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ABSTRACT
Cheating in introductory programming classes (CS1) is a
well-known problem. Various methods have been suggested to
reduce cheating, but many are time-consuming, resource
intensive, or don't scale to large classes. We introduced a class
intervention having 6 low-effort commonly-suggested methods to
reduce cheating: (1) Discussing academic integrity for 20-30
minutes, several weeks into the term, (2) Requiring an integrity
quiz with explicit do's and don’ts, (3) Allowing students to retract
program submissions, (4) Reminding students mid-term about
integrity and consequences of getting caught, (5) Showing
instructor tools in class (including a similarity checker, statistics
on time spent, and access to a student's full coding history), (6)
Normalizing help and pointing students to help resources. Via
manual evaluation of similarity checker results on 7 held-constant
labs with one instructor teaching 100-student sections, for two
pre-intervention and two intervention sections, suspected-cheating
reduced 62% (30.5% down to 11.5%). Because manual evaluation
could be biased and is time consuming, we developed two
automated coding-behavior metrics per lab -- time spent
programming, and % of students with highly-similar code -- that
may suggest how much cheating is happening. Time spent
increased by 56% (7 min to 10.9 min), and % of students with
highly-similar code dropped 48% (38.5% to 20%). We later
repeated the intervention with a second instructor and different
labs and achieved similar (in fact, even stronger) results, with time
rising 84% (13 min to 24 minutes) and % dropping 66% (55.5%
to 19%). All findings were statistically significant with p <
0.0001.
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1 Introduction
Cheating on programming assignments in introductory
programming classes (aka CS1) is a well-known problem [1, 2].
The temptations provided by websites dedicated to sharing class
content, low-cost help/tutoring sites, and anonymous
communication with classmates via real-time apps like Discord or
GroupMe exacerbate the problem [3]. We sought cheating
reducing methods that wouldn't require extensive resources,
hours, or class redesigns, i.e., "low effort" methods.

We define cheating as a student submitting code that is not their
own, typically by copying from a classmate or website (GitHub,
Chegg, CourseHero, Quizlet, Wyzant, etc.), or by having someone
write their code (friend, contractor, etc.), in a way that violates the
class' policies.

Albluwi [1] proposed a framework from the field of fraud
deterrence, namely the Fraud Triangle [4], to evaluate cheating
reduction methods. Under the framework, three items are needed
for cheating to occur:
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● Pressure (Press.): Students need a good grade, and cannot
(or are unwilling to) achieve the grade through non-cheating
means.

● Opportunity (Opp.): Students have access to illicit working
code, and think they won't be caught.

● Rationalization (Rat.): Most students don't see themselves
as cheaters, so justify their behavior. Ex: "I'm not learning
from this task", "Everyone else is copying", "Professionals
copy all the time", "The expectations are unreasonable", etc.

Many "high-effort" cheating-reduction methods exist. Examples
(and the Fraud Triangle side addressed) include:
● (Press.) Extensive help, days/nights/weekends, via office

hours, free tutors / learning assistants, rapid response to
discussion posts or emails, etc. [5]

● (Press.) Pair programming [6, 7]
● (Opp.) New programming assignments each term [1, 8]
● (Opp.) Auto-randomized assignments so each student's task

is unique (typically auto-graded too)
● (Opp.) "Authentic assessments" wherein each student does a

custom assignment [1, 9]
● (Opp.) More proctored assessments [9]
● (Opp.) 1-on-1 grading with the student or frequent progress

checks [10, 11]
● (Opp.) Heavy plagiarism detection use [12]

Because instructors often don't have the time or resources to apply
those methods extensively throughout a course, we sought to
know: Is there a set of "low-effort" methods that can be applied
with no substantial class redesign, and little time from an
instructor (a few hours per term), that reduce cheating? We
describe several low-effort methods and summarize our
experiences illustrating their impact.

2 Low-effort cheating-reduction methods
We selected numerous low-effort cheating-reduction methods
from those proposed by various instructors and CS education
researchers. We applied six as a class intervention, in Figure 1.

Figure 1: The intervention, consisting of six low-effort
methods, in a 10-week term.

1. Having an academic integrity talk: This method addresses
rationalization by helping students see the class' importance, the
professor's reasonableness, and that writing code is different than
understanding/modifying code. It addresses opportunity by
clarifying what is a violation, noting violations will be sought,
explaining similar code is not normal and tools easily detect
copying, noting that students caught cheating get stiff academic
consequences, etc.

2. Giving an integrity quiz: Some instructors require 100% on an
integrity quiz, whose questions explicitly cover what is allowed
and not allowed. Such a quiz ensures collaboration policies are
understood; often students don't know what is cheating. This
method addresses rationalization by making it harder for students
to justify cheating (especially via "I thought it was OK"). The
method may address opportunity by making cheating detection
efforts and consequences clear. In previous work, 1 and 2 were
shown to decrease cheating in an online masters CS course [14].

3. Allowing students to retract submissions: Malan [15] notes
much cheating occurs in panicked desperation before a deadline,
so allows students to retract submissions (via a "regret clause").
Doing so helps with pressure. Students may have a better
perspective after a deadline.

4. Reminding students about cheating: A reminder may help with
rationalization (reminding students of reasoning) and opportunity
(reminding of getting caught). A tradeoff exists with creating a
state of fear in students, so such a reminder might just be a simple
discussion forum post or 5 minute talk in lecture.

5. Showing tools: Although instructors may warn students that a
similarity checker like MOSS [16][17] will be run, students often
don't believe it, or don't realize the tool's power. Showing tools in
class can help address opportunity, helping students realize they
are likely to get caught.

6. Normalizing help: Students in intro programming courses may
not realize that needing help is normal [18]. Instructors can
remind students that help is normal. Syllabi can point to help
resources like office hours, tutoring services, a lab where students
can ask questions, an online discussion forum, etc. This method
addresses pressure since students getting help may not get
desperate. It can address rationalization by making it harder to
dismiss the professor as unreasonable.

3 CS1 and the intervention
Our CS1 is at a large public state university denoted as an "R1"
(research active), offered every 10-week quarter to 300-500
students (half computing majors, half in other science/engineering
majors that require CS1), via ~100-student sections, with two
instructor-led 80-min lecture sessions and one
teaching-assistant-led 110-minute lab session per week, in C++.
The course uses a zyBook [19], with weekly: before-lecture
interactive readings having ~100 learning questions (Participation
Activities or PAs), ~20 code reading or writing homework
problems (Challenge Activities or CAs), and 5-8 weekly



programming assignments (Lab Activities or LAs -- we mostly
use "zyBooks maintained labs" for LAs). All are auto-graded with
immediate feedback, partial credit, and unlimited resubmissions.
The course is "flipped" with active tasks during lecture. The
course allows collaboration within constraints, and in lab sessions
students get started on the weekly LAs. All LA coding is done in
zyBook's coding window (no external tools allowed). The course
grade is typically 10% PAs, 10% CAs, 20% LAs, 5% class
participation, and the remaining 50-60% from a midterm exam
and final exam, taken in-person, half multiple-choice and half
code-writing. The class achieves consistent results across quarters
and instructors, with strong grades (more As/Bs than Cs/Ds/Fs)
and a low DFW rate (D, F, or withdrawal) usually below 20%.
End-of-term evaluations are positive, usually in the top 20% of all
courses on campus.

One instructor who regularly teaches two sections per year
applied the six low-effort cheating reduction methods in Spring
2021 and Fall 2021, under an approved protocol by our
university's IRB (institutional review board).

1. The talk was in Week 4 for 30 minutes, attendance required,
followed by a mandatory questionnaire requiring 100%
correctness. All students participated.

2. The integrity quiz was in Week 3, with 15 multiple choice
questions, 100% correctness required. Example question: "I
am allowed to show my non-working code to a classmate to
get help debugging" (true) or "I am allowed to show my
working code to a struggling classmate" (false). Upon
answering, the quiz system showed further explanations.

3. Students were informed via the syllabus and announcements
of a form to retract program submissions up to one week after
submitting, with no admission of anything, yielding a 0 but no
penalty or referral.

4. A 1-paragraph reminder announcement was posted in the class
learning management system in Week 6.

5. In weeks 3-8, the instructor showed the similarity checker and
student program analysis tools during lecture about 5 times
total, in natural ways like "Let's see if anyone had similar
ways of solving quiz 3" or "Who volunteers to let us see their
code history for lab 7?".

6. Help was normalized via syllabus text, pointers to resources,
and frequent reminders by the instructor that getting help is
normal. The instructor also live-coded in lecture and made
mistakes, and praised mistakes made by students as learning
opportunities.

The total instructor/TA time spent on the intervention was about 5
hours the first term, and about 3 hours the second term due to
using already-prepared items.

We compared the two intervention sections with the instructor's
prior two offerings, Fall 2019 and Spring 2020, -- the
"pre-intervention" sections. The sections' differed in those 6
methods as shown in Table 1.

Method Pre-intervention Intervention
1. Integ. talk ~5 min in Wk 1 ~30 min in Wk 4.
2. Integ. quiz None (2-3 questions on

Wk1 syllabus quiz)
15-question Wk3
quiz

3. Allow retract. None Announced &
allowed

4. Remind None (beyond perhaps
brief comment)

Wk 6 posted
announcement

5. Show tools Not deliberate, shown 1-2
times

~5 deliberate
showings Wks 3-8

6. Help 1-2 sentences in syllabus Syllabus paragraph +
pointers + freq.
reminders

Table 1: Pre-intervention and intervention class sections with
respect to low-effort cheating reduction methods.

In the intervention section, the instructor was deliberate in not
doing much beyond those six methods, i.e., not making additional
discussion forum posts, or talking extensively about integrity in
later lectures, to aid in determining the impact of those specific
low-effort methods.

We found 12 labs that were identical (among ~70 labs) across the
pre-intervention and intervention terms. Among those, we
selected the 7 that had good solution variability so similarity
checking could detect copying. Table 2 summarizes the lab
content, instructor solution's lines of code (LOC), and week. The
labs spanned weeks 4-8. LOC is the number of lines of code in the
instructor’s solution including blank lines.

Lab LOC Wk

Lab 1: Interstate highway numbers: Output
features like primary/auxiliary, N/S/E/W, etc. 36 4

Lab 2: Seasons: Takes a date as input and outputs
the date's season. 85 4

Lab 3: Max and min: 3 ints input, output largest
and smallest. 41 5

Lab 4: Leap-year: Given year, write function
returning whether leap year. 40 5

Lab 5: Even/Odd Values in Vector: Reads ints,
outputs if all even, odd, or neither. 58 7

Lab 6: Word Frequencies - functions: Reads a list
of words, outputs the words/freq. 42 8

Lab 7: Contact List: Read list of names and
phone numbers. Lookup num by name. 36 8

Table 2: Summary of selected labs.

4 Suspected cheating before and after
We trained a teaching assistant (TA) with 1 year experience to
detect cheating via the zyBooks built-in similarity checker



(simchecker). For all 28 labs (7 labs * 4 terms), the TA was
instructed to focus on pairs reported by the simchecker to have
above 9.0 similarity or higher (max is 10.0), with 9.0 chosen from
our past cheating investigation experiences. The TA was told to
examine each pair manually and determine whether the pair's code
was very likely a case of copying, either from each other or a
common online source. Telltale signs included identical statement
selection and ordering, variable declaration approach (early/late,
initialized or not), variable names, spacing, brace usage,
comments, and anomalies from the class & book style (untaught
constructs, highly-optimized code, strange spellings, etc.). The TA
was instructed to flag any highly-suspected cases, though not
100% sure cheating occurred. For each lab, the TA reported the %
of students that did the lab who were suspected of copying. The
TA spent about 20 hours on the cheating analysis.

Figure 2 shows results. Substantial reductions are evident for
nearly all labs, averaging 32% and 29% (avg 30.5%)
pre-intervention, and 13% and 10% (avg 11.5%) after.

Figure 2: % of high-similarity students before and after the
intervention. Substantial reductions are seen.

5 Automated metrics
We sought automated metrics, to: (1) avoid human bias, (2) detect
some cheating not yielding similar code pairs, and (3) automate
future analyses. We defined two such metrics:

● Median time: zyBooks reports median time per student per
lab. We required all coding be done in the system (no
external IDEs were allowed for labs we examined). The
median is less influenced by outliers than the mean.
Copying code from online, a contractor, or classmate, may
result in less time. Note: [13] found students who copy
mostly do so from the start; only 10-20% copied after trying
the lab.

● % of high-similarity students: For a given LA, we run the
simchecker and auto-count the students appearing at least
once with a 0.9 or higher, and divide by the total students
who submitted that lab. [14] used a similar metric, to avoid
instructor bias.

We sought to further verify the time metric. In Fall'21, we
sanctioned 10 students (of ~100) for cheating. Figure 3 plots
average time for all students on Week 6 labs (one of the more

challenging weeks), sorted by time, showing sanctioned students
as orange triangles. The sanctioned students generally appear on
the left, supporting the use of time as a general cheating indicator,
and is consistent with our interviews with sanctioned students
who often state they didn't have time to work on their programs.
(Note: One of the students near 50 on the x axis was doing the
work but sanctioned for sharing solutions with another student).

Figure 3: Average time for each student on each Week 6 lab.
Students sanctioned for cheating (on any labs, not just in
Week 6) tend to appear to the lower left.

To further verify the % high-similarity metric, Figure 4 shows %
of highly-similar students on four Week 6 labs. On specific labs
where students were caught cheating, similarity scores are nearly
100%, versus 38% for the rest of the class. In fact, those students
caught cheating had higher similarity scores even on labs they
weren't specifically caught cheating on, averaging 73%, as shown.
(For 6.21, one student had 8.9 similarity, just below our 9.0 cutoff,
causing the 80% value in the plot).

Figure 4: % high-similarity students for 4 Week 6 labs.

Neither metric is a smoking gun -- some low-time students are
fast coders, and some similarity is due to coincidence, allowed
collaboration, or low-variability solutions. But, the data suggests
the metrics are useful as general indicators.

Our hypothesis was this: The intervention sections would see an
increase in median time, and decrease in % of high-similarity
students. Both differences might suggest students were working
more independently on their programs, and resorting less to
cheating.



6 Results using automated metrics
Figure 5 shows time for pre-intervention and intervention terms.
Figure 6 shows % high-similarity students. Median time
increased, as hypothesized. The % dropped, also as hypothesized.
Median time for pre-intervention terms was 6.7 and 7.3, vs. 10.8
and 11 for intervention terms, averaging 7 for pre-intervention and
10.9 for intervention (56% increase). % of high-similarity students
was 40% and 37% for pre-intervention terms, vs. 20% and 20%
for intervention terms, averaging 38.5% vs. 20% (48% decrease).

Figure 5: Median time, before and after intervention. Time
rose as hypothesized.

Figure 6: % of high-similarity students, before and after
intervention. % dropped, as hypothesized.

7 Results by a second instructor
Given the positive results obtained in Spring & Fall 2021, we
enlisted a second instructor to attempt the intervention in Spring
2022 as well. That instructor was the "main" instructor of our
CS1, usually teaching 2-3 100-student sections each term, and
leading other instructors who teach additional sections (3-5
sections are taught each term). That instructor applied the
intervention in Spring 2022 for two ~100-student sections. We
compared that instructor's "pre-intervention" Fall 2021 and Winter
2022 terms with their Spring 2022 intervention term. The
instructor assigned about 50 LAs across those terms; we
compared LAs that were identical in all three terms, and that had
variability in their solutions. Labs 1, 3, 4, and 7 were identical to
those used earlier in this paper, but the instructor didn't use the
other three labs; we replaced them with other labs the instructor

did use. Instructor-solution size and approximate week, written as
(size, week), were : (36, 4), (24, 6), (36, 6), (45, 6), (35,7), (38,7),
and (39, 9). Figures 7 and 8 show results. As hypothesized, time
rose, from 13 min (avg) to 24 minutes, and % dropped, from
55.5% (avg)  to 19%.

Figure 7: Median time, second instructor. Time rose as
hypothesized. Note: Some labs differ from earlier.

Figure 8: % of high-similarity students, second instructor. The
% dropped as hypothesized.

8 Statistical significance
A linear mixed effects model was fitted to the data for each
instructor separately, so that the effect of our intervention could be
estimated while controlling for specific labs. The dependent
variable was the log transformation of minutes spent, as the
residuals of raw minutes spent violated the assumption of
normality. We included lab activity as a nested random effect
within academic term, to control for the varied difficulty of labs.
For the first instructor, a t-test using Satterthwaite’s method
revealed a significant effect of condition (t(1,2834) = 6.513, p <
.0001). Cohen’s d was calculated in accordance with [20] to
obtain the partial effect size (d=.24). For the second instructor, a
t-test using Satterthwaite’s method revealed a significant effect of
condition (t(1,5978) = 6.059, p < .0001). Cohen’s d was calculated
to obtain the partial effect size (d=.72).

For the percentage of high-similarity students metric, a
generalized linear mixed effects model with a Poisson distribution
was fitted to the data. The dependent variable was the normalized
count of high-similarity students in each lab. We included lab



activity as a nested random effect within academic term, to control
for the varied difficulty of labs. We observed a significant effect
of condition for the first instructor (z(1,28) = -8.945, p < .0001,
Cohen's d=1.2). We observed a significant effect of condition for
the second instructor (z(1,20) = -14.37, p < .0001, Cohen's d=2.1).

9 Discussion
Another explanation of the data could be that students -- having
been told instructors would be looking for cheating, could see a
history of runs, and could run a similarity checker -- did fake runs
to increase time, and modified code to beat the similarity checker.
However, the TA's manual analysis, coupled with the instructor
examining code, found most code exhibited expected student
development processes. We did find a handful of students in the
intervention classes who were deemed cheating, who seemed to
try (unsuccessfully) to beat the similarity checker by modifying
variable names and spacing (horizontal and vertical) -- perhaps
not realizing that these changes do not impact the similarity
checker.

Our interventions introduced six methods all at once. Ideally, the
impact of each would be known, but such isolation did not seem
feasible, requiring running dozens of intervention sections to
create sufficient ability to analyze the impact of each method (i.e.,
of each parameter, per experimental design techniques [21]). Most
schools don't have enough sections or students for that. Also, we
suspect doing just one method would have less impact; the
collection may be more powerful on the student's perception that
"This class doesn't allow cheating," with the sum being greater
than the parts. Also, since all six methods only required a few
hours total, we were not compelled to prune methods. But,
learning the impact of each method may be future work.

We chose the six methods after studying cheating-reduction
research, conversing with instructors about cheating reduction,
attending conference sessions on cheating reduction (such as a
birds-of-a-feather session at the SIGCSE conference [22] a few
years earlier, and integrity panels involving instructors and
students), participating on our campus' academic integrity
committee and learning of techniques from committee members,
and learning from our own teaching experiences over the past
decade. We do not claim those six methods are the best. Rather,
our goal was to determine if some set of low-effort methods could
have much of an impact, and it seems that they can.

The interventions can be used in any class whether using zyBooks
or not. The "Show tools" item requires some cheating-detection
tools to be used (they are built into zyBooks).

Upon reflection, we wish we had included a seventh method, of
accepting late LA submissions with a small penalty, or of
allowing students to make up missed LAs. While being more
effort than the other six methods, accepting lates / makeups is still
relatively low effort, and its reduction of "pressure" around
deadlines may help. We hope to add that method in future work.

A concern many instructors have is that focusing on cheating may
hurt their end-of-term student evaluation scores. Thus, for interest
(and not part of the main results of this paper, since evaluation
scores can depend on numerous other factors), we report the
evaluation scores of the first intervention instructor, shown as:
instructor score / course score. Anything above 4.0 is generally
good; our CS department average is usually 4.3-4.4:

● Pre-intervention
○ Spring 2019: 4.82 / 4.64
○ Fall 2021: 4.85 / 4.76

● Intervention
○ Spring 2020: 4.38 / 4.29
○ Fall 2021: 4.23 / 4.26

The intervention terms scores were pulled down by 3 or 4 "1"
scores (not present pre-intervention) and some comments along
the lines of: Maybe if the instructor focused more on teaching and
less on cheating, we wouldn't need to cheat. The drop suggests
instructors wishing to keep strong evaluations may need to take
special care. Since collecting data for this paper, the instructor
taught another term (Spring 2022) using the same interventions
but taking extra care to not over-emphasize cheating. Student time
and similarity data were consistent with the other intervention
terms, but evaluation scores rose to 4.65 / 4.48. This gives hope
that the cheating-reduction methods can be applied while
maintaining good evaluation scores, but future focused work
would be needed for more robust results on evaluation score
impacts.

10 Conclusions
We examined the impact on student behavior when incorporating
six low-effort cheating-reduction methods into a CS1 class. Via
manual analysis and two automated metrics, we found those
methods appear to have a positive impact on reducing cheating
and increasing earnest behavior. As such, CS1 instructors (and
instructors of other CS courses) may wish to consider
incorporating some or all of the methods, requiring about 5 hours
in a first term, and just a couple hours in subsequent terms. Not all
cheating was eliminated, and thus future work remains to continue
to try to reduce cheating, subject to available resources.
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