

Digital Design

Chapter 3:

Sequential Logic Design -- Controllers

Slides to accompany the textbook Digital Design, First Edition, by Frank Vahid, John Wiley and Sons Publishers, 2007
http://www.ddvahid.com

Copyright © 2007 Frank Vahid

Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities, subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pd subject to keeping this copyright notice in place and unmodified. These sidides may be posted as unanimated paf versions on publicly-accessible course websites.. PowerPoint source (or pa
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means. Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors may obtain PowerPoint source or obtain special use permissions from Wiley - see http://www.ddvahid.com for information.

Introduction

- Sequential circuit
- Output depends not just on present inputs (as in combinational circuit), but on past sequence of inputs
- Stores bits, also known as having "state"

- Simple example: a circuit that counts up in binary
- In this chapter, we will:
- Design a new building block, a flip-flop, that stores one bit
- Combine that block to build multi-bit storage - a register
- Describe the sequential behavior using a finite state machine

Must know sequence of past inputs to know output

- Convert a finite state machine to a controller - a sequential circuit having a register and combinational logic

Example Needing Bit Storage

- Flight attendant call button
- Press call: light turns on
- Stays on after button released
- Press cancel: light turns off
- Logic gate circuit to implement this?

1. Call button pressed - light turns on

2. Call button released - light stays on

Doesn't work. Q=1 when Call=1, but doesn't stay 1 when Call returns to 0
Need some form of "feedback" in the circuit

3. Cancel button pressed - light turns off

First attempt at Bit Storage

- We need some sort of feedback
- Does circuit on the right do what we want?
- No: Once Q becomes 1 (when $S=1$), Q stays 1
 forever - no value of S can bring Q back to 0

Bit Storage Using an SR Latch

- Does the circuit to the right, with cross-coupled NOR gates, do what we want?
- Yes! How did someone come up with that circuit? Maybe just trial and error, a bit of insight...

Example Using SR Latch for Bit Storage

- SR latch can serve as bit storage in previous example of flight-attendant call button

- Call=1 : sets Q to 1
- Q stays 1 even after Call=0
- Cancel=1 : resets Q to 0
- But, there's a problem...

Problem with SR Latch

- Problem
- If $\mathrm{S}=1$ and $\mathrm{R}=1$ simultaneously, we don't know what value Q will take

Q may oscillate. Then, because one path will be t slightly longer than the other, Q will eventually settle to 1 or 0 - but we don't know which.

Problem with SR Latch

- Problem not just one of a user pressing two buttons at same time
- Can also occur even if SR inputs come from a circuit that supposedly never sets $S=1$ and $R=1$ at same time
- But does, due to different delays of different paths

The longer path from X to R than to S causes $\mathrm{SR}=11$ for short time - could be long enough to cause oscillation

Solution: Level-Sensitive SR Latch

- Add enable input " C " as shown
- Only let S and R change when $C=0$
- Enure circuit in front of SR never sets $\mathrm{SR}=11$, except briefly due to path delays
- Change C to 1 only after sufficient time for S and R to be stable
- When C becomes 1, the stable S and R value passes through the two AND gates to the SR latch's S1 R1 inputs.

 $\mathrm{c}_{0}^{1}-\square$

...S1R1 never $=11$
9

Level-sensitive SR latch symbol

Clock Signals for a Latch

- How do we know when it's safe to set $\mathrm{C}=1$?
- Most common solution -make C pulse up/down
- $\mathrm{C}=0$: Safe to change X, Y
- $\mathrm{C}=1$: Must not change X, Y
- We'll see how to ensure that later
- Clock signal -- Pulsing signal used to enable latches
- Because it ticks like a clock
- Sequential circuit whose storage components all use clock signals: synchronous circuit
- Most common type
- Asynchronous circuits - important topic, but left for advanced course

- Clock period: time interval between pulses
- Above signal: period = 20 ns
- Clock cycle: one such time interval
- Above signal shows 3.5 clock cycles
- Clock frequency: $1 /$ period
- Above signal: frequency = $1 / 20 \mathrm{~ns}=50 \mathrm{MHz}$

Freq	Period
100 GHz	0.01 ns
10 GHz	0.1 ns
1 GHz	1 ns
100 MHz	10 ns
10 MHz	100 ns

- $1 \mathrm{~Hz}=1 / \mathrm{s}$

Level-Sensitive D Latch

- SR latch requires careful design to ensure SR=11 never occurs
- D latch relieves designer of that burden
- Inserted inverter ensures R always opposite of S

D latch symbol

Problem with Level-Sensitive D Latch

- D latch still has problem (as does SR latch)
- When $\mathrm{C}=1$, through how many latches will a signal travel?
- Depends on for how long C=1
- Clk_A -- signal may travel through multiple latches
- Clk_B -- signal may travel through fewer latches
- Hard to pick C that is just the right length
- Can we design bit storage that only stores a value on the rising edge of a clock signal?

Cak_A \qquad

Clk_B \qquad几

D Flip-Flop

- Flip-flop: Bit storage that stores on clock edge, not level
- One design -- master-servant
- Two latches, output of first goes to input of second, master latch has inverted clock signal
- So master loaded when $\mathrm{C}=0$, then servant when $\mathrm{C}=1$
- When C changes from 0 to 1, master disabled, servant loaded with value that was at D just before C changed -- i.e.,
 Hundreds of different flip different flip
flop designs exist value at D during rising edge of C

D Flip-Flop

D Flip-Flop

- Solves problem of not knowing through how many latches a signal travels when $\mathrm{C}=1$
- In figure below, signal travels through exactly one flip-flop, for Clk_A or Clk_B
- Why? Because on rising edge of CIk, all four flip-flops are loaded simultaneously -- then all four no longer pay attention to their input, until the next rising edge. Doesn't matter how long CIk is 1 .

D Latch vs. D Flip-Flop

- Latch is level-sensitive: Stores D when $\mathrm{C}=1$
- Flip-flop is edge triggered: Stores D when C changes from 0 to 1
- Saying "level-sensitive latch," or "edge-triggered flip-flop," is redundant
- Two types of flip-flops -- rising or falling edge triggered.
- Comparing behavior of latch and flip-flop:

Flight-Attendant Call Button Using D Flip-Flop

- D flip-flop will store bit
- Inputs are Call, Cancel, and present value of D flip-flop, Q
- Truth table shown below
$\left.\begin{array}{ccc|c}\hline \text { Cal1 } & \text { Cance 1 } & 0 & \text { D } \\ \hline 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 1 & 1 \\ \hline 0 & 1 & 0 & 0 \\ \hline 0 & 1 & 1 & 0 \\ \hline 1 & 0 & 0 & 1 \\ \hline 1 & 0 & 1 & 1 \\ \hline 1 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 \\ \hline\end{array}\right\}$

Preserve value: if $Q=0$, make $D=0$; if

Bit Storage Summary

Feature: $\mathrm{S}=1$ sets Q to 1, R=1 resets Q to 0. Problem:
SR=11 yield undefined Q

Feature: S and R only have effect when $\mathrm{C}=1$. We can design outside circuit so SR=11 never happens when $\mathrm{C}=1$. Problem: avoiding SR=11 can be a burden.

Feature: SR can't be 11 if D is stable before and while $\mathrm{C}=1$, and will be 11 for only a brief glitch even if D changes while $C=1$. Problem: $\mathrm{C}=1$ too long propagates new values through too many latches: too short may not enable a

Feature: Only loads D value present at rising clock edge, so values can't propagate to other flip-flops during same clock cycle. Tradeoff: uses more gates internally than D latch, and requires more external gates than SR - but gate count is less of an issue today.
store.

- We considered increasingly better bit storage until we arrived at the robust D flip-flop bit storage

Basic Register

- Typically, we store multi-bit items
- e.g., storing a 4-bit binary number
- Register: multiple flip-flops sharing clock signal
- From this point, we'll use registers for bit storage
- No need to think of latches or flip-flops
- But now you know what's inside a register

Digital Desig
Copyright © 2006
Frank Vahid

Example Using Registers: Temperature Display

- Temperature history display
- Sensor outputs temperature as 5-bit binary number
- Timer pulses C every hour
- Record temperature on each pulse, display last three recorded values

(In practice, we would actually avoid connecting the timer output C to a clock input, instead only connecting an oscillator output to a clock input.)

Example Using Registers: Temperature Display

- Use three 5-bit registers

Finite-State Machines (FSMs) and Controllers

- Want sequential circuit with particular behavior over time
- Example: Laser timer
- Push button: x=1 for 3 clock cycles

- How? Let's try three flip-flops
- $b=1$ gets stored in first D flip-flop
- Then 2nd flip-flop on next cycle, then 3rd flip-flop on next
- OR the three flip-flop outputs, so x should be 1 for three cycles

Need a Better Way to Design Sequential Circuits

- Trial and error is not a good design method
- Will we be able to "guess" a circuit that works for other desired behavior?
- How about counting up from 1 to 9 ? Pulsing an output for 1 cycle every 10 cycles? Detecting the sequence 135 in binary on a 3-bit input?
- And, a circuit built by guessing may have undesired behavior
- Laser timer: What if press button again while $\mathrm{x}=1$? x then stays one another 3 cycles. Is that what we want?
- Combinational circuit design process had two important things

1. A formal way to describe desired circuit behavior

- Boolean equation, or truth table

2. A well-defined process to convert that behavior to a circuit

- We need those things for sequence circuit design

Describing Behavior of Sequential Circuit: FSM

- Finite-State Machine (FSM)
- A way to describe desired behavior of sequential circuit
- Akin to Boolean equations for combinational behavior
- List states, and transitions among states
- Example: Make x change toggle (0 to 1, or 1 to 0) every clock cycle
- Two states: "Off" (x=0), and "On" (x=1)
- Transition from Off to On, or On to Off, on rising clock edge
- Arrow with no starting state points to initial state (when circuit first starts)
Digital Design
Copyright © 2006
Frank Vahid

FSM Example: 0,1,1,1,repeat

- Want $0,1,1,1,0,1,1,1, \ldots$
- Each value for one clock cycle
- Can describe as FSM
- Four states
- Transition on rising clock edge to next state

Outputs: x

Extend FSM to Three-Cycles High Laser Timer

- Four states
- Wait in "Off" state while b is 0 (b')
- When b is 1 (and rising clock edge), transition to On1
- Sets $x=1$
- On next two clock edges, transition to On2, then On3, which also set $x=1$
- So x=1 for three cycles after button pressed

FSM Definition

- FSM consists of
- Set of states
- Ex: \{Off, On1, On2, On3\}
- Set of inputs, set of outputs
- Ex: Inputs: $\{x\}$, Outputs: $\{b\}$
- Initial state
- Ex: "Off"
- Set of transitions
- Describes next states
- Ex: Has 5 transitions
- Set of actions
- Sets outputs while in states
- Ex: $x=0, x=1, x=1$, and $x=1$

Digital Design Copyright © 2006 Frank Vahid

Inputs: b; Outputs: x

We often draw FSM graphically, known as state diagram

Can also use table (state table), or textual languages

FSM Example: Secure Car Key

- Many new car keys include tiny computer chip

- When car starts, car's computer (under engine hood) requests identifier from key
- Key transmits identifier
- If not, computer shuts off car
- FSM
- Wait until computer requests ID ($a=1$)
- Transmit ID (in this case, 1101)

FSM Example: Secure Car Key (cont.)

- Nice feature of FSM
- Can evaluate output behavior for different input sequence
- Timing diagrams show states and output values for different input waveforms

Q : Determine states and r value for given input waveform:

FSM Example: Code Detector

- Unlock door ($u=1$) only when buttons pressed in sequence:
- start, then red, blue, green, red
- Input from each button: s, r, g, b
- Also, output a indicates that some colored button pressed
- FSM
- Wait for start (s=1) in "Wait"
- Once started ("Start")
- If see red, go to "Red1"
- Then, if see blue, go to "Blue"
- Then, if see green, go to "Green"
- Then, if see red, go to "Red2"
- In that state, open the door ($u=1$)
- Wrong button at any step, return to "Wait", without opening door Digital Design Copyright © 2006
Frank Vahid

Improve FSM for Code Detector

- New transition conditions detect if wrong button pressed, returns to "Wait"
- FSM provides formal, concrete means to accurately define desired behavior

Standard Controller Architecture

- How implement FSM as sequential circuit?
- Use standard architecture
- State register -- to store the present state
- Combinational logic -- to compute outputs, and next state
- For laser timer FSM
- 2-bit state register, can represent four states
- Input b, output x
- Known as controller

Inputs: b; Outputs: x

Controller Design

- Five step controller design process

Step	Description
- Capture the FSM	Create an FSM that describes the desired behavior of the controller.
Create the N N in architecture	Create the standard architecture by using a state register of appropriate width, and combinational logic with inputs being the state register bits and the FSM inputs and outputs being the next state bits and the FSM outputs.
O Encode the states	Assign a unique binary number to each state. Each binary number representing a state is known as an encoding. Any encoding will do as long as each state has a unique encoding.
Create the state $\begin{gathered} \pm \\ \stackrel{\text { O}}{n} \end{gathered}$ table	Create a truth table for the combinational logic such that the logic will generate the correct FSM outputs and next state signals. Ordering the inputs with state bits first makes this truth table describe the state behavior, so the table is a state table.
in Implement the is combinational logic	Implement the combinational logic using any method.
Design ight © 2006 Vahid	

Controller Design: Laser Timer Example

- Step 1: Capture the FSM
- Already done
- Step 2: Create architecture
- 2-bit state register (for 4 states)
- Input b, output x
- Next state signals n1, n0
- Step 3: Encode the states
- Any encoding with each state unique will work

Controller Design: Laser Timer Example (cont)

- Step 4: Create state table

Digital Design Copyright © 2006 Frank Vahid

Controller Design: Laser Timer Example (cont)

- Step 5: Implement combinational logic

| Inputs | | | | Outputs | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | s1 | s0 | b | x | ni | $\mathrm{n0}$ |
| Off | 0 | 0 | 0 | 0 | 0 | 0 |
| | 0 | 0 | 1 | 0 | 0 | 1 |
| OnI | 0 | 1 | 0 | 1 | 1 | 0 |
| | 0 | 1 | 1 | 1 | 1 | 0 |
| On2 | 1 | 0 | 0 | 1 | 1 | 1 |
| | 1 | 0 | 1 | 1 | 1 | 1 |
| On3 | 1 | 1 | 0 | 1 | 0 | 0 |
| | 1 | 1 | 1 | 1 | 0 | 0 |

$x=s 1+s 0$ (note from the table that $x=1$ if $s 1=1$ or $s 0$
$=1)$
$n 1=s 1$ 's0b' + s1's0b + s1s0'b' + s1s0'b
$n 1$ = s1's0 + s1s0'
n1 = s1's0 + s1s0
$\mathrm{n} 0=\mathrm{s} 1{ }^{\prime} \mathrm{s} 0^{\prime} \mathrm{b}+\mathrm{s} 1 \mathrm{~s} 0^{\prime} \mathrm{b}^{\prime}+\mathrm{s} 1 \mathrm{~s} 0^{\prime} \mathrm{b}$
$\mathrm{n} 0=\mathrm{s} 1^{\prime} \mathrm{s} 0^{\prime} \mathrm{b}+\mathrm{s} 1 \mathrm{~s} 0^{\prime}$
no $=\mathrm{si}^{\prime} \mathrm{s} \mathrm{O}^{\prime} \mathrm{b}+\mathrm{s} 150^{\circ}$

Controller Design: Laser Timer Example (cont)

- Step 5: Implement combinational logic (cont)

	Inputs			Outputs		
	s 1	s0	b	x	n 1	n 0
Off	0	0	0	0	0	0
	0	0	1	0	0	1
OnI	0	1	0	1	1	0
	0	1	1	1	1	0
On2	1	0	0	1	1	1
	1	0	1	1	1	1
3	1	1	0	1	0	0
	1	1	1	1	0	0

$\mathrm{x}=\mathrm{s} 1+\mathrm{s} 0$
n1 = s1's0 + s1s0'
n0 = s1's0'b + s1s0'

Copyright © 2006
Frank Vahid

Understanding the Controller's Behavior

Controller Example:

Button Press Synchronizer

- Want simple sequential circuit that converts button press to single cycle duration, regardless of length of time that button actually pressed
- We assumed such an ideal button press signal in earlier example, like the button in the laser timer controller

Controller Example: Button Press Synchronizer (cont)

FSM inputs: bi; FSM outputs: bo

Step 1: FSM

FSM inputs: bi; FSM outputs: bo

Step 3: Encode states

Step 5: Create combinational circuit

Controller Example: Sequence Generator

- Want generate sequence 0001, 0011, 1100, 1000, (repeat)
- Each value for one clock cycle
- Common, e.g., to create pattern in 4 lights, or control magnets of a "stepper motor"

Inputs: none; Outputs: w, x, y, z

$w x y z=0011$ $w x y z=1100$ Step 1: Create FSM

Step 2: Create architecture

Step 3: Encode states

	Inputs						Outputs					
	s 1	s 0	w	\times	y	z	n 1	$\mathrm{n0}$				
A	0	0	0	0	0	1	0	1				
B	0	1	0	0	1	1	1	0				
C	1	0	1	1	0	0	1	1				
D	1	1	1	0	0	0	0	0				

Digital Design Step 4: Create state table Copyright © 20 Frank Vahid $\mathrm{w}=\mathrm{s} 1$ $\mathrm{x}=\mathrm{s} 1 \mathrm{~s} \mathbf{0}^{\prime}$ $\mathrm{y}=\mathrm{s} 1$ 's0 $\mathrm{y}=\mathrm{s} 1$
$\mathrm{z}=\mathrm{s} 1$ n1 = s1 xor s0 n0 $=\mathbf{s} \mathbf{0}^{\prime}$

Controller Example: Secure Car Key

(from earlier example)

Example: Seq. Circuit to FSM (Reverse Engineering)

Common Pitfalls Regarding Transition Properties

- Only one condition should be true
- For all transitions leaving a state
- Else, which one?
- One condition must be true
- For all transitions leaving a state
- Else, where go?

Verifying Correct Transition Properties

- Can verify using Boolean algebra
- Only one condition true: AND of each condition pair (for transitions leaving a state) should equal $0 \rightarrow$ proves pair can never simultaneously be true
- One condition true: OR of all conditions of transitions leaving a state) should equal $1 \rightarrow$ proves at least one condition must be true
- Example

Answer:
$a^{*} a^{\prime} b$
$=\left(a * a^{\prime}\right) * b$
$=0$ * b
$=0$
OK!

$$
a+a^{\prime} b
$$

$=a^{\star}(1+b)+a^{\prime} b$
$=a+a b+a b^{\prime}$
$=a+\left(a+a^{\prime}\right) b$
$=a+b$
Fails! Might not be 1 (i.e., $a=0$, $\mathrm{b}=0$)

Q: For shown transitions, prove whether:

* Only one condition true (AND of each pair is always 0)
* One condition true (OR of all transitions is always 1)

Evidence that Pitfall is Common

- Recall code detector FSM

- We "fixed" a problem with the transition conditions
- Do the transitions obey the two required transition properties?
- Consider transitions of state Start, and the "only one true" property
ar * $a^{\prime} \quad a^{\prime}$ * $a\left(r^{\prime}+b+g\right) \quad a r * a\left(r^{\prime}+b+g\right)$

$=\left(a^{*} a^{\prime}\right) r=0^{*}$
$=\left(a^{*} a\right)^{*}\left(r^{\prime}+b+c\right.$
Intuitively: press red and blue
(a $-\left(a^{*} a\right)\left(r^{\prime}+b+g\right)=0 *\left(r^{\prime}+b+g\right)$ buttons at same time: conditions ar, and $\mathrm{a}\left(\mathrm{r}^{+}+\mathrm{b}+\mathrm{g}\right)$ will both be true. Which one should be taken?
$=$ arr' + arb + arg
$=0+\operatorname{arb}+a r g$
$=a r b+a r g$
$=\operatorname{ar}(b+g)$
Q: How to solve?
A: ar should be arb'g'
Fails! Means that two of Start's (likewise for ab, ag, ar)
transitions could be true transitions could be true

Simplifying Notations

- FSMs
- Assume unassigned output implicitly assigned 0
- Sequential circuits
- Assume unconnected clock inputs connected to same external clock

More on Flip-Flops and Controllers

- Other flip-flop types
- SR flip-flop: like SR latch, but edge triggered
- JK flip-flop: like SR $(S \rightarrow J, R \rightarrow K)$
- But when JK=11, toggles
- $1 \rightarrow 0,0 \rightarrow 1$
- T flip-flop: JK with inputs tied together
- Toggles on every rising clock edge
- Previously utilized to minimize logic outside flip-flop
- Today, minimizing logic to such extent is not as important
- D flip-flops are thus by far the most common

Non-Ideal Flip-Flop Behavior

- Can't change flip-flop input too close to clock edge
- Setup time: time that D must be stable before edge
- Else, stable value not present at internal latch
- Hold time: time that D must be held stable after edge
- Else, new value doesn't have time to loop around and stabilize in internal latch
 Leads to oscillation!

Metastability

- Violating setup/hold time can lead to bad situation known as metastable state
- Metastable state: Any flip-flop state other than stable 1 or 0
- Eventually settles to one or other, but we don't know which
- For internal circuits, we can make sure observe setup time
- But what if input comes from external (asynchronous) source, e.g., button press?
- Partial solution
- Insert synchronizer flip-flop for asynchronous input
- Special flip-flop with very small setup/hold time
- Doesn't completely prevent metastability

setup time violation

metastable
 state

Metastability

- One flip-flop doesn't completely solve problem
- How about adding more synchronizer flip-flops?
- Helps, but just decreases probability of metastability
- So how solve completely?
- Can't! May be unsettling to new designers. But we just can't guarantee a design that won't ever be metastable. We can just minimize the mean time between failure (MTBF) -- a number often given along with a circuit

Probability of flip-flop being metastable is...

Flip-Flop Set and Reset Inputs

- Some flip-flops have additional inputs
- Synchronous reset: clears Q to 0 on next clock edge
- Synchronous set: sets Q to 1 on next clock edge
- Asynchronous reset: clear Q to 0 immediately (not dependent on clock edge)
- Example timing diagram shown
- Asynchronous set: set Q to 1 immediately

Initial State of a Controller

- All our FSMs had initial state
- But our sequential circuit designs did not
- Can accomplish using flip-flops with reset/set inputs
- Shown circuit initializes flip-flops to 01
- Designer must ensure reset input is 1 during power up of circuit
- By electronic circuit design
 Frank Vahid

Glitching

- Glitch: Temporary values on outputs that appear soon after input changes, before stable new output values
- Designer must determine whether glitching outputs may pose a problem
- If so, may consider adding flip-flops to outputs
- Delays output by one clock cycle, but may be OK

Active Low Inputs

- We've assumed input action occur when input is 1
- Some inputs are instead active when input is 0 -- "active low"
- Shown with inversion bubble
- So to reset the shown flip-flop,
 set $\mathrm{R}=0$. Else, keep $\mathrm{R}=1$.

Chapter Summary

- Sequential circuits
- Have state
- Created robust bit-storage device: D flip-flop
- Put several together to build register, which we used to hold state
- Defined FSM formal model to describe sequential behavior
- Using solid mathematical models -- Boolean equations for combinational circuit, and FSMs for sequential circuits -- is very important.
- Defined 5-step process to convert FSM to sequential circuit - Controller
- So now we know how to build the class of sequential circuits known as controllers

