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Abstract

Systems that produce ranked lists of results are abundant. For instance, Web
search engines return ranked lists of Web pages. There has been work on dis-
tance measure for list permutations, like Kendall tau and Spearman’s Footrule,
as well as extensions to handle top-k lists, which are more common in practice.
In addition to ranking whole objects (e.g., Web pages), there is an increasing
number of systems that provide keyword search on XML or other semistructured
data, and produce ranked lists of XML sub-trees. Unfortunately, previous dis-
tance measures are not suitable for ranked lists of sub-trees since they do not
account for the possible overlap between the returned sub-trees. That is, two
sub-trees differing by a single node would be considered separate objects. In
this paper, we present the first distance measures for ranked lists of sub-trees,
and show under what conditions these measures are metrics. Furthermore, we
present algorithms to efficiently compute these distance measures. Finally, we
evaluate and compare the proposed measures on real data using three popular
XML keyword proximity search systems.

Keywords: Total Mapping, Partial Mapping, Similarity Distance, Position
Distance

1. Introduction

Systems that produce ranked lists of results are abundant. For instance, Web
search engines return ranked lists of Web pages. To compare the lists produced
by different systems, Fagin et al. [1, 2] present distance measures for top-k lists
that extend the traditional distance measures for permutations of objects, like
Kendall tau [3] and Spearman’s Footrule [4].
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In addition to ranking whole objects (e.g., Web pages), there is an increasing
number of systems, including XRANK [5], XSEarch [6], XKeyword [7], XXL [8],
XIRQL [9], rank-aware extensions [9] of XPath that provide keyword search
on XML or other semi-structured data, and produce ranked lists of XML sub-
trees. The same ranking challenges and principles apply to newer semistructured
representation models like JSON (www.json.org).

Below are some applications that need XML lists distance measures:

• Evaluate quality of XML ranking systems given a ground truth ranking:
For instance, how can we quantify how close the results of XSEarch or
XRANK are to the “ideal” ranking provided by users?

• Compare rankings between XML ranking systems: For instance, if we show
that two systems generate very similar rankings, we may choose to deploy
the more efficient one.

• Rank aggregation: How can we build an XML meta-search engine, by
combining the results of individual engines? A solution (see [10] for Web
search aggregation) is to create a new “aggregated” list that is as close as
possible to the individual lists. To compute that, we need lists distance
measures.

• Cluster or classify queries: We may cluster XML queries for semantics or
performance purposes based on their top-k results, or classify them, e.g.,
to ambiguous and non-ambiguous.

Unfortunately, previous distance measures are not suitable for ranked lists
of sub-trees since they do not account for the possible overlap between the
returned sub-trees. That is, two sub-trees differing by a single node would be
considered separate objects. For instance, Figure 1 shows two top-3 lists of sub-
trees produced by two imaginary XML keyword proximity search algorithms.
Trees Ta3 and Tb2 only differ by a single node but this is ignored by object-level
distance measures.

In this paper, we present the first distance measures for ranked lists of sub-
trees, and show under what conditions these measures are metrics or near-
metrics. The metric property enables fast algorithms for nearest neighbor
searches [11], clustering [12] and rank aggregation [2], which are some of the
applications of this work.

The proposed distance measures consist of two components: the tree sim-
ilarity component and the position distance component. The former captures
the similarity between the structures of the returned sub-trees, while the lat-
ter captures the distance of the sub-trees in the two lists, similarly to previous
object-level distance measures [1, 2].

Intuitively, our distance measures work in two phases. In the first phase,
they find the optimal (closest) mapping between the two top-k lists of sub-trees,
where the distance between a pair of sub-trees is computed using one of the
approaches proposed in previous works, including tree edit distance [13, 14, 15],
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Figure 1: Top-3 tree results for query “Ullman Database” as returned by two imaginary XML
keyword proximity search algorithms.
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tree alignment distance [13], Fourier transform-based similarity [16], entropy-
based similarity [17], tag similarity [18], and path shingle similarity [18]. The
cost of the optimal mapping between the two lists of sub-trees represents the
tree similarity component.

Next, we compute the position distance component given the optimal map-
ping, using one of the previously proposed techniques on measuring the distance
between top-k (partial) lists [1, 2].

Clearly, the cost of computing all k2 pair-wise distances between all XML
trees is expensive using exact tree edit distance. This is not a problem if the
application is comparing the distance between XML search engines or evaluating
their quality compared to a ground truth ranking, since these application are not
part of the production search engine, with which users interact. For applications
where time is important, we can use approximate tree distance measures. For
instance, we can use the method described in [19] to convert the trees into
strings and then use edit distance approximation algorithms like edit distance
with move operations [20].

We make the following contributions:

1. We present the first suite of distance measures for ranked lists of sub-
trees. Three variants are presented: XML Lists Similarity based on Total
Mapping (XLS ) where all sub-trees from the first list are mapped to sub-
trees in the second; XML Lists Similarity based on Total Mapping with
position component (XLS-P)which also includes a position component;
XML Lists Similarity based on Partial Mapping with position component
(XLS-PP) where only adequately similar sub-trees are matched to each
other.

2. Prove under what conditions these measures are metrics. As we show, the
trickiest requirement is the satisfaction of the triangular inequality.

3. We evaluate and compare the proposed measures using real datasets. For
that, we implemented three popular XML keyword proximity search sys-
tems: XRANK [5], XSEarch [6] and XKeyword [7].

The rest of this paper is organized as follows: Section 2 presents the back-
ground. In Section 3 we define the distance measures for lists of XML trees.
Section 4 describes the normalization issues when combining the similarity and
position component. An experimental evaluation of these algorithms is pre-
sented in Section 5. Section 6 expands our initial review of related work. Finally,
Section 7 discusses our conclusions and future work.

2. Background

In this section, we briefly discuss various tree similarity measures (Sec-
tion 2.1), distance measures for lists of objects (Section 2.2) and conditions
that a measure must satisfy to be considered a metric (Section 2.3).
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2.1. Tree Similarity Measures

In this section, we briefly present state-of-art techniques for measuring simi-
larity between trees, proposed in the literature. Any of these similarity measures
can be used in our framework. However, only the measures that are metrics will
lead to a distance metric for XML lists, as shown in Section 3.

General Tree Similarity Measures: Several techniques have been proposed in
the literature for measuring the similarity between general trees. Tree edit
distance [13, 21, 22, 23] measures the minimum number of node insertions,
deletions, and updates required to convert one tree into another. Tree alignment
distance [13, 24] is a special case of the tree editing problem, in which trees
become isomorphic when labels are ignored.

XML-Specific Tree Similarity Measures: Various techniques for measuring the
structural similarity between XML trees have been proposed. Nierman and
Jagadish [15] introduced a structural similarity distance based on tree edit dis-
tance, by adding insert-tree, delete-tree operations. Flesca et al. [16] proposed a
Fourier transform technique to compute similarity, while Buttler [18] proposed
a similarity metric based on path-shingles in which the structural information
is extracted from the documents using the full paths. Entropy-based similar-
ity [17] is a novel technique used to compute the structural similarity based on
entropy. Tag similarity is perhaps the simplest metric for structural similarity,
as it only measures how closely the set of tags match between two pages. Weis
and Naumann [25] proposed a method to identify duplicate entities in a XML
document which could be used to enhance the tree mapping step in our distance
metrics.

As mentioned before, only those tree similarity measures that are metrics
may lead to a distance metric or near-metric for XML lists. The following tree
similarity measures are metrics: tree-edit distance [13], tree-edit-based struc-
tural distance [15], fourier transform-based distance [16, 26], entropy-based sim-
ilarity [17], and the similarity measure in [14]. In Table 1 we present these re-
sults in more detail along with the complexity of calculating each tree similarity
measure.

2.2. Distance Measures for Permutations and top-k Lists

In this section, we present some of the most popular and widely used mea-
sures for computing distance between complete (permutations) and partial lists
of objects.

Measures for permutations: We review Spearman’s footrule and Kendall tau dis-
tance measures [4, 2, 3]. Spearman’s footrule metric is the L1 distance between
two permutations. Formally, it is defined by

F (σ1, σ2) =

k∑
i=1

|σ1(i)− σ2(i)|

where σ1 and σ2 are the two permutations of length k, and σ1(i) denotes the
ith element in σ1.
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Kendall’s tau metric between permutations is defined as follows: For each
pair i, j ∈ P of distinct members, if i and j are in the same order in σ1 and σ2,
then let Ki,j(σ1, σ2) = 0; else Ki,j(σ1, σ2) = 1. Kendall tau is

K(σ1, σ2) =
∑
{i,j}∈P

Ki,j(σ1, σ2)

Measures for top-k lists: We now review two well-known measures on top-k lists
of objects [2, 1]: Spearman’s footrule distance with location parameter l, de-
noted F (l), and Kendall distance with penalty parameter p, denoted K(p). F (l)

is obtained, intuitively, by placing all missing elements in each of the lists at
position l and computing the usual footrule distance between them. A natural
choice for l is k+ 1, which we use in our experiments. K(p) is obtained by natu-
rally generalizing Kendall tau measure for permutations. Similar to Ki,j(σ1, σ2)

for permutations σ1, σ2, a penalty K
(p)

i,j (σ1, σ2) for top-k lists σ1, σ2 is defined
as shown in [2]. The measures discussed in [2] for top-k lists does not consider
ties. Typically, in real world, there are a number of fields with very few dis-
tinct values, and hence the corresponding rankings have many ties in them. [1]
modify top-k list measures to handle ties by organizing the elements with same
score in buckets Ki,j and taking the average location within each bucket as the
position of each element in that bucket. In Section 3.3 we use a combination
of [2] and [1] to define the distance between top-k lists with ties.

2.3. When a Distance Measure is a metric

A binary function d is called symmetric if d(x, y) = d(y, x) for all x, y in the
domain, and is called regular if d(x, y) = 0 if and only if x = y. We define a
distance measure to be a nonnegative, symmetric, regular binary function. A
metric is a distance measure d that satisfies the triangle inequality d(x, z) ≤
d(x, y) + d(y, z) for all x, y, z in the domain.

3. Distance Measures for Lists of XML Trees

In this section, we first provide some definitions (Section 3.1), and present the
XLS measure (Section 3.2), XLS-P measure (Section 3.3) and XLS-PP measure
(Section 3.4). Normalization issues are discussed in Section 4.

3.1. Problem Definition

The goal of this work is to define and compute the distance between two
lists La, Lb of XML trees, La = Ta1,Ta2 · · ·Tak and Lb = Tb1,Tb2 · · · ,Tbk,
where Txi are XML trees. Often, as is the case with XML proximity search
systems, all Tai,Tbj are included (obtained by a sequence of deletes) in a tree
Ti of a collection D = T1, · · · , Tn. However, this property is not important
in our definitions. Note that for the case of complete lists (permutations) of
subtrees where each subtree appears in both lists, the problem is reduced to
the permutations distance problem which we discussed in Section 2.2. However,
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this case is not practical since XML search engines return different XML trees.
Hence, we focus on top-k lists.

A total mapping f from La to Lb is a bijection from La to Lb. Hence, tree
Tai is mapped to Tbj = f(Tai). Let N be the set of all possible total mappings
f from La to Lb. Similarly, a partial mapping g is a partial function from La
to Lb. Let TS(T1,T2) be the tree similarity between two trees T1,T2. TS can
be the tree edit distance or another measure as discussed in Section 2. TS is
normalized in [0, 1] as explained in Section 4.1.

3.2. XML Lists Similarity Distance based on Total Mapping (XLS)

In this section we present our first measure for the distance between two
top-k lists of XML trees. The key intuition is that we extend previous list
distance measures that only consider exact mappings between the objects of the
two lists to also consider approximate mappings. In particular, we compute the
closest pair-wise mappings between the XML trees from the two lists. Assuming
k elements in each XML list, XLS is defined as follows. First we define the
total mapping similarity distance MT (La,Lb, f) between La and Lb for a total
mapping f as

MT (La,Lb, f) =

∑
i=1···k

TS(Tai, f(Tai))

k
(1)

That is, MT is a measure of how “tight” the total mapping f is. Notice that
MT (La,Lb, f) takes values in [0, 1], since TS is also in [0, 1] and we divide by k.

We next define the minimum total mapping fminT
ab as the total mapping

between La and Lb with minimum MT (La,Lb, f). It is,

fminT
ab = argminfM

T (La,Lb, f) (2)

that is, argminf is the f that minimizes MT .

Given fminT
ab, we define the minimum total mapping similarity distance,

MinMT (La,Lb) = MT (La,Lb, fminT
ab) (3)

Definition 3.1. The XML Lists Similarity based on total mapping (XLS) be-
tween XML lists La, Lb is the minimum total mapping similarity distance. It
is:

XLS(La,Lb) = MinMT (La,Lb) (4)

Notice that XLS(La,Lb) is in [0,1] since MinMT (La,Lb) is in [0,1].

Measures for MinMT (La,Lb): The tree similarity TS which is used to compute
MinMT (La,Lb) can be any of the tree or XML similarity measures discussed
in Section 2.1. The only constraint (as we show in Theorem 3.1) is that the
measure used must be a metric if XLS is to be a metric.

Example 1: Consider the top-3 lists La and Lb in Figure 1. We will illus-
trate the steps involved in computing XLS(La,Lb). In this example, we use
tree edit distance, TED as the tree similarity measure, TS. We first com-
pute the XML similarity component by finding all possible total mappings, N =
{f1, f2, f3, f4, f5, f6}:
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f1(Ta1) = Tb1, f1(Ta2) = Tb2, f1(Ta3) = Tb3
f2(Ta1) = Tb3, f2(Ta2) = Tb2, f2(Ta3) = Tb1
f3(Ta1) = Tb2, f3(Ta2) = Tb1, f3(Ta3) = Tb3
f4(Ta1) = Tb1, f4(Ta2) = Tb3, f4(Ta3) = Tb2
f5(Ta1) = Tb3, f5(Ta2) = Tb1, f5(Ta3) = Tb2
f6(Ta1) = Tb2, f6(Ta2) = Tb3, f6(Ta3) = Tb1

The normalized tree edit distance (see Section 4.1) between each pair of trees
in La and Lb is given by the following matrix:


Tb1 Tb2 Tb3

Ta1 0.00 0.78 0.71
Ta2 0.71 0.58 0.20
Ta3 0.78 0.43 0.58


The total mapping similarity distance of each total mapping in N is calcu-

lated by Eq. 1 as follows:

MT (La,Lb, f1) = (0.00 + 0.58 + 0.58)/3 = 0.39
MT (La,Lb, f2) = (0.71 + 0.58 + 0.78)/3 = 0.69
MT (La,Lb, f3) = (0.78 + 0.71 + 0.58)/3 = 0.69
MT (La,Lb, f4) = (0.00 + 0.20 + 0.43)/3 = 0.21
MT (La,Lb, f5) = (0.71 + 0.71 + 0.43)/3 = 0.62
MT (La,Lb, f6) = (0.78 + 0.20 + 0.78)/3 = 0.59

Hence, f4 is the mapping with the minimum mapping distance. It is

XLS(La,Lb) = MinMT (La,Lb) = MT (La,Lb, f4) = 0.21. �

3.2.1. XLS is a metric

Theorem 3.1. XLS is a metric if the tree similarity measure employed, TS, is
a metric.

Proof. It is straightforward that XLS is non-negative (XLS(La,Lb) ≥ 0), sym-
metric (XLS(La,Lb) = XLS(Lb,La)) and regular (XLS(La,La) = 0) since this
holds for tree similarity measure, TS which is a metric.

We need to prove the triangular property, that is, for any tree lists La, Lb,
Lc prove that:

XLS(La,Lc) ≤ XLS(La,Lb) + XLS(Lb,Lc) (5)

To do so, we will prove the triangular property for
MinMT (·, ·). That is we need to prove that:

MinMT (La,Lc) ≤ MinMT (La,Lb) + MinMT (Lb,Lc) (6)

- Prove triangular property for MinMT : From Eqs. 11 and 3:

MinMT (La,Lb) = MT (La,Lb, fminT
ab)

=
∑

i=1···k
TS(Tai, fminT

ab(Tai))
(7)

1We skip k in denominator of Eq. 1 throughout the proof, as it is for normalization purposes
and does not affect the proof correctness.
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where fminab is the minimum total mapping from La to Lb. Similarly:

MinMT (Lb,Lc) = MT (Lb,Lc, fminT
bc)

=
∑

j=1···k
TS(Tbj , fminT

bc(Tbj)) (8)

MinMT (La,Lc) = MT (La,Lc, fminT
ac)

=
∑

i=1···k
TS(Tai, fminT

ac(Tai))
(9)

Hence, from Eqs. 7, 8 and 9, proving Eq. 6 is equivalent to proving:∑
i=1···k

TS(Tai, fminT
ac(Tai)) ≤

∑
i=1···k

TS(Tai, fminT
ab(Tai))+∑

j=1···k
TS(Tbj , fminT

bc(Tbj))
(10)

Since the tree similarity measure TS(·, ·) is a metric, it satisfies the triangular
property. Consider a tree Tai in La that is mapped to Tbj = fminT

ab(Tai) in Lb,

which is in turn mapped to tree Tcs = fminT
bc(Tbj) = fminT

bc(fminT
ab(Tai)) in

Lc. The triangular property for Tai,Tbj ,Tcs can be written as:

TS(Tai, fminT
bc(fminT

ab(Tai))) ≤TS(Tai, fminT
ab(Tai))+

TS(Tbj , fminT
bc(Tbj))

(11)

Summing Eq. 11 over all Tai’s in La, and keeping in mind that fminab, fminbc

are bijections, we get∑
i=1···k

TS(Tai, fminT
bc(fminT

ab(Tai))) ≤
∑

i=1···k
TS(Tai, fminT

ab(Tai))+∑
j=1···k

TS(Tbj , fminT
bc(Tbj))

(12)

The left hand side of Eq. 12 is the total mapping similarity distanceMT (La,Lc, f ′),
where f ′(·) = fminT

bc(fminT
ab(·)). We know from Eq. 9, that fminT

ac gives the
minimum total mapping similarity distance between La,Lc. That is

MT (La,Lc, fminT
ac) ≤MT (La,Lc, f ′) (13)

Hence, ∑
i=1···k

TS(Tai, fminT
ac(Tai)) ≤

∑
i=1···k

TS(Tai, fminT
bc(fminT

ab(Tai))) (14)

From Eqs. 11 and 14 we get Eq. 10 which was our goal.

3.2.2. XLS Computation

To calculate XLS between any two top-k XML lists La and Lb, we start
by precomputing the tree similarity measure between each tree pair across
the two lists. There are k2 such pairs, hence the complexity of this step is
k2 · Cost(TS(Tai,Tbj)) where Cost(TS(Tai,Tbj)) is the complexity of comput-
ing the tree similarity between the two trees Tai and Tbj . We use the dynamic
programming algorithm by Zhang and Shasha [23], in our experiments, to com-
pute the edit-distance between ordered trees [13]. Then, we apply a minimum
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cost perfect matching algorithm (we use the Hungarian algorithm [27]) to com-
pute all minimum mappings fminT

ab between the two lists. The complexity of
this step is O(k3). Then, we compute XLS(La,Lb) using Eq. 4. The total
complexity of XLS computation is O(k2 · Cost(TS(Tai,Tbj)) + k3).

3.3. XML Lists Similarity Distance based on Total Mapping with Position Com-
ponent (XLS-P)

As we described in Section 3.2, XLS considers the similarity of XML trees
across each list. This works well in computing a reasonable similarity distance
between top-k XML Lists where k is relatively small. When k is large, it is
important to also consider the position of the mapped trees in each list. We
define XML Lists Similarity Distance based on Total Mapping with Position
Component (XLS-P), which includes the mapping position distance in addition
to the mapping similarity distance. The key intuition is that XLS-P estimates
the cost to transform the one list into the other list. In particular, we first
compute the closest pair-wise mappings between the XML trees from the two
lists (as in XLS) and then view these mappings as exact mappings and apply
list permutation distance measures.

Definition 3.2. The XML Lists Similarity Distance based on Total Mapping
with Position Component (XLS-P) between XML lists La, Lb has two compo-
nents:

a. The XML similarity component MinMT (La,Lb).

b. The total mapping position distance component PT (La,Lb, fminT
ab), which

is also referred as the position component in this section. PT is defined
using one of the well known metrics on permutations as discussed below.
PT is in [0, 1] as discussed in Section 4.2.

It is
XLS-P(La,Lb) = MinMT (La,Lb) + PT (La,Lb, fminT

ab) (15)

Note that XLS-P(La,Lb) is in [0, 2] since MinMT (La,Lb) and PT (La,Lb, fminT
ab)

are in [0, 1].

We choose fminT
ab to minimize the XML similarity component and not the

whole XLS-P, because we believe it is more intuitive to compute the distance
component based on the tightest XML similarity mapping rather than mixing
the two components. Note that other functions can be used to combine the
contribution of the two components, as we discuss below.

Measures for XML Similarity component, MinMT (La,Lb): The tree similarity
TS which is used to compute MinMT (La,Lb) can be any of the tree or XML
similarity measures discussed in Section 2.1.

Measures for Position component, PT (La,Lb, fminT
ab): Note that list permu-

tation distance metrics (not top-k list distance measures) are used in XLS-P.
Given the mapping fminTab, we naturally extend the Spearman’s footrule dis-
tance and Kendall tau distance for permutations with ties [1, 2, 4, 3] as follows:

11



Position distance (PTF) based on Spearman’s footrule metric for permuta-
tions, is given by:

PTF(La,Lb, fminT
ab) =

k∑
i=1

∣∣∣posLa(Tai)− posLb(fminT
ab(Tai))

∣∣∣ (16)

where posLa(Tai) is the position of tree Tai in list La. This formula is extended as
follows to consider ties. A set of trees with the same score is called a bucket. The
ranked list of results can be then viewed as ranked list of buckets B1, B2, · · · , Bn.
The position of bucket Bi, denoted pos(Bi) is the average result location within
bucket Bi. We assign posLa(Tai) = pos(B(Tai)) where B(Tai) is the bucket of
Tai.

Position distance (PTK) based on Kendall tau metric for permutations con-
sidering ties, is given by:

PTK(La,Lb, fminT
ab) =

∑
{i,j}∈S

Ki,j(La,Lb′) (17)

where Lb′ is constructed from list Lb when element Tbj is replaced by Tai =

(fminT
ab)
−1(Tbj), that is, Tbj = fminT

ab(Tai). That is, we assume that an ele-
ment Tai in La and its corresponding element Tbj in Lb are the same. Hence,
we just have k distinct elements {1, 2, · · · , k} in both lists, and the problem of
computing PTK(La,Lb, fminT

ab) of the two XML lists is same as computing the
Kendall Tau metric of two permutations. S is the set of all unordered pairs of
the k distinct elements.

Hence, there are two variants of XLS-P:

XLS-PF (La,Lb) = MinMT (La,Lb) + PTF(La,Lb, fminT
ab) (18)

XLS-PK(La,Lb) = MinMT (La,Lb) + PTK(La,Lb, fminT
ab) (19)

Example 1 (cont’d): Consider the top-3 lists La and Lb in Figure 1. We
will illustrate the steps involved in computing XLS-P(La,Lb). As before, we
first compute f4 –the total mapping with the minimum mapping similarity
distance. It is MinMT (La,Lb) = MT (La,Lb, f4) = 0.21. The normalized
Spearman’s footrule position component is PTF(La,Lb, f4) = 2.0/4.0 = 0.5.
Hence, XLS-PF (La,Lb) = 0.21 + 0.5 = 0.71. If the position distance is calcu-
lated using normalized Kendall tau, then PTK(La,Lb, f4) = 1.0/3.0 = 0.33 and
XLS-PK(La,Lb) = 0.21 + 0.33 = 0.54. The difference in the two scores is due to
inherent differences between the Spearman’s footrule and Kendall tau metrics.
�

3.3.1. XLS-P is a near-metric

XLS-P is not a metric because the total mapping position distance compo-
nent PT (La,Lb, fminT

ab) is not a metric. In particular, PT (La,Lb, fminT
ab) does

not satisfy the triangular inequality property. This is because the mapping
fminT

ab is computed by comparing XML trees (accounting for possible tree over-
laps) and not by comparing whole objects. To be more specfic, if we consider
three lists of (whole) objects Wa, Wb and Wc, then fTac(·) = fTbc(f

T
ab(·)) (where
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fTac is a total mapping between Wa and Wc) since we can only have “exact”
matches. But if we consider three lists of XML trees La, Lb and Lc, typically
fminT

ac(·) 6= fminT
bc(fminT

ab(·)) since we could have “partial” matches.
The following example illustrates this scenario: Let La, Lb and Lc be the

following top-2 lists of XML trees. La = (Ta1, Ta2), Lb = (Tb1, Tb2) and
Lc = (Tc1, Tc2). Now, suppose that TS(Ta1, Tb1) = TS(Ta2, Tb2) = TS(Tb1,
Tc1) = TS(Tb2, Tc2) = TS(Ta1, Tc2) = TS(Ta2, Tc1) = 0.4 and all other
distances (between the remaining pairs across the different lists) are 0.6 (and
for all x, TS(x, x) = 0). Then, the following would be the minimum total
mappings between each list La, Lb and Lc:

fminT
ab(Ta1) = Tb1, fminT

ab(Ta2) = Tb2,

fminT
bc(Tb1) = Tc1, fminT

bc(Tb2) = Tc2,

fminT
ac(Ta1) = Tc2, fminT

ac(Ta2) = Tc1

Then MinMT (La,Lb) = MinMT (Lb,Lc) = MinMT (La,Lc) = (0.4 + 0.4)/2 =
0.4 (after normalization). But, fminT

ab and fminT
bc preserve order (i.e., Ta1

is mapped to Tb1, Ta2 is mapped to Tb2 and so on), whereas fminT
ac does

not preserve order (it maps Ta1 to Tc2 and Ta2 to Tc1). Hence we have
PT (La,Lb, fminT

ab) = PT (La,Lb, fminT
bc) = 0.0 and XLS-P(La,Lb) = XLS-P(Lb,Lc).

Now, since fminT
ac does not preserve order, PT (La,Lb, fminT

ab) > 0 (in fact
the actual value would be 1.0 as it maps the elements in reverse order). So,
XLS-P(La,Lc) = (0.4 + 0.4)/2 + 1.0 = 1.4. This breaks the triangular in-
equality property since XLS-P(La,Lc) > XLS-P(La,Lb) + XLS-P(Lb,Lc), as
1.4 > 0.4 + 0.4 = 0.8.

A measure is a near-metric when it satisfies all properties of a metric, but
instead of the triangular property, it satisfies the near-triangular inequality:
d(x, z) ≤ r · (d(x, y) + d(y, z)), where r is a positive constant [28]. Note that
Fagin et al. [2] proved that most of their measures (for whole objects, that is,
no objects’ overlap considered) are near-metrics.

Theorem 3.2. XLS-P is a near-metric if the tree similarity measure TS em-
ployed is a metric (or near-metric).

Proof. We must prove that there is constant r > 0, such that

XLS-P(La,Lc) ≤ r · (XLS-P(La,Lb) + XLS-P(Lb,Lc)) (20)

Note that we omit the K (Kendall tau) or F (Footrule) superscript because
the same proof applies to both.

From Eq. 18, we have
m + v ≤ r · (M + V ) (21)

wherem = MinMT (La,Lc), v = PT (La,Lc), M = MinMT (La,Lb)+MinMT (Lb, Lc),
V = PT (La,Lb) + PT (Lb, Lc).

If M = 0 then La,Lb, Lc have exactly same set of trees, and hence XLS-P
reduces to top-k Footrule or Kendall tau, which we know that they are near-
metrics [2].

If M > 0, we know from Eq. 1 that M > w/k, where w is the minimum pos-
sible normalized tree similarity distance TS(Ta, Tb) between two trees Ta, Tb.
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E.g., for tree edit distance, it is w = 1/(2 ·maxTreeSize) assuming unit node
deletion and insertion cost (see Section 4.1).

We also know that 0 ≤ m, v ≤ 1, V ≥ 0. That is, the maximum value of the
left hand side of Eq. 21 is 2. If we pick r = 2 · k/w, we guarantee that Eq. 21 is
satisfied.

3.3.2. XLS-P Computation

The computation of XLS-P is similar to the computation shown in Sec-
tion 3.2.2, except for a few changes as we will describe. fminT

ab between the two
lists is computed as before and then the position distance PT (La,Lb, fminT

ab) is
computed using Eqs. 16 and 17 for Spearman’s footrule and Kendall tau po-
sition component respectively. Then, XLS-P is computed using Eq. 18 or 19.
The total complexity XLS-P computation is O(k2 · Cost(TS(Tai,Tbj)) + k3).

3.4. XML Lists Similarity Distance based on Partial Mapping with Position
Component (XLS-PP)

The total mapping distance measures in Sections 3.2 and 3.3 have the draw-
back that two totally irrelevant trees from the two lists may be mapped to each
other, given that all trees must be mapped between the two lists. This is unin-
tuitive and may lead to confusing results, especially for the position component
of the measure. Hence, we propose to only maps trees if they are adequately
similar.

Similarity Threshold: In order to partially map the two XML lists, we specify a
threshold ω in [0, 1]. Intuitively, we only create mappings between trees whose
tree similarity (TS) is up to ω. For example, if we want to create only the
mappings between trees that are at most 40% different, then we set ω = 0.4.
Notice that TS is also in [0, 1] as described in Section 4.1. We consider various
values for ω in Section 5 and show that the relative distance between two pairs
of XML lists is not so sensitive on the choice of ω. We observe that ω = 0.5 gives
a nice balance between the position and tree similarity components of XLS-PP.
Note that for ω = 1, XLS-PP reduces to XLS-P.

Assuming k elements in each XML list, XLS-PP is defined as follows. First
we define the partial mapping g for a total mapping f and threshold ω. g is
a partial function defined only for XML trees Tai with TS(Tai, f(Tai)) ≤ ω.
Then g(Tai) = f(Tai). Let Lag be the subset of La that contains the XML
trees that have a mapping for g. Next we define the partial mapping similarity
distance MP (La,Lb, g) between La and Lb given a partial mapping g as:

MP (La,Lb, g) =

∑
Tai∈Lag TS(Tai, g(Tai)) +

∑
Tai∈{La-Lag} c

k ·max(c, ω)
(22)

where XML trees that do not get mapped incur a penalty cost 0 ≤ c ≤ 1.
Notice that MP (La,Lb, g) is also in [0,1] since TS is in [0,1] and we divide by
k ·max(c, ω). c is naturally between ω and 1; we set c = ω in our experiments.
The rationale is similar to [2], where an element not in the top-k is assumed to
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be in the k + 1-th position (in our case where c is a real number it would be
c = ω + ε ' ω).

We next define the minimum partial mapping gminP
ab between La and Lb

given a threshold, ω as the partial mapping that has a corresponding total
mapping f for threshold ω and has the minimum MP (La,Lb, g). That is,

gminP
ab = argmingM

P (La,Lb, g) (23)

We emphasize that g must come from a total mapping, in order for the
metric properties defined below to hold.

Given gminP
ab, we define the minimum partial mapping similarity distance

MinMP (La,Lb) = MP (La,Lb, gminP
ab) (24)

Definition 3.3. The XML Lists Similarity Distance based on Partial Mapping
with Position Component (XLS-PP) has two components:

a. The XML partial similarity component MinMP (La,Lb).

b. The partial mapping position distance component PP (La,Lb, gminP
ab), which

is also referred as the position component. PP can be one of the well known
measures (some are not metrics) on top-k lists as discussed below. PP is
in [0, 1] as discussed in Section 4.2.

It is:
XLS-PP(La,Lb) = MinMP (La,Lb) + PP (La,Lb, gminP

ab) (25)

Notice that XLS-PP(La,Lb) is in [0, 2] since MinMP (La,Lb) and PP (La,Lb, gminP
ab)

are in [0, 1].

The same tree similarity measures as in XLS can be used for the XML partial
similarity component.

Measures for Position component, PP (La,Lb, gminP
ab): We need to use partial

(top-k) list distance measures. Given the partial mapping gminP
ab, we naturally

extend the Spearman’s footrule distance and Kendall tau distance for top-k lists
with ties by combining previous works [1, 2, 4, 3], which separately tackle the
top-k [2] and the ties [1] issues, as follows:

Position distance PPF(l) based on Spearman’s footrule for top-k lists with
location parameter l considering ties is computed as follows. We place all trees
in both lists whose tree similarity TS is greater than threshold ω at position
l. Let list Lb be a list constructed by Lb by replacing each element Tbi by
Taj = (gminP

ab)
−1(Tbi), if this mapping exists (recall that gminP

ab is a partial
function). Then,

PPF(l)(La,Lb, gminP
ab) = F (l)(La,Lb′) (26)

where F (l)(·, ·) is the footrule function for top-k lists defined in [2]. We extend
this formula to account for ties by considering buckets for computing the position
as explained in Section 3.2.

Position distance PPK(p)(La,Lb, gminP
ab) based on Kendall tau metric for

top-k lists with penalty parameter p, considering ties, is given by:

PPK(p)(La,Lb) =
∑

{i,j}∈La ∪ Lb′
K

(p)
(i,j)(La,Lb

′) (27)
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where Lb′ is defined as in Section 3.2, and K
(p)

(i,j)(·, ·) is defined as in [2].
Hence, we have two variant of XLS-PP:

XLS-PPF (La,Lb) = MinMP (La,Lb) + PPF(l)(La,Lb, gminP
ab) (28)

XLS-PPK(La,Lb) = MinMP (La,Lb) + PPK(p)(La,Lb, gminP
ab) (29)

Example 1 (cont’d): Consider again the lists La and Lb in Figure 1. Assuming
ω = c = 0.4, we get the following partial mappings from the previous total
mappings:

g1(Ta1) = Tb1.

g2, g3 are empty mappings.

g4(Ta1) = Tb1, g4(Ta2) = Tb3.g5 are empty mappings.

g6(Ta2) = Tb3.

The mapping distance of each partial mapping is as follows:

MP (La,Lb, g1) = (0.00 + c + c)/(3 ·max(c, ω)) = 0.66

MP (La,Lb, g2) = (c + c + c)/(3 ·max(c, ω)) = 1.00

MP (La,Lb, g3) = 1.00

MP (La,Lb, g4) = (0.00 + 0.20 + c)/(3 ·max(c, ω)) = 0.50

MP (La,Lb, g5) = 1.00

MP (La,Lb, g6) = (c + 0.20 + c)/(3 ·max(c, ω)) = 0.83

g4 is the mapping with the minimum mapping distance. MinMP (La,Lb) =
MP (La,Lb, g4) = 0.50.

The Spearman’s footrule position component PPF(La,Lb, g4) = 4.0/12.0 =
0.33. XLS-PPF (La,Lb) = 0.50 + 0.33 = 0.83. If the position distance is cal-
culated using normalized Kendall tau, then PP (La,Lb, g4) = 2.0/12.0 = 0.17.
XLS-PPK(La,Lb) = 0.50 + 0.17 = 0.67. Notice that the normalized position
component in XLS-P is smaller than in XLS-PP, even though two trees do not
match in XLS-PP. The reason is that the maximum value (used in normalizing
as we describe in Section 4.2) of position distance (PP ) is larger in XLS-PP.�

3.4.1. XLS-PP is a near-metric

XLS-PP is not a metric because MP is not a metric. The reason is that the
triangular property does not hold for any choice of ω and c.

Theorem 3.3. XLS-PP is a near-metric if the tree similarity measure em-
ployed, TS, is a metric (or near-metric).

Proof. The proof is identical to that of Theorem 3.2, except that we pick r =
2 · k/w′, where w′ = min(c, w)/max(c, w), according to Eq. 22.
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3.4.2. XLS-PP Computation

The computation of XLS-PP between two top-k XML lists La and Lb is
similar to the procedure sketched in Section 3.2.2, except for a few changes as
we will describe. After computing the tree similarity measure between each
tree pair across the two lists, we ignore the similarity between pairs that exceed
ω and then apply a minimum cost perfect matching algorithm to find gminP

ab

with the minimum mapping similarity distance, MinMSDP (La,Lb). Then, we
compute the position distance PP (La,Lb,fminP

ab) using Eqs. 26 or 27. Fi-
nally, XLS-PP is computed using Eq. 28 and 29 for Spearman’s footrule and
Kendall tau respectively. The total complexity of XLS-PP computation is
O(k2 · Cost(TS(Tai,Tbj)) + k3) (which is same as the one for XLS or XLS-P).

4. Normalization

In this section we discuss how we normalize the XML similarity component
and the position components of XLS-P and XLS-PP, in Sections 3.3 and 3.4
respectively. Normalization of XML similarity component depends on the tree
similarity measure (TS) employed. In Section 4.1, we discuss the normalization
steps when tree edit distance (TED) is used as the tree similarity measure.
Section 4.2 discusses the normalization of the position component.

4.1. Normalize Tree-Edit Distance based XML Similarity Component

Let TED(T1, T2) be the tree edit distance between two rooted, ordered and
labeled XML trees –T1 and T2. Let TEDmax(T1, T2) be the maximum cost
among the costs of all possible sequences of tree-edit operations that trans-
form T1 to T2 (notice that the tree edit distance, TED(T1, T2) is the minimum
cost among the costs of all possible sequences of tree-edit operations). We nor-
malize the tree edit distance by dividing the tree edit distance, TED(T1, T2)
by TEDmax(T1, T2).This normalized TED(T1, T2) is also called Structural Dis-
tance in [29, 30]. To calculate TEDmax(T1, T2), we calculate the cost to delete
all nodes from T1 and insert all nodes from T2. That is, TEDmax(T1, T2) =
size(T1) ·Dp + size(T2) · Ip where Dp and Ip are the delete and insert penalties
and size(T1) is the number of nodes present in tree T1.

We use unit delete and insert penalties in our experiments. The normalized
TED(T1, T2) is low when the trees have similar structure and high percentage
of matching nodes, and high when the trees have different structure and low
percentage of matching nodes (0 [1] is the min [max] value).

4.2. Normalize Position Component

In XLS-P: To normalize the position component in XLS-P, we refer to the
metrics on permutations presented in [2]. We observe the maximum value of
PTK(La,Lb, f) is k(k − 1)/2, which occurs when La is the reverse of Lb. The
maximum value of PTF (La,Lb, f) is k2/2 when k is even and (k + 1)(k − 1)/2
when k is odd. As with Spearman’s footrule, the maximum occurs when La is
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the reverse of Lb. Hence, to normalize we divide the metrics by these maximum
values.

In XLS-PP: To normalize the position component in XLS-PP, we refer to
the metrics on top-k lists presented in [2]. In order to normalize the position
components of two top-k lists, we divide them by their maximum values which
occur when there are no mappings between Lists La and Lb.

Theorem 4.1. The maximum value of top-k Spearman’s Footrule PPF(l)(La,Lb)
is 2k(l − (k + 1)/2) where l is the location parameter.

Proof. Since there are no mappings between the top-k lists, all k elements of
each of the list get mapped to location l. Hence,

PRF (l)
max(La,Lb) = 2(|1− l|+ |2− l|+ · · ·+ |k − l|)

= 2k(l − (k + 1)/2)

For a natural choice of l = k + 1, the maximum value is k(k + 1), which we
use in our experiments.

Theorem 4.2. The maximum value of top-k Kendall tau, PRk(p)(La,Lb) is
pk(k − 1) + k2 where p is the penalty parameter.

Proof. Since there are no mappings between the top-k lists, there are 2k distinct

elements in La∪Lb. For the unordered pairs within each list, K̄
(p)
(i,j)(La,Lb′) = p

since these pairs do not appear in the other list. There are k(k−1)/2 such pairs
and considering both the lists, there are k(k − 1) such pairs, each with penalty
p. Hence the total penalty is pk(k − 1). For the unordered pairs across each of

the two lists, K̄
(p)
(i,j)(La,Lb′) = 1 since one element in each pair does not appear

in the other list. There is k2 such pairs, each with penalty 1. Hence the total
penalty in this case is k2. Adding them together, we get the maximum value
which is pk(k − 1) + k2.

We use p = 0.5 in our experiments.

5. Experimental Evaluation

In this section we experimentally evaluate the measures presented in the
previous sections by comparing three popular XML keyword search algorithms.
We use tree edit distance (TED) as the XML tree similarity measure (TS). We
selected to evaluate our proposed measures on the problem of keyword search in
XML databases, which we believe is an important and representative application
where systems produce subjective ranked lists of XML trees. Clearly, any other
application that returns such lists could also be used for evaluation.
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5.1. Datasets & Experimental Setup

Datasets: We use two real datasets: the DBLP Bibliography dataset [31], and
the GSFC/NASA XML dataset available at [32]. Figure 2 shows a reduced
version of the schemas for both datasets and Table 2 summarizes their charac-
teristics.

Table 2: XML Datasets Used in the Experiments.

Dataset # Elems. # Attrs.
Max. Avg.
Depth Depth

DBLP Bibliography 3 332 130 404 276 6 2.90228
GSFC/NASA XML 476 646 56 317 8 5.58314

Experimental Setup: We implemented the following XML keyword proximity
search systems: XRANK [5], XSEarch [6] and XKeyword [7]. These three al-
gorithms take as input a corpus of XML documents and a keyword query, and
return as output an ordered list of XML fragments that satisfy the query by
containing all the keywords. All three algorithms favor minimal and compact
sub-trees that satisfy the query, but use different ranking functions and prun-
ing rules. In particular, while XKeyword ranks its answers by the size of the
resulting sub-tree, XRANK and XSEARCH also utilize Information Retrieval
(IR) score functions based on tf · idf. XSEarch prunes result paths that re-
peat the same tag in internal nodes, while XRANK prunes results if there is a
more specific result in the same element. Also, XRANK returns whole sub-trees
while XSEarch and XKeyword return paths. We used the IR score provided by
the CONTAINSTABLE function of Microsoft SQL Server 2000 to compute the IR
components of both XRANK and XSEARCH ranking functions.

The experiments were performed on a PC with an Intel Pentium Core
2 Duo, 2.00 GHz processor, 2GB RAM, running Windows Vista Business.
All algorithms were developed in Java (JDK version 1.6.0 06), use the Doc-
ument Object Model (DOM) for XML parsing and navigation, and Microsoft
SQLServer 2000 for the persistent storage of indexes. The tree similarity (TS)
measure we use in our experiments is the dynamic programming algorithm
by Zhang and Shasha [23] which computes the tree-edit-distance between or-
dered trees [13] whose complexity is Cost(TED(Tai,Tbj)) = O(|Tai||Tbj | ·
min(leaves(Tai), depth(Tai)) · min(leaves(Tbj), depth(Tbj)). We refer to a de-
tailed survey of tree edit distance algorithms [13].

In Section 5.2, we analyze the results of a single query to show the intuition
of our evaluation scheme. In Section 5.3 we report average XML Lists Distance
values over many experiments on the two datasets. In Section 5.4, we report
performance (time) experimental results.

5.2. Analyzing a Single Query

To illustrate our measures, we present an analysis for the keyword query
“database retrieval language” over the DBLP XML dataset. Figure 3 shows
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the top-3 search results output by each of the three XML search algorithms.
Table 3 presents the XLS, XLS-P and XLS-PP measures between every pair of
XML lists from Figure 3. Notice that XLS takes values in [0,1] while XLS-P
and XLS-P in [0,2].

Notice that in Table 3 we only present XLS-PP measures for ω = 0.7 and
0.9 as XLS-PP values for ω = 0.5, 0.3, 0.1 for the top-3 lists in Figure 3 are
the same as for ω = 0.7 (we explain why later). Note that we use the penalty
constant c equal to ω.

Table 3: XML List distances based on Total and Partial mappings for top-k lists in Figure 3.
XRANK XSEARCH XKEYWORD

XRANK

XLS 0.00 0.30 0.30
XLS-PF ,XLS-PK 0.00, 0.00 0.80, 0.30 1.05, 0.46
XLS-PPF ,XLS-PPK (ω = 0.7) 0.00, 0.00 0.67, 0.50 0.75, 0.54
XLS-PPF ,XLS-PPK (ω = 0.9) 0.00, 0.00 0.49, 0.41 0.58, 0.45

XSEARCH

XLS 0.30 0.00 0.00
XLS-PF ,XLS-PK 0.80, 0.30 0.00, 0.00 0.25, 0.17
XLS-PPF ,XLS-PPK (ω = 0.7) 0.67, 0.50 0.00, 0.00 0.08, 0.04
XLS-PPF ,XLS-PPK (ω = 0.9) 0.49, 0.41 0.00, 0.00 0.08, 0.04

XKEYWORD

XLS 0.30 0.00 0.00
XLS-PF ,XLS-PK 1.05, 0.46 0.25, 0.17 0.00, 0.00
XLS-PPF ,XLS-PPK (ω = 0.7) 0.75, 0.54 0.08, 0.04 0.00, 0.00
XLS-PPF ,XLS-PPK (ω = 0.9) 0.58, 0.45 0.08, 0.04 0.00, 0.00

Let La, Lb and Lc be the top-3 lists of XRANK, XSEarch and XKeyword
algorithms respectively as shown in Figure 3. The associated tree edit distance
values between every pair of XML trees in each of the lists as follows:

AB =


Tb1 Tb2 Tb3

Ta1 0.00 0.50 0.71
Ta2 0.98 0.98 0.89
Ta3 0.50 0.00 0.71

 AC =


Tb1 Tb2 Tb3

Ta1 0.00 0.50 0.71
Ta2 0.98 0.98 0.89
Ta3 0.50 0.00 0.71



BC =


Tb1 Tb2 Tb3

Ta1 0.00 0.50 0.71
Ta2 0.50 0.00 0.71
Ta3 0.71 0.71 0.00


First of all, notice that the top-3 lists of XSEarch and XKeyword are identical

(and hence the tree edit distance matrices AB and AC are identical), except
that the first two results of XKeyword have the same score. This is the reason
that the distances between XSEarch and XKeyword, for total mapping, are
small (but not zero) in Table 3, since the position components consider ties.
Note that XRANK returns a different sub-tree as its second result, since the
XRANK function ranks the total score for this sub-tree higher than the score
of the single element that appears in the other two lists. In this sub-tree, the
keyword “Retrieval” appears twice within the “title” element, which increases
its IR score. In addition, the third element in the XRANK list was penalized
by its length and as a result. Between XRANK and XSEarch, two results are
identical, and Ta2 is mapped to Tb3 in total mapping, even though they are very
different. This irrelevant mapping is removed in the partial mapping measures.
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We computed XLS-PP for various thresholds, ω = 0.9, 0.7, 0.5, 0.3 and 0.1,
and found that XLS-PP distance values are identical for thresholds 0.7, 0.5, 0.3
and 0.1. This is because we have at least two identical trees between every pair
of list (three identical trees in case of XSEarch and XKeyword) and they always
get mapped between them, while the third unmapped result gets mapped with
the unmapped result in the other list depending on the threshold. Between
XRANK & XSEarch, and XRANK & XKeyword, the tree edit distance of this
third mapping is 0.89 and hence the results are identical for thresholds 0.1, 0.3,
0.5, 0.7.

5.3. Quantitative Results over Multiple Queries

Figures 4(a) and 4(b) show the total similarity distances (split into the two
components) between the result lists produced by the three search algorithms
on the DBLP dataset averaged over 50 two-keyword queries, using XLS-PF and
XLS-PK , respectively. Notice that the XML Similarity Distance component
in XLS-P is equal to XLS. The queries used include: “artificial intelligence”,
“xml indexing”, “text mining”, “image retrieval”, “OLAP mining”. Notice that
the distance increases as k increases because as the trees get larger, the results
become more disparate due to the pruning rules of the algorithms that go in
effect for larger trees. As mentioned before, XKeyword ranks its answers by
the size of the resulting sub-tree, while XRANK and XSEARCH also utilize
Information Retrieval (IR) score functions based on tf · idf. The reason that
XKeyword has large distance to the other two rankings is that it does not have
an IR component in its ranking function. Hence, when multiple trees have
the same size, they are ranked arbitrarily. XRANK and XSEarch have smaller
distance between them because their rankings are more similar given that the
results were mostly single-node trees.

Figures 4(c) and 4(d) show the distances between the results of the three
search algorithms for the DBLP dataset, averaged over 50 two-keyword queries
using XLS-PPF and XLS-PPK , for varying thresholds, for top-50 results respec-
tively. Recall that for ω = 1.0, XLS-PP (partial mapping) reduces to XLS-P
(total mapping). Notice that for ω = 1.0, XLS-PP will have the same XML
Similarity component as XLS-P although the position component would be dif-
ferent. We use the penalty constant c equal to ω. In Figures 4(c) and 4(d) we
see that the normalized distances increase as ω decreases. The reason is that for
small ω there are few matches which lead to large position distance components.
Note that for XRANK-vs.-XKeyword and XSEarch-vs.-XKeyword, for ω = 0.9
we get slightly smaller distances than total mapping (ω = 1.0). The reason is
that almost all tree pairs in the top-50 results of these rankings have normalized
tree edit distance up to 0.7, while for ω = 1.0, we divide by a larger number
(than for ω = 0.9) to normalize the XML similarity component. On the other
hand, for XRANK-vs.-XSEarch, the distance keeps reducing as ω increases from
0.1 to 0.9 and this is because there are some tree pairs in the top-50 results of
these rankings with normalized tree edit distance greater than 0.9.

Figure 5 repeats the set of experiments of Figure 4 on the NASA dataset.
Some sample two-keyword queries used in these experiments are: “arcmin-
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Figure 4: Experiments on DBLP Dataset.
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Figure 5: Experiments on NASA Dataset.

25



utes magnitude”, “astrographic motion”, “equinox culmination”, “photo-graphic
wavelengths”, “oxford zone”. Some important observations on the results of
NASA dataset are (a) Distance between XML lists is generally larger for NASA
dataset because of its larger depth. (b) In contrast to Figure 4, XSEarch and
XKeyword have the smallest distance because both algorithms return paths as
result. This factor was less important in Figure 4 because most results were
single-node. In contrast, XRANK has large distance to the other two rankings
because it returns whole sub-tree as result. (c) XRANK is very close to XSEarch
in DBLP, but very far in NASA dataset. The reason is that the XRANK and
XSEarch pruning conditions rarely occur in very shallow sub-trees (DBLP) but
appear more frequently in deeper sub-trees (NASA dataset). The latter also
leads to unpredictable fluctuations to the distances for increasing k (Figure 5),
in contrast to the linear increase in the DBLP dataset (Figure 4).

Discussion: An important conclusion from all these experiments is that the
relative lists distance does not depend much on which of the three variants we
use when k is up to 50, because the XML similarty component is dominant.
Hence, if k is reasonably small, one can safely pick XLS if the metric property
is important for that application.

5.4. Performance Results

Due to space constraints and negligible execution times for the DBLP dataset
(always less than one second), we only present results on the deeper NASA
dataset. Figure 6(a) shows the average execution time to compute XLS-P for
various values of k, over the same 50 two-keyword queries used in the distance
experiments. As expected, the average execution time increases superlinearly
as k increases because there are more results in the top-k lists under compar-
ison. Figure 6(b) shows the average execution time to compute XLS-PP for
various values of the threshold ω, for fixed k = 50. Notice that the execution
times are different for the three pairs of search algorithms. The reason is that
XRANK produces the largest size of results as it returns whole XML elements,
while XKeyword produces concise results by returning paths. XSEarch pro-
duces results of intermediate size by returning paths like XKeyword but has
different pruning rules. Thus, the execution times of XRANK vs. XSEarch are
the highest, while XSEarch vs. XKeyword is the lowest.

6. Other Related Work

Much of the related work was presented in Section 2.

XML Retrieval Evaluation: The INitiative for the Evaluation of XML Re-
trieval (INEX) [33] has provided since 2002 the infrastructure and means for
evaluating the effectiveness of content-oriented XML search systems. Our work
can benefit this initiative of INEX by providing appropriate evaluation measures
for lists of XML fragments. Clarke [34] and Kazai et al. [35] present techniques to
incorporate the overlap between XML fragments when evaluating XML search
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Figure 6: Performance Experiments on NASA Dataset.

algorithms. They are complementary to our work since their techniques can be
applied on our measures to account for overlap between the XML results.

Matching in Relational Databases: Guha et al. [36] address the problem
of merging approximate attribute rankings produced by executing a query on
a “dirty” relational database. To do so, they propose a modification to the
Hungarian Algorithm to identify a set of top ranking results. In our case, the
top-k lists are fairly small and hence memory-based matching techniques like
the Hungarian algorithm are more appropriate.

7. Conclusions

We have presented, to the best of our knowledge, the first suite of distance
measures for ranked lists of sub-trees. We also showed under what conditions
these measures are metrics. To evaluate our distance measures on real test
beds, we implemented three popular XML keyword proximity search systems
and compared their results using our novel distance measures.

In the future, we plan to work on customizing these measures for different
problems. For instance, for the XML keyword search problem we will differen-
tiate between path-as-result and sub-tree-as-result cases. We will also consider
implementing metrics that would consider a multi-way mapping between XML
trees instead of just considering a binary mapping, as an XML tree could pos-
sibly be mapped to multiple smaller sub-trees and vice versa.
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