

Digital Design

Chapter 4:

Datapath Components

Slides to accompany the textbook Digital Design, First Edition, by Frank Vahid, John Wiley and Sons Publishers, 2007
http://www.ddvahid.com

Copyright © 2007 Frank Vahid

Introduction

- Chapters 2 \& 3: Introduced increasingly complex digital building blocks
- Gates, multiplexors, decoders, basic registers, and controllers
- Controllers good for systems with control inputs/outputs
- Control input: Single bit (or just a few), representing environment event or state
- e.g., 1 bit representing button pressed
- Data input: Multiple bits collectively representing single entity
- e.g., 7 bits representing temperature in binary
- Need building blocks for data
- Datapath components, aka register-transfer-level (RTL) components, store/transform data
- Put datapath components together to form a datapath
- This chapter introduces numerous datapath components, and simple datapaths
- Next chapter will combine controllers and datapaths into "processors"

Registers

- Can store data, very common in datapaths
- Basic register of Ch 3: Loaded every cycle
- Useful for implementing FSM -- stores encoded state
- For other uses, may want to load only on certain cycles

Basic register loads on every clock cycle
How extend to only load on certain cycles?

Digital Design
Copyright © 2006

Register with Parallel Load

- Add 2×1 mux to front of each flip-flop
- Register's load input selects mux input to pass
- Either existing flip-flop value, or new value to load

(a)

(c)

Basic Example Using Registers

- This example will show how registers load simultaneously on clock cycles
- Notice that all load inputs set to 1 in this example -- just for demonstration purposes

Register Example using the Load Input: Weight Sampler

- Scale has two displays
- Present weight
- Saved weight
- Useful to compare present item with previous item
- Use register to store weight
- Pressing button causes present weight to be stored in register
- Register contents always displayed as "Saved weight," even when new present weight appears

Register Example: Temperature History Display

- Recall Chpt 3 example

- Timer pulse every hour
- Previously used as clock. Better design only connects oscillator to clock inputs -- use registers with load input, connect to timer pulse.

Register Example: Above-Mirror Display

Register Example: Computerized Checkerboard

- Each register holds values for one column of lights
- 1 lights light
- Microprocessor loads one register at a time
- Occurs fast enough that user sees entire board change at once

Register Example: Computerized Checkerboard

$D-10100010 \times 010000101 \times 10100010 \times 010000101 \times 10100010 \times 010000101 \times 10100010 \times 010000101>$
$12,11, i 0<000(R 0) \times 001(R 1) \times 010(R 2) \times 1011$ (R3) 100 (R4) 101 (R5) 110 (R6) 111 (R7)
e
clk \qquad
\qquad $\sqrt{\square}$ $\sqrt{\square}$ \qquad \square \qquad \square \qquad $\boxed{\square}$

Shift Register

- Shift right
- Move each bit one position right
- Shift in 0 to leftmost bit

Q: Do four right shifts on 1001, showing value after each shift
A: 1001 (original)
0100
0010
0001
0000

- Implementation: Connect flip-flop output to next flip-flop's input

Shift Register

- To allow register to either shift or retain, use 2×1 muxes
- shr: 0 means retain, 1 shift
- shr_in: value to shift in
- May be 0, or 1
- Note: Can easily design shift register that shifts left instead

(a)

Digital Design
Copyright © 2006 Frank Vahid

Rotate Register

- Rotate right: Like shift right, but leftmost bit comes from
 rightmost bit

Shift Register Example: Above-Mirror Display

- Earlier example: 8
$+2+1=11$ wires from car's computer to above-mirror display's four registers
- Better than 32 wires, but 11 still a lot -want fewer for smaller wire bundles
- Use shift registers
- Wires: 1+2+1=4
- Computer sends one value at a time, one bit per clock cycle

Multifunction Registers

- Many registers have multiple functions
- Load, shift, clear (load all 0s)
- And retain present value, of course
- Easily designed using muxes
- Just connect each mux input to achieve desired function

(a)

(b)

s1	s0	Operation
0	0	Maintain present value
0	1	Parallel load
1	0	Shift right
1	1	(unused - let's load 0s)

Multifunction Registers

Register Operation Table

- Register operations typically shown using compact version of table
- X means same operation whether value is 0 or 1
- One X expands to two rows
- Two Xs expand to four rows
- Put highest priority control input on left to make reduced table simple

Inputs			Outputs		Note Operation				
Id	shr	shl	s1	s0		Id	shr	shl	Operation
0	0	0	0	0	Maintain value	0	0	0	Maintain value
0	0	1	1	1	Shift left	0	0	1	Shft left
0	1	0	1	0	Shift right	0	1	X	Shift right
0	1	1	1	0	Shift right	1	X	X	Parallel load
1	0	0	0	1	Parallel load				
1	0	1	0	1	Parallel load				
1	1	0		1	Parallel load				
1	1	1	0	1	Parallel load				

Register Design Process

- Can design register with desired operations using simple four-step process

TABLE 4.1 Four-step process for designing a multifunction register.

	Step	Description
1.	Determine mux size	Count the number of operations (don't forget the maintain present value operation!) and add in front of each flip-flop a mux with at least that number of inputs.
2.	Create mux operation table	Create an operation table defining the desired operation for each possible value of the mux select lines.
3.	Connect mux inputs	For each operation, connect the corresponding mux data input to the appropriate external input or flip-flop output (possibly passing through some logic) to achieve the desired operation.
4.	Map control	
lines	Create a truth table that maps external control lines to the internal mux select lines, with appropriate priorities, and then design the logic to achieve that mapping	

Register Design Example

- Desired register operations
- Load, shift left, synchronous clear, synchronous set

Step 1: Determine mux size
5 operations: above, plus maintain a present value (don't forget this one!) --> Use 8x1 mux
Step 2: Create mux operation table

Step 3: Connect mux inputs

Copyright © 2006
Frank Vahid

Register Design Example

Adders

- Adds two N-bit binary numbers
- 2-bit adder: adds two 2-bit numbers, outputs 3-bit result
- e.g., $01+11=100 \quad(1+3=4)$
- Can design using combinational design process of Ch 2, but doesn't work well for reasonable-size N
- Why not?

Inputs				Outputs			
a1	a0	b1	b0	c	s1	s0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	1	
0	0	1	0	0	1	0	
0	0	1	1	0	1	1	
0	1	0	0	0	0	1	
0	1	0	1	0	1	0	
0	1	1	0	0	1	1	
0	1	1	1	1	0	0	
1	0	0	0	0	1	0	
1	0	0	1	0	1	1	
1	0	1	0	1	0	0	
1	0	1	1	1	0	1	
1	1	0	0	0	1	1	
1	1	0	1	1	0	0	
1	1	1	0	1	0	1	
1	1	1	1	1	1	0	

Why Adders Aren't Built Using Standard Combinational Design Process

- Truth table too big
- 2-bit adder's truth table shown - Has $2^{(2+2)}=16$ rows
- 8-bit adder: $2^{(8+8)}=65,536$ rows
- 16 -bit adder: $2^{(16+16)}=\sim 4$ billion rows
- 32-bit adder: ...
- Big truth table with numerous 1s/0s yields big logic
- Plot shows number of transistors for N-bit adders, using state-of-the-art automated combinational design tool

Q: Predict number of transistors for 16-bit adder A: 1000 transistors for $\mathrm{N}=5$, doubles for each increase of N. So transistors $=1000 * 2^{(N-5)}$. Thus, for $\mathrm{N}=16$, transistors $=1000 * 2^{(16-5)}=1000 * 2048=$ $2,048,000$. Way too many!

Alternative Method to Design an Adder: Imitate Adding by Hand

- Alternative adder design: mimic how people do addition by hand
- One column at a time

- Compute sum, add carry to next column

Alternative Method to Design an Adder: Imitate Adding by Hand

- Create component for each column
- Adds that column's bits, generates sum and carry bits

Half-Adder

- Half-adder: Adds 2 bits, generates sum and carry
- Design using combinational design process from Ch 2

Step 1: Capture the function

Inputs		Outputs	
a	b	$c o$	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Step 2: Convert to equations
$\mathrm{co}=\mathrm{ab}$
s = a'b + ab' (same as s = a xor b)

Step 3: Create the circuit

Full-Adder

- Full-adder: Adds 3 bits, generates sum and carry
- Design using combinational design process from Ch 2

Step 1: Capture the function

Carry-Ripple Adder

- Using half-adder and full-adders, we can build adder that adds like we would by hand
- Called a carry-ripple adder
- 4-bit adder shown: Adds two 4-bit numbers, generates 5-bit output
- 5-bit output can be considered 4-bit "sum" plus 1-bit "carry out"
- Can easily build any size adder

(a)

(b)

Carry-Ripple Adder

- Using full-adder instead of half-adder for first bit, we can include a "carry in" bit in the addition
- Will be useful later when we connect smaller adders to form bigger adders

(a)

(b)

Carry-Ripple Adder's Behavior

0111+0001 (answer should be 01000)

Output after 2 ns (1FA delay)

Digital Desig
Copyright © 2 Frank Vahid

Wrong answer -- something wrong? No -- just need more time d

Carry-Ripple Adder's Behavior

 Copyright © 2006 Correct answer appears after 4 FA delays
Frank Vahid

0111+0001 (answer should be 01000)

Outputs after 4ns (2 FA delays)

Outputs after 6ns (3 FA delays)

Output after 8ns (4 FA delays)

Frank Vahid

Cascading Adders

(a)

(b)

Adder Example: DIP-Switch-Based Adding Calculator

- Goal: Create calculator that adds two 8-bit binary numbers, specified using DIP switches
- DIP switch: Dual-inline package switch, move each switch up or down
- Solution: Use 8-bit adder

DIP switches

Adder Example: DIP-Switch-Based Adding Calculator

- To prevent spurious values from appearing at output, can place register at output
- Actually, the light flickers from spurious values would be too fast for humans to detect -- but the principle of registering outputs to avoid spurious values being read by external devices (which normally aren't humans) applies here.

Adder Example: Compensating Weight Scale

- Weight scale with compensation amount of 0-7
- To compensate for inaccurate sensor due to physical wear
- Use 8-bit adder

Shifters

- Shifting (e.g., left shifting 0011 yields 0110) useful for:
- Manipulating bits
- Converting serial data to parallel (remember earlier above-mirror display example with shift registers)
- Shift left once is same as multiplying by 2 (0011 (3) becomes 0110 (6))
- Why? Essentially appending a 0 -- Note that multiplying decimal number by 10 accomplished just be appending 0, i.e., by shifting left (55 becomes 550)
- Shift right once same as dividing by 2

Shifter with left shift, right shift, and no shift

Shifter with left shift or no shift

Shifter Example: Approximate Celsius to Fahrenheit Converter

- Convert 8-bit Celsius input to 8-bit Fahrenheit output
$-F=C * 9 / 5+32$
- Approximate: $\mathrm{F}=\mathrm{C} * 2+32$
- Use left shift: $F=\underline{\text { left_shift(C) }}+\underline{32}$

Shifter Example: Temperature Averager

- Four registers storing a history of temperatures
- Want to output the average of those temperatures
- Add, then divide by four
- Same as shift right by 2
- Use three adders, and right shift by two

Barrel Shifter

- A shifter that can shift by any amount
- 4-bit barrel left shift can shift left by 0 , 1, 2, or 3 positions
- 8-bit barrel left shifter can shift left by
$0,1,2,3,4,5,6$, or 7 positions
- (Shifting an 8 -bit number by 8 positions is pointless -- you just lose all the bits)
- Could design using 8×1 muxes and lots of wires
- Too many wires
- More elegant design
- Chain three shifters: 4, 2, and 1
- Can achieve any shift of $0 . .7$ by enabling the correct combination of those three shifters, i.e., shifts should sum to desired amount

Shift by 1 shifter uses $2 x 1$ muxes. 8 x 1 mux solution for 8-bit barrel shifter: too many wires.

Comparators

- N-bit equality comparator: Outputs 1 if two N -bit numbers are equal
- 4-bit equality comparator with inputs A and B
- a3 must equal b3, a2 = b2, a1 = b1, a0 = b0
- Two bits are equal if both 1 , or both 0
- eq $=\left(a 3 b 3+a 3^{\prime} b 3^{\prime}\right) *\left(a 2 b 2+a 2^{\prime} b 2^{\prime}\right) *\left(a 1 b 1+a 1^{\prime} b 1^{\prime}\right) *\left(a 0 b 0+a 0^{\prime} b 0^{\prime}\right)$
- Recall that XNOR outputs 1 if its two input bits are the same
$-\mathrm{eq}=(\mathrm{a} 3$ xnor b 3$)$ * $(\mathrm{a} 2$ xnor b2 $) ~ *(\mathrm{a} 1$ xnor b1) * (a0 xnor b0)
$0110=0111 ?$

Magnitude Comparator

- N-bit magnitude comparator: Indicates whether $A>B, A=B$, or $A<B$, for its two N-bit inputs A and B
- How design? Consider how compare by hand. First compare a3 and b3. If equal, compare a 2 and b 2 . And so on. Stop if comparison not equal -whichever's bit is 1 is greater. If never see unequal bit pair, $A=B$.
$\mathrm{A}=1011 \mathrm{~B}=1001$
10111001 Equal
10111001 Equal
10111001 Unequal
So A > B

Magnitude Comparator

- By-hand example leads to idea for design
- Start at left, compare each bit pair, pass results to the right
- Each bit pair called a stage
- Each stage has 3 inputs indicating results of higher stage, passes results to lower stage

Stage 3
Stage 2
(a)

Magnitude Comparator

- Each stage:
- out_gt = in_gt + (in_eq * a * b')
- $A>B$ (so far) if already determined in higher stage, or if higher stages equal but in this stage $a=1$ and $b=0$
- out_lt = in_lt + (in_eq * a' * b)
- $\mathrm{A}<\mathrm{B}$ (so far) if already determined in higher stage, or if higher stages equal but in this stage $a=0$ and $b=1$
- out_eq = in_eq * (a XNOR b)
- $A=B$ (so far) if already determined in higher stage and in this stage $a=b$ too

Simple circuit inside each stage, just a few gates (not shown)

Magnitude Comparator

- How does it work?

Magnitude Comparator

Magnitude Comparator Example: Minimum of Two Numbers

- Design a combinational component that computes the minimum of two 8 -bit numbers
- Solution: Use 8-bit magnitude comparator and 8-bit 2×1 mux
- If $A<B$, pass A through mux. Else, pass B.

Counters

- N-bit up-counter: N -bit register that can increment (add 1) to its own value on each clock cycle
- 0000, 0001, 0010, 0011,, 1110, 1111, 0000

- Note how count "rolls over" from 1111 to 0000
- Terminal (last) count, tc, equals1 during value just before rollover
- Internal design
- Register, incrementer, and N-input AND gate to detect terminal count

Incrementer

- Counter design used incrementer
- Incrementer design
- Could use carry-ripple adder with B input set to 00... 001
- But when adding 00... 001 to another number, the leading 0's obviously don't need to be considered -- so just two bits being added per column
- Use half-adders (adds two bits) rather than full-adders (adds three bits)

Incrementer

- Can build faster incrementer using combinational logic design process
- Capture truth table
- Derive equation for each output
- $\mathrm{c0}=\mathrm{a} 3 \mathrm{a} 2 \mathrm{a} 1 \mathrm{a} 0$
- ...
- $\mathrm{s} 0=\mathrm{a} 0^{\prime}$
- Results in small and fast circuit
- Note: works for small N -- larger N leads to exponential growth, like for N -bit adder

Inputs				Outputs				
a3	a2	a1	a0	c0	s3	s2	s1	s0
0	0	0	0	0	0	0	0	1
0	0	0	1	0	0	0	1	0
0	0	1	0	0	0	0	1	1
0	0	1	1	0	0	1	0	0
0	1	0	0	0	0	1	0	1
0	1	0	1	0	0	1	1	0
0	1	1	0	0	0	1	1	1
0	1	1	1	0	1	0	0	0
1	0	0	0	0	1	0	0	1
1	0	0	1	0	1	0	1	0
1	0	1	0	0	1	0	1	1
1	0	1	1	0	1	1	0	0
1	1	0	0	0	1	1	0	1
1	1	0	1	0	1	1	1	0
1	1	1	0	0	1	1	1	1
1	1	1	1	1	0	0	0	0

Counter Example: Mode in Above-Mirror Display

- Recall above-mirror display example from Chapter 2
- Assumed component that incremented xy input each time button pressed: 00, 01, 10, 11, 00, 01, 10, 11, 00, ...
- Can use 2-bit up-counter
- Assumes mode=1 for just one clock cycle during each button press
- Recall "Button press synchronizer" example from Chapter 3

Counter Example: 1 Hz Pulse Generator Using 256 Hz

Oscillator

- Suppose have 256 Hz oscillator, but want 1 Hz pulse
-1 Hz is 1 pulse per second -- useful for keeping time
- Design using 8-bit upcounter, use tc output as pulse
- Counts from 0 to 255 (256 counts), so pulses tc every
 256 cycles

Down-Counter

- 4-bit down-counter
- 1111, 1110, 1101, 1100, ..., 0011, 0010, 0001, 0000, 1111, ...
- Terminal count is 0000
- Use NOR gate to detect
- Need decrementer (-1) design like designed incrementer

Up/Down-Counter

- Can count either up or down
- Includes both incrementer and decrementer
- Use dir input to select, using 2×1 : dir=0 means up
- Likewise, dir selects appropriate terminal count value

Counter Example: Light Sequencer

- Illuminate 8 lights from right to left, one at a time, one per second
- Use 3-bit up-counter to counter from 0 to 7
- Use 3×8 decoder to illuminate appropriate light
- Note: Used 3-bit counter with 3×8 decoder
- NOT an 8-bit counter - why
 not?

Counter with Parallel Load

- Up-counter that can be loaded with external value
- Designed using 2×1 mux
- Id input selects incremented value or external value
- Load the internal register when loading external value or when counting

Counter with Parallel Load

- Useful to create pulses at specific multiples of clock
- Not just at N-bit counter's natural wrap-around of 2^{N}
- Example: Pulse every 9 clock cycles
- Use 4-bit down-counter with parallel load
- Set parallel load input to 8 (1000)
- Use terminal count to reload

- When count reaches 0 , next cycle loads 8.
- Why load 8 and not 9 ? Because 0 is included in count sequence:
- $8,7,6,5,4,3,2,1,0 \rightarrow 9$ counts

Counter Example: New Year's Eve Countdown Display

- Chapter 2 example previously used microprocessor to counter from 59 down to 0 in binary
- Can use 8-bit (or 7- or 6-bit) down-counter instead, initially loaded with 59

Counter Example:

1 Hz Pulse Generator from 60 Hz Clock

- U.S. electricity standard uses 60 Hz signal
- Device may convert that to 1 Hz signal to count seconds
- Use 6-bit up-counter
- Can count from 0 to 63
- Create simple logic to detect 59 (for 60 counts)
- Use to clear the counter back to 0 (or to load 0)

Timer

- A type of counter used to measure time
- If we know the counter's clock frequency and the count, we know the time that's been counted
- Example: Compute car's speed using two sensors
- First sensor (a) clears and starts timer
- Second sensor (b) stops timer
- Assuming clock of 1 kHz , timer output represents time to travel between sensors. Knowing the distance, we can compute speed

Multiplier - Array Style

- Can build multiplier that mimics multiplication by hand
- Notice that multiplying multiplicand by 1 is same as ANDing with 1

0110	(the top number is called the multiplicand)
0011	(the bottom number is called the multiplier)
$-\cdots-110$	(each row below is called a partial product)
0110	(because the rightmost bit of the multiplier is 1 , and $0110 * 1=0110$) (because the second bit of the multiplier is 1 , and $0110 * 1=0110$) 0000
(because the third bit of the multiplier is 0 , and $0110 * 0=0000$)	
(because the leftmost bit of the multiplier is 0 , and $0110 * 0=0000$)	

Multiplier - Array Style

- Generalized representation of multiplication by hand

				a3	a2	a1
	\times	b3	b2	b1	b0	

Multiplier - Array Style

Subtractor

- Can build subtractor as we built carry-ripple adder
- Mimic subtraction by hand
- Compute borrows from columns on left
- Use full-subtractor component:
- wi is borrow by column on right, wo borrow from column on left

Digital Design Copyright © 2006 Frank Vahid

Subtractor Example: DIP-Switch Based Adding/Subtracting Calculator

- Extend earlier calculator example
- Switch findicates whether want to add ($\mathrm{f}=0$) or subtract ($\mathrm{f}=1$)
- Use subtractor and 2x1 mux

Subtractor Example:
 Color Space Converter - RGB to CMYK

- Color
- Often represented as weights of three colors: red, green, and blue (RGB)
- Perhaps 8 bits each, so specific color is 24 bits
- White: R=11111111, $\mathrm{G}=11111111, \mathrm{~B}=11111111$
- Black: R=00000000, $G=00000000$, $B=00000000$
- Other colors: values in between, e.g., $\mathrm{R}=00111111$, $G=00000000, B=00001111$ would be a reddish purple
- Good for computer monitors, which mix red, green, and blue lights to form all colors

- Printers use opposite color scheme
- Because inks absorb light
- Use complementary colors of RGB: Cyan (absorbs red), reflects green and blue, Magenta (absorbs green), and Yellow (absorbs blue)

Subtractor Example:
 Color Space Converter - RGB to CMYK

- Printers must quickly convert RGB to CMY
- $\mathrm{C}=255-\mathrm{R}, \mathrm{M}=255-\mathrm{G}, \mathrm{Y}=255-\mathrm{B}$
- Use subtractors as shown

Subtractor Example:
 Color Space Converter - RGB to CMYK

- Try to save colored inks
- Expensive
- Imperfect - mixing C, M, Y doesn't yield good-looking black
- Solution: Factor out the black or gray from the color, print that part using black ink
- e.g., CMY of $(250,200,200)=$ $(200,200,200)+(50,0,0)$.
- $(200,200,200)$ is a dark gray - use black ink

Subtractor Example:
 Color Space Converter - RGB to CMYK

- Call black part K
- (200,200,200): K=200
- (Letter "B" already used for blue)
- Compute minimum of C , M, Y values
- Use MIN component designed earlier, using comparator and mux, to compute K
- Output resulting K value, and subtract K value from C, M, and Y values
- Ex: Input of $(250,200,200)$ yields output of (50,0,0,200)

Digital Design
Copyright © 2006
Frank Vahid

Representing Negative Numbers: Two's Complement

- Negative numbers common
- How represent in binary?
- Signed-magnitude
- Use leftmost bit for sign bit
- So -5 would be:

1101 using four bits 10000101 using eight bits

- Better way: Two's complement
- Big advantage: Allows us to perform subtraction using addition
- Thus, only need adder component, no need for separate subtractor component!

Ten's Complement

- Before introducing two's complement, let's consider ten's complement
- But, be aware that computers DO NOT USE TEN'S COMPLEMENT. Introduced for intuition only.
- Complements for each base ten number shown to right - Complement is the number that when added results in 10
$1 \longrightarrow 9$
$2 \longrightarrow$
$2 \longrightarrow$
$3 \longrightarrow$
$4 \longrightarrow$
$4 \longrightarrow$
$5 \longrightarrow$

Ten's Complement

- Nice feature of ten's complement
- Instead of subtracting a number, adding its complement results in answer exactly 10 too much
- So just drop the 1 - results in subtracting using addition only

Two's Complement is Easy to Compute: Just Invert Bits and Add 1

- Hold on!
- Sure, adding the ten's complement achieves subtraction using addition only
- But don't we have to perform subtraction to have determined the complement in the first place? e.g., we only know that the complement of 4 is 6 by subtracting 10-4=6 in the first place.
- True - but in binary, it turns out that the two's complement can be computed easily
- Two's complement of 011 is 101 , because $011+101$ is 1000
- Could compute complement of 011 as $1000-011=101$
- Easier method: Just invert all the bits, and add 1
- The complement of 011 is $100+1=101$-- it works!

Q: What is the two's complement of 0101? A: 1010+1=1011
(check: $0101+1011=10000$)
Q: What is the two's complement of 0011?
A: $1100+1=1101$
Digital Design Copyright © 2006 Frank Vahid

Two's Complement Subtractor Built with an Adder

- Using two's complement
$A-B=A+(-B)$
= A + (two's complement of B)
= A + invert_bits(B) +1
- So build subtractor using adder by inverting B's bits, and setting carry in to 1

Adder/Subtractor

- Adder/subtractor: control input determines whether add or subtract
- Can use 2×1 mux - sub input passes either B or inverted B
- Alternatively, can use XOR gates - if sub input is 0 , B 's bits pass through; if sub input is 1, XORs invert B's bits

(b)

Adder/Subtractor Example: Calculator

- Previous calculator used separate adder and subtractor
- Improve by using adder/subtractor, and two's complement numbers

Overflow

- Sometimes result can't be represented with given number of bits
- Either too large magnitude of positive or negative
- e.g., 4-bit two's complement addition of 0111+0001 (7+1=8). But 4bit two's complement can't represent number >7
- 0111+0001 = 1000 WRONG answer, 1000 in two's complement is -8 , not +8
- Adder/subtractor should indicate when overflow has occurred, so result can be discarded

Detecting Overflow: Method 1

- Assuming 4-bit two's complement numbers, can detect overflow by detecting when the two numbers' sign bits are the same but are different from the result's sign bit
- If the two numbers' sign bits are different, overflow is impossible
- Adding a positive and negative can't exceed largest magnitude positive or negative
- Simple circuit
- overflow = a3'b3's3 + a3b3s3'
- Include "overflow" output bit on adder/subtractor sign bits
 If the numbers' sign bits have the same value, which differs from the result's sign bit, overflow has occurred.

Detecting Overflow: Method 2

- Even simpler method: Detect difference between carry-in to sign bit and carry-out from sign bit
- Yields simpler circuit: overflow $=$ c3 xor c4

If the carry into the sign bit column differs from the carry out of that column, overflow has occurred.

Arithmetic-Logic Unit: ALU

- ALU: Component that can perform any of various arithmetic (add, subtract, increment, etc.) and logic (AND, OR, etc.) operations, based on control inputs
- Motivation:
- Suppose want multifunction calculator that not only adds and subtracts, but also increments, ANDs, ORs, XORs, etc.

Inputs			Operation	Sample output if $\mathrm{A}=00001111$, $\mathrm{B}=00000101$
\times	y	z		
0	0	0	$\mathrm{S}=\mathrm{A}+\mathrm{B}$	$\mathrm{S}=00010100$
0	0	1	$\mathrm{S}=\mathrm{A}-\mathrm{B}$	$\mathrm{S}=00001010$
0	1	0	$\mathrm{S}=\mathrm{A}+1$	$\mathrm{S}=00010000$
0	1	1	$\mathrm{S}=\mathrm{A}$	$\mathrm{S}=00001111$
1	0	0	$\mathrm{S}=\mathrm{A}$ AND B (bitwise AND)	$\mathrm{S}=00000101$
1	0	1	$\mathrm{S}=\mathrm{A}$ OR B (bitwise OR)	$\mathrm{S}=00001111$
1	1	0	$\mathrm{S}=\mathrm{A}$ XOR B (bitwise XOR)	$\mathrm{S}=00001010$
1	1	1	$\mathrm{S}=$ NOT A (bitwise complement)	$S=11110000$

Multifunction Calculator without an ALU

- Can build multifunction calculator using separate components for each operation, and muxes
- But too many wires, and wasted power computing all those operations when at any time you only use

lapats		Operation	
\times	y		
0	0	5-A + B	5-6010000
0	0	8=A-8	5-0x01010
0	1	S=A+1	5-6010000
0	1	s=A	s-momill
1	0	S-AAND B dawientin	S-0050101
1	0	S-A OR B (timine Cre)	$5-6000111$
1	1	8=A XOR 8 (axaie XOR)	5-000010
1	1		S=1110000

Arithmetic-Logic Extender in Front of ALU

	tapus			Sample cotpot if
\times	y	z	Operation	$\mathrm{A}=00001111$, $\mathrm{B}=0.000101$.
0	0	0	S-A + B	S-0010100
0	0	1	$\mathrm{S}=\mathrm{A} \cdot \mathrm{B}$	S-0001010
0	1	0	S-A+1	S-0010000
0	1	1	S-A	S-pxou1.1
1	0	0	S - AAND B (ciumix And)	S-0000010
1	0	1	$\mathrm{S}=\mathrm{A}$ OR B (sitwise OR)	S-00001111
1	1	0	$\mathrm{S}=\mathrm{A}$ XOR B (itwie XOR)	S-00001010
1	1	1	$\mathrm{s}=$ NOT A (iminive complenemt)	$\mathrm{S}=11110000$

(b)

- $x y z=000$: Want $S=A+B$ - just pass a to $i a, b$ to ib, and set cin=0
- xyz=001: Want $S=A-B$ - pass a to ia, b' to ib, and set cin=1
- $x y z=010$: Want $S=A+1$ - pass a to ia, set ib=0, and set cin=1
- xyz=011: Want $S=A$ - pass a to ia, set ib=0, and set cin=0
- xyz=1000: Want S=A AND B - set ia=a*b, b=0, and cin=0
- others: likewise
- Based on above, create logic for $i a(x, y, z, a, b)$ and $i b(x, y, z, a, b)$ for each abext, and create logic for $\operatorname{cin}(x, y, z)$, to complete design of the AL-extender component

Copyright © 2006
Frank Vahid

ALU Example: Multifunction Calculator

- Design using ALU is elegant and efficient
- No mass of wires
- No big waste of power

Register Files

- MxN register file component provides efficient access to M N -bit-wide registers
- If we have many registers but only need access one or two at a time, a register file is more efficient
- Ex: Above-mirror display (earlier example), but this time having 16 32-bit registers
- Too many wires, and big mux is too slow

Register File

- Instead, want component that has one data input and one data output, and allows us to specify which internal register to write and which to read

Register File Timing Diagram

- Can write one register and read one register each clock cycle
- May be same register
 Copyright © 2006

Frank Vahid

Register-File Example: Above-Mirror Display

- 16 32-bit registers that can be written by car's computer, and displayed
- Use 16x32 register file
- Simple, elegant design
- Register file hides complexity internally
- And because only one
 register needs to be written and/or read at a time, internal design is simple

Chapter Summary

- Need datapath components to store and operate on multibit data
- Also known as register-transfer-level (RTL) components
- Components introduced
- Registers
- Shifters
- Adders
- Comparators
- Counters
- Multipliers
- Subtractors
- Arithmetic-Logic Units
- Register Files
- Next, we'll combine knowledge of combinational logic design, sequential logic design, and datapath components, to build digital circuits that can perform general and powerful computations

Digital Design Copyright © 2006 Frank Vahid

