and write cycles. On the PC
side exists a C++ class consisting of routines to send
or receive data to or from any device. On the hardware
device side exist complementary VHDL routines. The
C++ class for sending is shown in Figure 1, while the
VHDL class for receiving is shown in Figure 2; the C++
receive and VHDL send routines are not shown. We use
an apostrophe in our figures to indicate an active-low
VHDL signal, although VHDL syntax would require a
different indentifier.

Declare Channel
classCL_SEND_M_ISA

{
/I Ports are pre-defined on the ISA bus
/I expansion slots and connections are made
/I by an adapter board
public:
I nitialize ports to default values
void InitDefault();
/I ' Send the message(character)
void Send(uint addr, uchar message);

Initialize channel (default)

/ Port initialization is done at initialization or
/I reset usudly as part of the BIOS initilaization
/l routines

void CL_SEND_M_ISA::InitDefault() {;}

Send message (character)
void CL_SEND_M_|SA::Send(uint addr, uchar

message)
{
asm
mov dx, addr;
mov al, message;
out dx, al;
}

Figure 1: OOCL master ISA bus C code.

Each class consists of the following:

1. Declarations: The PC’s C++ send class is called
CL_SEND_M_ISA, while the VHDL receive class
is called CL_REC_S_ISA; the M and S refer to
the master (initiator) and servant (responder) of
the communication. For the PC, the ISA ports
are pre-defined on the expansion slots, and the
connections are made by an adapter. The port
access is internally handled by the operating sys-
tem. For the VHDL, the ISA ports are declared

Declare Channel

typeCL_REC_S ISAis
--The ISA ports used in the communication library
--i.e. data_p, addr_p, reset_p, iow_p’, ior_p’,
-- aen_p, clk_p are declared by the user as part of
--entity declaration
record
addr : bitl6; -- receiver address
end record,;

Initialize channel (default)

procedure CL_InitDefaultRecSrvI SA(
signad chan : out CL_REC_S ISA;
signal data_p : out STD_LOGICS;
signal clk_p :inbit)is

begin
-- Allocate a default I SA address to receiver
chan.addr <= CL_DEFAULT_ADDR;
data p <="Z272727272777";-- highimpedance
wait until clk_p'event and clk_p="1";

end CL_InitRecSrvISA,;

Receive message (char acter)

procedure CL_RecSrvISA(
signal chan 1inCL_REC_S ISA;
variable message : out STD_LOGICS,;
signal addr_p 2 in bit16;

signal data_p :in STD_LOGICS;
signal aen_p s inbit;

signal reset_p sinbit;

signal iow_p’ inbit;

signal clk_p cinbit) is

in

-- Wait for read request and my address on the bus

wait until (clk_p’event and clk_p="1" and aen_p="0"
and reset_p="0' andiow_p’'="0" and

addr_p = chan.addr;
-- Read the datawhileiow_p’ is asserted

message = data p;

wait until clk_p event and clk_p— 1 and iow p'='1;

data p <="Z272727272777";-- highimpedance

wait until clk_p’event and C|kJJ=’1’;

end CL_RecSrvISA;

Figure 2: OOCL servant ISA bus VHDL code.

as part of the entity declaration, by the user. The
VHDL class has a data member to store the 16-bit
receiver address.

. Initializations: Initialization configures the chan-

nel’s hardware. OOCL usually provides a default
initialization routine with no or few parameters,
along with a custom initialization routine with
numerous user-configured parameters. In this ex-
ample, the PC ports are initialized at startup or
during reset by the BIOS routines, so there are
no actions in the initialization routine. The re-
ceiver default initialization sets the ISA receiver
channel address to be an unused I/O port ad-
dress. The STD_LOGIC resolved data type from
the IEEE.STD_LOGIC-1164 library is used for
the bi-directional data ports. These are set to
high impedance during initialization.

. Send/Receive: Figures 1 and 2 show the PC

send and VHDL receive routines for a byte trans-
fer. The PC initiates an I/O write cycle, by ex-
ecuting an OUT instruction. The OOCL receive
procedure proceeds for the I/O write cycle.

3 Examples
3.1 FPGA coprocessor

In this section, a coprocessor example is used to demon-
strate OOCL use. The example is that of computing
the greatest common divisor (GCD) of two numbers on
an FPGA. Two different polling approaches are used to
indicate the computation’s completion to the PC, one
using a flag, and one using a sentinel value.

Figure 3(a) shows the flag approach, in which a dis-
tinct address is assigned to a flag that will be set when
the computation is complete. The OOCL ISA ports are
declared as part of the entity declaration. Three dis-
tinct addresses are assigned from the ISA unused block
of addresses to indicate whether the ISA master(PC) is
sending raw data for the GCD process, reading the re-
sult or reading the flag address. The master reads the
result address only after it determines the result is ready
by detecting a ‘1’ at the flag address (ged_done_addr).
In other words the PC first sends the raw GCD data,
polls the GCD flag address until it reads a “one”, and
then finally reads the result. Three servant channels
are declared as VHDL global signals, one for sending
the data to GCD, one for receiving the flag, and one
for receiving the GCD result data. Consistent with the
OOCL approach, the channels are declared, initialized,
and then used for the data transfers. In the main GCD
process, after initialization of the GCD send and receive
channels, the process enters a loop. The GCD flag is set
to zero, the input data (x and y) is received from the ISA
master, and then the GCD is computed. Although the
computation is not shown here because of lack of space,
the reader can refer to Figure 5(a). After the computa-
tion is complete, the GCD flag is set, and the result is
then sent when the ISA master queries the GCD result
address.

In the meantime, the flag address process first ini-
tializes the flag address channel, and then continuously
returns a “zero” whenever the ISA master queries the
flag address, as long as the GCD flag is not set by the
main process. As soon as the GCD has been computed
by the GCD process, as indicated by the GCD flag,
the flag process returns a “one” when the ISA master
queries the flag address. The flag process then waits for
the GCD flag to be set back to zero before it repeats
the loop.

Figure 3(b) shows the block diagram for the ISA in-
terface for a 16-bit ISA data bus. The examples deal
with an 8-bit data bus, the only difference being that
tocs16_p is asserted by the ISA servant to indicate to the
ISA bus master that it can support a 16-bit transfer.

Figure 3(c) shows a sentinel process approach. The
entity, architecture declarations, and the GCD process
are the same as in the flag approach, except that there
is no need for a flag address. The sentinel process re-
places the flag process in Figure 3(a). In this approach,

the ISA bus master first sends the input data for the
GCD computation, after which it queries the GCD co-
processor for the result. A result of “zero” means that
the result is not ready yet. The first non-zero result is
assumed to be the GCD result.

3.2 FPGA bus-controller for multi-
ple processes

The example discussed in the previous section had only
one computation process. Often, two or more compu-
tations are performed simultaneously on the FPGA, in
which case it would be advantageous to have a bus-
controller process handle all the communications with
the environment and co-ordinate data transfer between
the other processes. Using a bus-controller can reduce
the interconnect area as well as simplify the high-level
communication model. Only the bus controller external
interface needs to interface to the ISA bus, while inter-
nally a much simpler bus, such as one using a two-phase
handshake protocol, can be used.

Figure 4(a) shows the bus controller process. The
entity declaration is the same as in the GCD example
discussed in the previous section and includes the OOCL
ISA ports. Four distinct ISA addresses are used, all of
them having the first 12 bits in common. The FPGA
module address is composed of these 12 bits. The next
four bits determine which process is being addressed,
i.e., GCD or RSA, and whether data is being sent or re-
ceived. The bus controller process communicates with
the GCD and RSA processes, using a two-phase bus
with 8 data lines, the ports for which are internally de-
clared as global signals. The STD_LOGIC resolved data
type from the IEEE.STD_LOGIC_-1164 is used for these
signals, since the data ports in the OOCL ISA channels
use this type. The bus controller acts as the master
for the two-phase interface. Four distinct master chan-
nels are declared for sending and receiving data from the
GCD and RSA processes, and the corresponding servant
channels are declared for the GCD and RSA processes.
All these channels are declared as global signals.

The same bus controller process acts as the servant
for the ISA transfer, and the OOCL ISA send and re-
ceive channels are also declared globally. The bus con-
troller process begins by initializing the ISA send and
receive channels. Next it enters a loop where it waits
for an ISA read or write command to be issued as de-
termined by the ISA servant channel’s Ready() member
function, which has been added to OOCL.

Figure 5(c) shows the procedure for ReadySend();
ReadyRec() would be similar. If the FPGA module
address is on the ISA bus, and ior_p’ is asserted, the
address is returned so that bits other than module ad-
dress can be examined to determine the actual channel
being addressed. To ensure timing constraints are met,
tochrdy_p is asserted to request a bus cycle extension.

Coming back to Figure 4(a), the bus controller pro-

--Flag address approch for the gcd example using the
-- | SA protocol and the FPGA as a co-processor
usework.CL_ISA.dl;

-- The portsfor the transfer are declared in the entity
entity CL_S ISAis

port(addr_p : in bit16;
aen p :inbit;
reset_p 1 in bit;
ck p :inbit;
data p : inout STD_LOGICS;
iow_p :inbit;
ior_p :in bit);
end CL_S |SA;

architecture ACL_S ISA of CL_S ISAis
-- Using addresses from unused block 0300-0377h
constant gcd_send_addr : bit 16 := X"0300";
constant gcd_rec_addr : hit 16 := X"0301";
constant gcd_done_addr : bit 16 := X"0302";
signal gcd _done_s . bit :='0";-- gcd done global
-- Declare the send, receive and the ged done channels
signal send_chan_s : CL_SEND_S ISA;
signal rec_chan_s : CL_REC_S ISA;
signal gcd_done chan_s : CL_SEND_S ISA;
begin
gcd:process
variable x,y : STD_LOGICS;

begin — Initializations
CL_InitSendSrvl SA(send_chan_s, data p,
gcd_send_addr, clk_p);
CL_InitRecSrvISA(rec_chan_s, data p,
loop gcd_rec_addr, clk_p);
gcd done s <= '0;
--Receivex and y
CL_RecSrviSA(rec_chan_s, x, addr_p, data_p,
aen_p, reset_p, iow_p, clk_p);
CL_RecSrviSA(rec_chan_s, x, addr_p, data_p,
aen_p, reset_p, iow_p, clk_p);
--Compute the gcd from x and y (not shown)
gcd_done s <='1'; --Set the ged flag

--Send the result

CL_SendSrvISA(send_chan_s, x, addr_p. data p,

aen_p, reset_p, ior_p, clk_p);

end loop;

end process;

flag: process

begin ~Initialization
CL_InitSendSrvlSA(ged_done chan_s, data p,
loop gcd_done_addr, clk_p);

while (gcd_done_s="0") loop -- gcd not done
CL_SendSrvISA(ged_done_chan,s, X" 00",

addr_p, data_p, aen_p, reset_p, ior_p, clk_p);
end loop;
CL_SendSrvISA(ged_done s, X" 01", addr_p,
data p, aen_p, reset_p, ior_p, clk_p);
wait until clk_p’event and clk_p="1" and
end loop; gcd_done s='0';
end process;
end ACL_S ISA; @

Figure 3: GCD example on the FPGA using the ISA protocol: (a) using a flag address, (b) using a sentinel.

I/O Port Connections

data_p D0-D15
addr_p AQ-A15 1
dep o —
reset_p y N
clk_p °]
aen_p ® I
low_p' °]
ior_p’ ® 1
iochrdy_p °]
iocsl6_p' 1
Buffer/Driver t- T T 1177~ 17117

Logic IR

ISA ports
FPGA (Servant)

(b)

--Sentinel approch for the gcd example using the
-- |SA protocol and the FPGA as a co-processor

-- The entity, architecture declarations and the

-- ged process are exactly the same asin the flag
-- approach (the only differenceisthat thereis no
-- need for aflag address (gcd_done_addr)

-- Instead of the flag process the sentinel process
-- described below is used

sentinel: process

begin ~Initialization
CL_InitSendSrvl SA(ged_done_chan_s, data_p,
loop gcd_send_addr, clk_p);

-- Tell master that ged result is not ready yet

while (gcd_done s="0") loop
CL_SendSrviSA(ged_done _chan,s, X" 00",
addr_p, data_p, aen_p, reset_p, ior_p, clk_p);

end loop;
wait until clk_p'event and clk_p="1" and
gcd done s="0';
end loop;
end process;

(©

--Bus controller approach for multiple FPGA processes
use work.CL_ISA dl; --VHDL [ISA and
use work.CL_CUSTOM .all; -- custom libraries

-- The entity declaration is the same as in the gcd exmaple

architecture ACL_S ISA of CL_S ISAis
--Using addresses from unused block 0300-0377h
-- Thefirst 12 bits common, used for modul e address

constant ISA_module_addr : bit16 := X"0300"
constant ged_send_addr : bit4 :="0000";
constant ged_rec_addr > bit4 :="0001";
constant rsa send addr : bit4 :="0010";
constnat rsa_rec_addr : bit4 :="0011";

--Ports for the D8P2 bus between bc and processes

signal bc_data s : STD_LOGICS;
signal bc_ged | req_s’ : STD_LOGIC;
signal bc_rsa req s : STD_LOGIC;

-- Sentinels for the ged and rsa process
signal gcd_done s thit =0
signal rsa_done_s chit ="0";

--Send, receive channels for the D8P2 interface
signal gcd_send chan D8P2 s : CL_SEND_S D8P2;
signal gcd_rec_chan D8P2 s :CL_REC_S D8P2;
signal rsa_send_chan D8P2_s :CL_SEND_S D8P2;
signal rsa_rec_chan _D8P2_s :CL_REC S | D8P2
signal bc_ged_send_chan D8P2_s: CL_SEND M_D8P2;
signal bc_ged_rec_chan_D8P2 s : CL_REC_M_D8P2;
signal bc_rsa send chan D8P2 s: CL_SEND_M_D8P2;
signal bc_rsa_rec_chan D8P2 s : CL_REC M_D8P2;

--Send, receive cghannels for the | SA intereface
signal bc_send chan ISA_s :CL_SEND_S ISA;
signal bc_rec_chan ISA_s :CL_REC_S ISA;

-- The functionsto test if a particular bit in abit vector
-- is set and to encode a message for the RSA process
-- go here (not shown)
begin
-- The bus controller (servant) uses the |SA protocol
-- to talk with the PC and acts as the master for the
-- D8P2 protocol it usesto talk to other processes
bus _controller : process

variable ISA_Ready chit =0

variable ISA_module addr_Isb :int2:=4;

variableread addr : bitl6;

varaible char_data : STD_LOGICS;
begin -- Initilaizations

CL_initSendSrvISA(bc_send chan ISA_s, data p,
ISA_module_addr, clk_p);

CL_InitRecSrvISA(bc_rec_chan ISA s, data L D,

loop [SA_module_addr, clk_p);

-- Wait until aread or write command isissued
while (ISA_Ready ='0") loop

CL_ReadySendSrvISA(bc_send_chan_ISA_s, ISA_

Ready, ISA_module_addr_Isb, read_addr,

addr_p, aen_p, reset_p, ior’_p, iochrdy_p, clk_p);

CL_ReadRecSrvISA(bc_rec_chan ISA s, ISA_
Ready, ISA_module_addr_Tsb, read_addr,

1/0 Port Connections
DO-D15

data p

addr_p
ae p
reset_p
ck_p ®
aen_p ®
ow_p' *
ior_p' PY
iochrdy _p. °®
iocslé p'
Buffer/Driver == 1717|1711
Logic " _ 11 |_|-LL1d

@Jlla process

bc data s

bc_ged | req_s_>7
bc rsareq s_ _||

FPGA (Servant)

AQ-A15

|
|
|
L

\I/
V

(b)
--Read raw data or send result as per the address
case read_addr(3 downto 0) is
when gcd_send_addr => -- Read gcd raw data
CL_GetDataSrvI SA(char_(data, data p
iochrdy_p, iow_p, clk_p);
CL_SendMstD8P2(bc_gcd_send_chan_D8P2
s, char_data, bc_data s, bc_ged_req s, ck_p);
when ged_rec_addr =>
-- If the ged has been computed send the result
-- from gcd process, otherwise send sentinel
if (gcd_done s="0’) then
CL_PutDataSrvISA(X"00", data p,

iochrdy_p, ior_p’, clk_p);
else

CL_RecMstD8P2(bc_ged rec_chan D8P2_s,
char_data, bc_data s, bc_ged req s, clk_p);
CL_PutDataSrvISA(char_data, data _p,

iochrdy_p, ior_p’, clk_p);
end if;

--The casesfor rsa_send addr and rsa _rec_addr
-- are similar (not shown)
when others => -- Error erport can be asserted
end case;
end process;
end loop;
-- The GCD and RSA processes go here and are shown

addr _p, aen_p, reset_p, ior’_p, iochrdy_p, clk_p); -- in a subsequent figure

end loop;

(a) ENdACL_S ISA;

Figure 4: Bus controller for multiple FPGA processes: (a) bus controller process, (b) block diagram.

--GCD process for the bus contoller example

ged : process
variable x : STD_LOGICS;
variabley : STD_LOGICS;
begin
--Initializations

CL_InitSendSrvD8P2(gcd_send_chan_D8P2_s,
bc_data s, bc_ged req s, clk_p);
CL_initRecSrvD8P2(gcd rec_chan D8P2_s,
bc_data sbc_ged req s ,ck_p);
loop
gcd done s<='0';
--Receive x
CL_RecSrvD8P2(ged _rec_chan D8P2_s, X,
bc_data s, bc_ged req s, clk_p);

-- Receivey
CL_RecSrvD8P2(ged_rec_chan D8P2 s, ,
bc_data s, bc_ged req s, clk_p);

--Compute the gcd
while (x /=y) loop
if (x <y) then
y=y-X
dsex:=x-y;

end if;
end loop;
gcd _done s <='1';
-- Send the result
CL_SendSrvD8P2(gcd_send _chan D8P2_s, X,
bc_datas, bc_ged req s, clk_p);
end loop;

end process; @

-- The communication library procedure for checking
-- if it isthe servant’ s turn to write data to the I SA bus.
-- The companion for receiving is ReadyRecSrvISA
procedure CL_ReadySendSrvISA(

-- Set the GCD global

signal chan :inCL_SEND_S ISA;
variable ready : out hit;
variable addr_LSB :inint4;
variable read_addr : out bit16;
signal addr_p 1 in hitl6;
signal aen_p s in bit;
signal reset_p inhit;
signal ior_p’ 1 in bit;
signal iochrdy_p : out hit;
signal clk_p Jinbit) is
begin

wait until clk_p’event and clk_p="1";
if(aen_p="0" andreset_ p="0" andior_p'="0" and
addr_p(15 downto addr_|SB) = chan.addr(15
downto addr_L SB) then

read addr :=addr_p; --Read the address
iochrdy _p <= 0'; -- Request an extension
ready ='1; - Recewer sturn
wait until cIk_p event and ck p="1

else
ready =0

end if;

end CL_ReadySendSrvISA;

-- RSA process for the bus controller example
rsa: process

variable pubkey_d :STD_LOGIC32;

variable pubkey n : STD_LOGIC32;

variable msg_item_raw : STD_LOGICS;

variablemsg_item_encoded : STD_LOGIC32;
begin

--Initialzations

CL_InitSendSrvD8P2(rsa_send_chan_D8P2_s,
bc_data s, bc rsa req s, clk_p);
CL_InitRecSrvD8P2(rsa rec_chan D8P2 s,
bc data s, bc rsa req s, clk_p);
--Receive the public keys
CL_RecLongSrvD8P2(rsa rec_chan D8P2_s,
pubkey d, bc_data s, bc rsa req s, clk_p);
CL RecLongSerSPZ(raa rec_chan_D8P2_s,
pubkey n, bc data s, bc rsa req s, clk_p);
loop
rsa done s <='0';
--Receive a character
CL_RecSrvD8P2(rsa_rec_chan_D8P2 s,
msg_item_raw, bc_data s, bc rsa req s, clk_p);
--Encode the message
msg_item_encoded := EncodeM sg(msg_item_raw,
pubkey d, pubkey n);
rsa done s <='1; —-Sefthe RSA global
--Send the result
CL_SendLongSrvD8P2(rsa_send_chan_D8P2_s, msg
_item_encoded, bc_data s, bc_rsa req s, clk_p);
end loop;
end process;

(b)

-- Library procedure to read data from the ISA bus after
-- the ReadyRecSrvI SA procedure has been called

-- The companion procedure for sending is PutData
-- SrvISA

procedure CL_GetDataSrvI SA(

variable char_received :out STD_LOGICS;

signal data_p :out hit;

signa iochrdy p :out hit;

signa iow_p’ inhit;

signal clk_p Jinbit) is
begin

char_received =data_p;

iochrdy p <= 1,

wait until clk_p’event and clk p="1;andiow_p'="1";
end CL_GetDataSrvISA;

(d)

Figure 5: Bus controller (cont’d): (a) GCD process, (b) RSA process, (c) addition to OOCL.

cess then examines the relevant bits, to determine which
channel the ISA bus master is addressing, and accord-
ingly routes the data to or from the GCD or RSA pro-
cess, using the two-phase OOCL bus. The switch state-
ment shows the cases for the GCD process, the ones
for the RSA process are identical. The GetData() or
PutData() routines are used for the servant receive and
send respectively and have been added to OOCL.

Figure 5(d) shows the GetData() procedure, the Put-
Data() procedure is identical. Data is read from the ISA
bus and after the jochrdy_p port is de-asserted, the pro-
cedure waits until the cycle is completed. The sentinel
approach is used for both the GCD and the RSA com-
putations, for sending the result, as discussed in the pre-
vious section. However, in this case a separate sentinel
process is not needed, since the bus-controller examines
the corresponding global, and accordingly sends either
the sentinel or the result.

Figure 4(b) shows the block diagram for the inter-
face. The bus controller process acts as the ISA ser-
vant, and co-ordinates the data transfer to and from
the other processes on the FPGA module, by acting as
the bus master for the two-phase bus. A separate re-
quest line is used for each channel on the two-phase bus
instead of using the addressed mode. Since each chan-
nel is point-to-point, no address is necessary, leading to
faster internal transfers. An address would only be nec-
essary if there were very many processes to which the
bus controller was interfacing. A brief note on naming
conventions: each channel type begins with CL for com-
munication library, followed by either SEND or REC for
sender or receiver, followed by either M or S for either
master or servant, followed by the protocol type, such
as ISA for the ISA bus protocol, or D8P2 for a custom
protocol with 8 data lines and 2-phase handshaking.

Figure 5(a) shows the GCD process. This has already
been discussed in Section 3.1. The only difference is
that instead of receiving or sending data over the ISA
channels to the PC directly, the data transfer to the bus
controller takes place over the internal two-phase bus.

Figure 5(b) shows the RSA process. Distinct OOCL
servant send and receive channels are declared and ini-
tialized. Next the public keys are received from the
bus controller, after which the RSA process enters into
a loop. The RSA global is set to zero, after which
raw data is received over the rsa_rec_chan. This data
is encoded and then sent back over the rsa_send_chan.
Again, it is assumed that the relevant operators have
been overloaded to support the STD_LOGIC data types.

To summarize, in addition to supporting the initial-
ization and the send and receive methods, the OOCL
servant channels have been enhanced with routines that
determine if the channel is ready to send or receive data,
and with other routines that then proceed to complete
the transfer. This enables the OOCL methodology to
be flexible enough to be applied in a multi-tasking en-
vironment in both hardware and software.

4 Conclusions

OOCL bridges the gap between the abstract message
passing primitives desired by the user, and the underly-
ing communication implementation. It provides a con-
sistency across diverse protocols and hardware-software
components. Because OOCL is based on libraries, no
additional tools are needed to generate the interface,
and no language extensions are necessary. In addition to
supporting the initialization, send and receive routines,
the OOCL servant channels have been enhanced with
routines that determine if the channel is ready to send
or receive data, and with other routines that then pro-
ceed to complete the transfer. This enables the OOCL
methodology to be applied to multiprocessing examples.
In this paper, we demonstrated the OOCL routines for
the PC ISA bus, and showed that the routines support
communication for two reasonably complex communi-
cation examples.

The current library includes C libraries for the PC
ISA bus transfer, interrupt-driven PC serial port trans-
fer, and handshaked PC serial port transfer; C libraries
for the Intel 8051 for PC serial port transfer, 12C bus
transfer, and custom protocols for communication with
other 8051’s or with custom hardware components; and
VHDL packages for PC ISA bus transfer and custom
protocols. Future directions include expanding the li-
brary to include other common protocols, and investi-
gating automated generation of the library routine im-
plementations to simplify library development and port-
ing to new architectures.

References

[1] P. Chou, R. Ortega, and G. Borriello, “Interface co-
synthesis techniques for embedded systems,” in Proceed-
ings of the International Conference on Computer-Aided
Design, pp. 280-287, 1995.

[2] S. Vercauteren, B. Lin, and H. D. Man, “Construct-
ing application-specific heterogeneous embedded archi-
tectures from custom HW/SW applications,” in Proceed-
ings of the Design Automation Conference, 1996.

[3] D. Thomas, J. Adams, and H. Schmit, “A model and
methodology for hardware/software codesign,” in IEEE
Design & Test of Computers, pp. 6-15, 1993.

[4] D. Gajski, S. Narayan, L. Ramachandran, F. Vahid, and
P. Fung, “System design methodologies: Aiming at the
100 h design cycle,” IEEE Transactions on Very Large
Scale Integration Systems, vol. 4, no. 1, pp. 70-82, 1996.

[5] S. Narayan and D. Gajski, “Interfacing incompatible pro-
tocols using interface process generation,” in Proceedings
of the 32nd Design Automation Conference, pp. 468-473,
1995.

[6] G. Borriello and R. Katz, “Synthesis and optimization of
interface transducer logic,” in Proceedings of the Inter-
national Conference on Computer-Aided Design, 1987.

[7] L.S. Eggebrecht, Interfacing to the IBM Personal Com-
puter. Sams, second ed., 1990.

