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ABSTRACT
Businesses and large organizations accumulate increasingly
large amounts of customer interaction data. Analysis of
such data holds great importance for tasks such as strategic
planning and orchestration of sales/marketing campaigns.
However, discovery and analysis over heterogeneous enter-
prise data can be challenging. Primary reasons for this are
dispersed data repositories, requirements for schema knowl-
edge, and difficulties in using complex user interfaces. As
a solution to the above, we propose a TEmplated Search
paradigm (TES) for exploring relational data that combines
the advantages of keyword search interfaces with the expres-
sive power of question-answering systems. The user starts
typing a few keywords and TES proposes data exploration
questions in real time. A key aspect of our approach is
that the questions displayed are diverse to each other and
optimally cover the space of possible questions for a given
question-ranking framework. Efficient exact and provably
approximate algorithms are presented. We show that the
Templated Search paradigm renders the potentially complex
underlying data sources intelligible and easily navigable. We
support our claims with experimental results on real-world
enterprise data.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval

Keywords
keyword search, query recommendations

∗The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013)
/ ERC grant agreement no. 259569.
†Dr. Hristidis was partially supported by NSF grant IIS-
1216007 and a Samsung GRO grant.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CIKM’14, November 3–7, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2661883 .

1. INTRODUCTION
Enterprises nowadays are sitting on billions of dollars’

worth of data equity. Historical transaction data (e.g., prod-
ucts bought) and past interactional data with the client (e.g.,
responses to marketing campaigns) can offer valuable in-
sights on the future buying preferences of the client. How-
ever, distilling useful information from these data reposi-
tories can be particularly challenging, especially for non-
technical users. We can attribute this to three major fac-
tors:

- Access Issues: There exists a disparity between deci-
sion makers and data analysts that severely hampers direct
access to data. Although strategy and business insights are
driven by upper-level management, data access is serviced
by the IT division of an enterprise. Therefore, gleaning the
useful information may require several progressive rounds of
requests between decision makers and data accessors. These
multiple iterations reduce the efficiency of an organization,
incurring unnecessary costs and time delays.

- Data Issues: Relating to the above, querying the data
requires extensive knowledge of the underlying data and
their schema to properly formulate the queries. Additional
technical challenges that have to be addressed pertain to:
(a) entity resolution problems (e.g., different client names of
same entity per country) and (b) data scale.

- Interface Issues: Even when simple graphical inter-
faces do exist and offer data access to non-technical users, as
the user interface progressively becomes more feature-rich,
it will also become more difficult to operate. This induces
a steep learning curve to adapt to new user interfaces. In
addition, the various data tools cater for the needs of mul-
tiple groups of people with diverse access interests to the
data. The end result is that the users only use a small frac-
tion of an interface’s functionality, but are exposed to its full
complexity.

In this work, we propose a guided keyword search mech-
anism for retrieving information over relational databases1.
Given a database schema, the proposed search mechanism
receives as input keywords from the user such as (“iphone”
or “Boston”) and the system generates a list of queries that
are valid on the given database schema, such as: “all clients
who purchased an iphone”, “all clients located in Boston”,
or similar queries corresponding to the keywords. Com-
pound queries can be formed such as “all customers who
bought iPhone and are located in Boston ” if both keywords

1The proposed framework is applicable to any type of data
source that consists of entities and relationships between
them.



Figure 1: Examples from the Templated Search interface. Potential queries are recommended on-the-fly. In red are shown
the dynamic parts of the query templates. The system is also able to provide the counts of the result sets in real-time.

“iphone” and “Boston” are inputs. These natural-language
queries should be generated by the system and also seman-
tically map to valid SQL queries on the database.

End users want to receive answers to their questions with-
out delving into details of the database schema, a require-
ment for issuing SQL queries, or learning how to use rigid
and inflexible user interfaces [3]. Therefore, it is advanta-
geous to put forward a new search paradigm that guides the
user and eases the exploration and correlation over hetero-
geneous data sources.

In TEmplated Search or TES for short (Figures 1 and
7), queries are formulated using a simple textual descrip-
tion, allowing the user to ask queries like: “all clients who
bought product X ” or “all clients with expiring contracts
for product Y” which we call templates. Queries consists of
both static text that is predefined (i.e., customers, contracts,
who, product, etc.) and dynamic text that is retrieved from
the database. Moreover, the original query primitives (tem-
plates) can be compounded to form increasingly more com-
plex query instances. We address the challenges that we
identified above, in the following ways:

- Using the technology presented, the user does not need
to issue SQL queries or even have (complete) knowledge of
the underlying schema. The universe of potential queries is
captured in templates, and can be augmented as the system
matures.

- The system makes interactive recommendations about
valid queries on the data, based on the templates created.
The templates can be combined to articulate more elabo-
rate query functionalities. The query recommendations are
finally ranked so as to satisfy: relevance, coverage and di-
versity. Note that the keywords that the user inputs as part
of the query need not necessarily exist in the same tuple or
even in the same table of the database.

- To limit the interface complexity, we also use templates
for the various visual components. The user is only pre-
sented with a simple interface that is relevant to the partic-
ular question. If the user asks for “Contracts about Client
X”, then only a list of relevant contracts will be shown. In
contrast, when the question is concerning “Products bought
by Client X”, a different view will be displayed that only
captures the relevant information.

Here, we focus on relational datasets, mainly because
most mature enterprises store historical data in relational
tables. However, the notions we present are directly ap-
plicable on any other data-storage infrastructure such as a
graph database [31]. Our system is primarily targeted to-
wards non-technical decision makers who would like to have
direct query access to enterprise data.

Our work makes the following contributions:

1) We propose a tree-based query generation mechanism
to articulate and validate the queries that best cover

the user-input keywords (Section 2). Given a database
schema we define a (rooted) tree whose node/edge in-
formation is dynamically populated based on the input
query. Moreover, each rooted path of the tree models
a valid query as a dynamically text-populated path. We
propose an objective function (Equation (4)) so that valid
queries/paths are further ranked to satisfy three criteria:
relevance, coverage and diversity.

2) We present an O(n2 log(n) log(k)) algorithm for top k
ranking of n paths that optimally solves the path (query)
ranking problem under the proposed objective function
(Section 3). We also introduce a scalable, O(nk2) time,
2-approximate algorithm.

2. PROBLEM DEFINITION

2.1 Overview
Given a database schema that consists of a set of relation

and their connections through primary-foreign keys, our goal
is to search through the database with a simple keyword
search. We propose a guided search mechanism that, given
the user’s keywords, generates a list of valid questions in
natural language format, where by valid we mean that they
correspond to syntactically correct SQL statements. One
such example could be: “[All clients] [who bought] [product
X]” (without the brackets), see Figure 1. TES will provide
recommendations based on the keywords posed. The only
assumption that we make about the user is that he/she has
only a high-level knowledge on the entities that exist in the
database (i.e., clients, contracts, products) and their rela-
tionships (i.e., clients bought products, etc).

An important design question is how one defines the query
generation mechanism given a database schema. We propose
a tree-based query generation mechanism (see Figure 3 for
an illustrative part of the tree-based mechanism). Given a
database schema, we define a rooted tree in which each node
is associated either with static text (i.e., “All clients”, “who
bought”together with a list of synonyms) or with text that is
dynamically populated from the database (i.e., “product X”,
“product Y”). Syntactically, each rooted path models a query
text by concatenation of its node text, therefore all possi-
ble queries generated are defined as the union of all rooted
paths of the tree. Note that the set of possible queries is not
equal to the number of distinct paths, but grows with the
number of entries in the database’s relations. Finally, each
rooted path semantically corresponds to a specific query on
the given database.

For the remainder of the paper, we will assume the
database schema in Figure 2 2. In this schema, there exist

2It is possible to use a graphical database as the underlying
schema without altering any of the statements in this paper.
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Figure 2: A simplified schema that we consider as our work-
ing example throughout the paper. Links correspond to
primary-foreign key dependencies.

clients, products, contracts on products (e.g., maintenance),
opportunities (a salesperson identified a product selling op-
portunity for a product) and contacts (people within the
client organization with whom we interact, e.g., CEO, CMO,
etc). Other potential tables/entities include: news, which
correspond to recent news events about the client assembled
from RSS feeds and Twitter, and recommendations, which
stores the result of elaborate propensity models regarding
the probability of a client to express interest in a particular
product (consider, for example, recommendations as offered
in Netflix). The schema also comes with additional infor-
mation such as where each entity is stored, and also with
potential synonyms for the entities and their attributes. For
example, keywords such as clients and customers are syn-
onyms and are mapped to the node (entity) client. Fi-
nally, all the text in all columns of interest in the database
is indexed to support approximate or prefix search over all
textual entities.

As input we also assume a set of template queries that we
would like to answer on the system. For the above schema,
a representative subset can be:

Contracts of client.name

Cxx Contacts of client.name

All clients located in client.address (or client.city )

client.name who bought product.productName

client.name with expiring contracts for product.productName

The templates consist of static nodes indicated in gray
background color, and dynamic nodes, shown in white
color, which can be populated from a column of a table in the
database. In the above examples, Contracts of corresponds

to a static node, whereas client.name is a dynamic node. In
essence, a query template encapsulates a class of potentially
infinite queries. The templates are also accompanied by a
valid parameterized SQL statement, that guides their evalu-
ation on the database. Templates and their respective SQL
statements are derived via analysis of the database query
logs [29]. We do not further focus on this important research
aspect, but direct the interested reader to related work [21,
37, 5].

While templates are few in number and answer simple
queries, they may be combined, based on primary-foreign
key relationships of the data entities, to formulate more
complex queries. For example, the user can ask a question:
‘All clients with expiring contracts for System P who bought

SPSS’, which combines two of the above templates. Tem-
plates as the above can be combined with AND, OR and NOT

operators for formulating increasingly more complex state-
ments.

Given the list of templates, the schema and the data, we
need to generate valid query recommendations interactively
and rank them accordingly. This is the focus of the upcom-
ing sections.

All Clients

CXX Contacts of

located in

Contracts of

Wacker Neuson

client.nameWacker-Chemie AG

Wackersdorfer str. 1 client.address

static node dynamic node

Wacker-Chemie AG

Figure 3: A simplified example of the tree-based query gen-
eration mechanism. For the sake of presentation, we demon-
strates only 3 paths that have distinct return relations.

Example: Let’s assume that the query “wacker” is posed
(see Fig. 3). The system will try to determine whether
this matches approximately some entry in the database, the
static part of a query template, or both. The query matches
two records at the attribute name of the entity client:
‘Wacker-Chemie’ and ‘Wacker Neuson’. It also matches the
address ‘Wackersdorfer’ of some client entity. Based on the
above, an instance of the queries generated (query recom-
mendations) is shown in Figure 3.

In what follows, we formally define the tree-based query
generation mechanism (Section 2.2). It consists of two main
steps:

(a) Given user’s keywords, generate a list of “valid”question
over the tree.

(b) Rank the valid questions/paths to satisfy three essential
criteria: relevance, coverage and diversity.

2.2 Problem Definition
Now, we formally define the tree-based query generation

mechanism, which we call Query Tree. We construct a
rooted tree that consists of a set of “template paths”. A
minimalistic example of a Query Tree is shown in Figure 3.

Definition 1 (Query Tree). Given a database
schema, a Query tree (QT) is a rooted and directed
tree T = (V,E) together with a labeling function
L : V × Σ∗ 7→ (Σ∗,Σ∗, . . .) where Σ is a fixed alpha-
bet. QT has the following properties:

1. Root is “start” node.

2. Children of start are all relations of the schema.

3. Each relation may have as children (or descendants)

• SELECT or PROJECT conditions



• JOINS to other relations, i.e., other relations con-
nected through primary-foreign key; recursively
these relations may have the same types of de-
scendants

4. AND, OR, NOT are special connector nodes that combine
children of relation nodes

5. Each v ∈ V is a static or dynamic node. If v is a
dynamic node and q is a list of keywords, then L(v, q)
is a ranked set of tuples from the relation that corre-
sponds to v. Every textual result of L(v, q) is ranked
according to an IR-scoring function, e.g., [23]. If u is
static, then L(u, q) = L(u).

6. Dynamic nodes correspond to a ranked subset of tuples
of a relation.

In the above definition, the labeling function is required to
frame the functionality of the dynamic nodes. For exam-
ple, in Figure 3, q = ‘Wacker’ and let u be the dynamic
node corresponding to client.name, then L(‘Wacker’, u) =
{Wacker-Chemie AG,Wacker Neuson, . . . }. The top-level
static nodes (children of start) define the type of the re-
turn relation, i.e., whether what will be returned is a client
or a news element, etc. The lower-level nodes are in essence
condition relations because they are used to constrain the re-
sults of the return relations. Each valid query generated may
have one or more condition relations. This can be achieved
using connector nodes such as AND, OR and NOT.

Example: Here, we explain the above terminology and
demonstrate that each query contains all the information
necessary for retrieving the semantically correct result set.
Assume the query:

All clients in city Berlin and with installbase SPSS .

The system will parse the query and syntactically identify
the following: (1) return type is a list of clients (based on
the All clients static node); (2) client.city=‘Berlin’; (3)
product.name=‘SPSS’; (4) fetch the client tuples that satisfy
(2) and (3) as the connector is AND, i.e., clients with contracts
for System P who also purchased SPSS.

Once the Query Tree is formed, we can use it to generate
a set of relevant questions given a partial query from the
user. The scope here is to provide variations on the current
query, and also suggest ways of augmenting the query to
form more complex and valid questions on the data.

Problem 1 (Questions Formulation). Given a
Query Tree and user keywords, create a list of valid
questions (or paths).

There are several challenges with Problem 1. Namely, there
might be a match on schema and/or an instance or a tuple.
For example, the keyword “clients” might match the static
node “All clients” but might also match a client tuple with
the name “Client Corporation”.

2.3 Generation of Valid Questions (Paths)
Here, we discuss how we compute the set P of all valid

questions for Q with respect to a Query Tree. When we refer
to a path on the Query Tree, we imply that it is rooted at
“start”.

Definition 2 (Valid Path). Given a Query Tree T
and a query Q, a path (question) p is valid if (i) p (approx-
imately) matches at least one keyword in Q, and (ii) p is

minimal, that is, removing the last node of p would decrease
the number of keywords matched in condition (i).

First, in the above definition, condition (i) is loose so that
a large number of paths is generated. Second, condition (ii)
is used so that very long paths will not be included in the
valid set of paths. The valid path generation procedure op-
erates in two steps and prioritizes the search over the static
text nodes first. In the first step, the procedure matches
keywords from Q with only static text nodes. If there is
an exact match with a keyword in this case, the keyword is
removed; otherwise not. In the second step, the remaining
keywords are used for populating all the dynamic nodes. Re-
call that for each dynamic node of the Query Tree, there is
a corresponding attribute (or more) of some relation. Based
on the text characteristics of any attribute (i.e., short com-
pany name, postal code, city, etc), we construct an appro-
priate text index over all tuples. Here, the search is based
on a combination of approximate, prefix, edit distance and
phonetic matching. In both steps, we store the information
retrieval score between the query text and the node text for
each node.

2.4 Main Primitive: Paths of Query Tree
We describe a few properties and characteristics of paths,

because paths will be the core object of study in this paper.
At the end of this subsection (Section 2.4.3), we propose
a simple adjustment of the MMR diversification criterion
to take into consideration a graph theoretic covering the
property of paths, i.e., favor shorter paths which potentially
contain relevant longer paths.

2.4.1 Metric Structure of Paths
Given two paths (questions) starting from the root node

p1 = root→ t1 and p2 = root→ t2, our framework allows a
restricted type of distance between p1 and p2. Namely, for
a fixed tree T with arbitrarily positive weights on its edges,
we define their distance as

dist(p1, p2) := treeDist(t1, t2), (1)

where t1 and t2 are the final nodes of p1 and p2, respec-
tively and also treeDist(t1, t2) is the tree (or shortest path)
distance3 between node t1 and t2.

At this point, the above restriction on the tree metric
might seem unnecessary. However, we will see later in Sec-
tion 3 that such a restriction is crucial for the development
of our algorithmic solutions.

2.4.2 Information Retrieval (IR) Path Scoring &
Coverage

First, we define the IR score of a given node (dynamic or
static). For a dynamic node v and a query Q, L(v,Q) will
return a ranked list of string corresponding to an attribute
of some entity. The score of a (dynamic or static) node
v, nodeScore(v,Q) equals the information retrieval score re-
turned in the valid question generation step.

Our ranking formula is an adaptation of the formula in
[19]:

IRScore(p,Q) :=

∑
v∈p nodeScore(L(v,Q), Q)

size(p)
(2)

3The shortest path distance between two nodes of a tree is
defined as the sum of the edge weights over their connecting
path.



where size(p) is the number of nodes in p and
nodeScore(w,Q) is an appropriately chosen IR scoring func-
tion depending on its corresponding data source text charac-
teristics; by default we use Okapi BM25 [23]. More precisely,
if node v is a relation, then we define IRScore(v,Q) to be
the maximum IR score of an attribute in the relation with
respect to Q. If v is a select or project node, then we con-
sider its text as a string (document) and compute the IR
score as usual, i.e., BM25. Other ranking methods are also
possible [35, 16]. Observe that the contribution of nodes
that are far from the root node decreases linearly with their
node distance.

Example: Figure 4 provides an example where Q is “Volvo
clients bought SPSS”. Here, three paths are displayed, most
importantly the path r → v, for which the score computa-
tion is expanded at the bottom panel of the figure. Another

important characteristic of a path p that we would like to
incorporate in our scoring function is the relevance of its
descendants. The relevance of all descendants of a given
partial path can be viewed as a covering property of a path.
Namely, a path that has high relevance over its descendants
should be more favorable to be included in the result list.
For this reason, we defined the coverage score of a path p:

CovScore(p,Q) :=
∑

q∈Desc(p)∪p

1

dist(p, q) + 1
IRScore(q,Q).

(3)
where Desc(p) is the set of all descendant paths of p. The
covering condition is an important property on paths as it
guides the user towards more relevant paths.

CXX Contacts of

Volvo Trucks

All Clients

who bought

SPSS
System

Z

u

v

Q = ``Volvo clients bought SPSS''

dist(u,v) = 4

r

IRScore(pr->v, Q)=(nodeScore(w,Q) + 

                                 nodeScore(b,Q) +

                                 nodeScore(v,Q)) / 4 

w

b

h

Figure 4: Information retrieval scoring and distance of
paths. nodeScore(h,Q) is zero and therefore not included.

2.4.3 Putting Everything Together: Coverage, Di-
versity and Relevance

Now, we combine three aspects of any rooted path when
one searches over the Query Tree: (i) relevance, the IR rel-
evance of the path with respect to the query, (ii) coverage,
the importance of all descendants of a sub-path (as the rele-
vance of its descendants), and (iii) diversity, the dissimilarity
or distance between two paths.

In most cases, one can expect the result set of valid poten-
tial questions to be huge. Therefore, a ranking criterion has
to be decided. Returning the top-k valid questions with the
highest score may not be the best approach, because they

may be very similar to each other. So, it is important to
incorporate a diversity factor.

Computing diverse and relevant results is a rapidly grow-
ing and active line of research in the database community [6,
17, 11, 14]. Most of the approaches are based on ranking
documents/webpages given a query. Here, the main concep-
tual difference to prior work is that we diversify and rank
queries instead of results.

In contrast to the diversity of web documents, where se-
lecting a set of relevant and diverse results might be a satis-
fying solution [14], in our setting we must ensure that almost
all questions can be (approximately) reached from the set of
k questions presented, i.e., a covering condition must be sat-
isfied by the selected paths. Past work has also examined
how to incorporate topic coverage into a diversity function
when the topics are organized as a hierarchy [38]; the intu-
ition is similar to ours if we replace topics by queries, except
that we compute the score based on the queries selected and
not based on the results returned (which may be associated
with several topics in [38]).

Search result diversification is a bi-criterion optimization
problem in which one seeks to maximize the overall rele-
vance of the document’s ranking, while minimizing the re-
dundancy on the documents returned. In general, the above
bi-criterion problem is formulated as an intractable max-
imum coverage problem, and hence most algorithmic ap-
proaches are based on greedy solutions that provide only
approximate solutions [17].

We adopt a variant of the well-accepted maximal marginal
relevance (MMR) method of Carbonell and Goldstein [6]
whose diversity and relevance balancing formula aims to
identify k elements S (paths in our framework) that maxi-
mize:

MMR-Path(Q,S) = min
p∈S

CovScore(p,Q)+λ· min
p,p′∈S

dist(p, p′)

(4)
where CovScore(p,Q) is an arbitrary score of p given key-
words Q; |S| = k, dist(·, ·) is a similarity measure between
documents, and λ > 0 is a parameter specifying the trade-
off between relevance and dissimilarity within S. This bi-
criteria objective maximizes the minimum relevance and dis-
similarity of the chosen paths S (e.g., see Figure 5). Other
diversity definitions have also been proposed, e.g., [12, 15].
The problem can be casted as follows:

Problem 2 (Questions Ranking). Given a set of
valid questions/paths in the Query Tree and user keywords,
compute k diversified questions/paths that maximize Equa-
tion (4).

3. DIVERSIFIED QUESTIONS SELEC-
TION PROBLEM

In the literature of document diversification, there is a
well-understood connection between document diversifica-
tion (using the maximal marginal relevance [6]) and dis-
persion problems on graphs [17]: diversification problems
are typically reduced to a graph problem, known as disper-
sion problem [18, 24]). Here we follow the same approach,
but with an essential difference to prior work: we diversify
paths of trees. The simplicity of tree structures, as opposed
to general graphs, allows us to benefit in terms of both accu-
racy and efficiency. We present two provably accurate algo-
rithms for Problem 2. Algorithm 1 is an O(n2 log(n) log(k))
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Figure 5: Input keywords are “wacker contracts” and k is set
to 9. Font size is proportional to IR score for each node.

algorithm for top-k ranking of n paths that optimally solves
the path-ranking problem. The algorithm discovers opti-
mal solutions, but its quadratic dependence on the num-
ber of paths makes it prohibitive for our application; we
seek for interactive response times on the order of millisec-
onds. To overcome this drawback of Algorithm 1, we also
present a scalable, O(nk2) time, 2-approximate algorithm
(Algorithm 2) .

Maximal Minimum Dispersion Problem
Graph Type Algorithm Approx. Time

General - - NP-hard

General Greedy 2 O(n2)

Tree Alg. 1,[8] OPT O(n2 log(n) log(k))

Tree Alg. 2 2 O(nk2)

Table 1: Summary of provably accurate algorithms for the
maximal minimum dispersion problem on general graphs
and trees.

In Table 1, we put our results into context. The last two
rows correspond to our contributions. The first row shows
that the problem is NP-hard in general graphs. The second
row corresponds to the greedy 2-approximate algorithm for
general graphs (note the quadratic dependency on n). The
third row shows that the problem can be solved optimally
on trees, whereas the last row demonstrates that compu-
tational savings can be achieved on the restricted case of
trees. Therefore, the idea is to reformulate Problem 2 as an
instance of the maximum minimum dispersion problem [18,
24] over trees.

First, we revisit the MaxMin dispersion problem, which is
an intractable problem, i.e., NP-hard, in general graphs [7].

Problem 3 (MaxMin Dispersion Problem). Given
a positive integer k, a graph G = (V,E) with n = |V |
and positive edge weights, compute a S ⊂ V of size k that
maximizes

cost(S) := min
u6=v | u,v∈S

dist(u, v) (5)

where dist(u, v) is the shortest path distance on G.

Next we show how to reduce the objective value of Equa-
tion (4) to Equation (5). The reduction works by modify-

ing the distance function dist(·, ·) to incorporate the scoring
term of Equation (4) into the distance function. However,
it is important to note that the results of Table 1 are in
terms of nodes of a graph, they are not related to rooted
paths as discussed here. Given the Query Tree restricted on
the set of valid paths P, we identify each node v ∈ V with
its corresponding path starting from the start node of the
Query Tree and ending at v, i.e., start → v. The following
lemma makes formal the connection between Equation (4)
on paths and the MaxMin dispersion problem on the under-
lying Query Tree.

Lemma 1. Let P be a set of valid paths over the Query
Tree, Q be a query and k be an integer with 1 ≤ k ≤
|P|. Algorithm 1 computes a set of size k that opti-
mally maximizes Equation (4) over all k-subsets of P in
O(|P|2 log(|P|) log(k)).

Proof. For simplicity of notation, let w(pv) be equal to
CovScore(pv, Q) as in Equation (3). First, observe that all
paths have the same starting node, i.e., the start node of
the Query Tree. Now, identify each path with its final node,
i.e., the path pv := start → v is identified with node v.
Naturally extend this identification to set of paths. Given P,
let T = (V,E) be the tree that contains the union of all nodes
and edges contained in the set of paths P. Moreover, for
each e = (u, v) ∈ E, define dT (u, v) := 1

2
(w(pu) + w(pv)) +

λ · dist(pu, pv).
Now, note that for any PS ⊂ P, it follows that

min
u,v∈S

dT (u, v) = min
u,v∈S

[
1

2
(w(pu) + w(pv)) + λdist(pu, pv)

]
= min

pu∈PS

CovScore(pv, Q) + λ min
u,v∈PS

dist(pu, pv)

= MMR-Path(Q,PS) (6)

using the definition of dT and w(·) in the first and second
equality, respectively. The last equality follows by Equa-
tion (4). Now the MaxMinDispersion problem can be solved
exactly on T in O(|P|2 log(|P|) log(k)) time [8, Section 2].
Using Equation (6), the resulting nodes of the algorithm can
be translated into a set of paths PS of size k that maximize
Equation (4) over all subsets of size k of P.

Algorithm 1 solves the diversity ranking problem (Prob-
lem 2) optimally4. Algorithm 1 depends on the procedure
BoundedDisperse, which solves a decision version of Prob-
lem 3, i.e., given T , d, k and λ, it returns S of size k such that
cost(S) ≥ λ. If such an S does not exist, it returns failure.
Algorithm 1 uses Algorithm BoundedDisperse together with
binary searching to compute the optimal objective value of
Problem 3 with sufficient accuracy (Step 3), and then in-
vokes Algorithm BoundedDisperse once more to return an
optimal k-set S. Algorithm BoundedDisperse as presented
here is a simplification of the implicit algorithm presented
in [8, Section 2].

3.1 Scalable Greedy Diversification on Trees
Now we show that the time complexity of the greedy algo-

rithm (second row of Table 1) for solving Problem 3 on trees
can be significantly improved. The main observation is that
during the execution of the greedy algorithm only the dis-
tances between the facilities and all other nodes are required.

4Recall that the problem is NP-hard for general graphs.



Algorithm 1 MaxMin Dispersion Algorithm on Trees

1: procedure MaxMinTreeDisp(T , k) . A tree T , k > 0
2: Let δmin and δmax be the smallest and largest weight in T ,

resp.
3: Binary search on [δmin, δmax] using BoundedDisperse and ap-

prox. optimal value val of Equation (5)
4: Return the k set using BoundedDisperse(T , k, val)
5: end procedure
6: procedure BoundedDisperse(T , k, λ) . A tree T , k > 0, λ:

min. distance
7: Let C(s, t) be a cluster as Figure 6
8: Add a facility to each uj s.t. dist(uj , s) > λ; decrease k

accordingly
9: Let u1, . . . , ul be leaves of C(s, t) so that d1 ≥ . . . ≥ dl
10: Keep the maximum set of leaves so that their pairwise dis-

tances ≥ λ (always contain u1 on the set)
11: if d1 + dist(s, t) ≥ λ then
12: Add facility at u1; decrease k by one and remove node u1

along with its edge
13: end if
14: Remove node s along with all its adjacent edges
15: Connect ui to t with weight dist(ui, t)
16: Recursively call BoundedDisperse(T , k, λ)
17: if fewer than k facilities assigned then
18: Report failure
19: end if
20: Return set of k nodes that have assigned facility
21: end procedure

t

s

u1 u2 u3 u4

Figure 6: A cluster C(s, t) of a 4-node tree (line 8 of Alg. 1)

Moreover, the distance between any fixed node and all other
nodes in a tree can be computed by a breadth-first search
(BFS) in O(n) time, see updateMetaData in Algorithm 2.

Lemma 2. Given a tree T = (V,E) with n = |V |, an
integer k > 1, Algorithm 2 returns a 2-approximate solu-
tion to the maximal minimum dispersion problem on T using
O(nk2) operations.

Proof. The UpdateMetaData procedure is a breadth-
first search which computes the distance between s and
every other node in T . Hence, UpdateMetaData requires
O(n + |E|) = O(n) time. Step 4 requires O(nk) time
to compute the minimizer. In total, the algorithm re-
quires O(nk2) operations. As the algorithm is an instan-
tiation of the greedy algorithm, its output solution is a 2-
approximation [30, Theorem 2].

Remark 1. The running time of the greedy algorithm on
general graphs is Ω(n2) if only the edge weights are given,
because an all-pairs shortest path computation is required to
compute all node pairwise distances.

4. EXPERIMENTS
For the experiments, we use real enterprise data from our

host institution conforming to an expanded version of the
schema in Fig. 2. The data cover a holistic view of clients
including transactional and interactional data for a partic-
ular geography of our enterprise. To support approximate

Algorithm 2 Fast Greedy MaxMinDispersion on Trees

1: procedure FastGreedy(T = (V,E), k). A tree T , integer k > 1
2: Set S = v for arbitrary v ∈ V (preferably leaf).
3: for l = 1, 2, . . . , k − 1 do
4: Place the next facility on V \ S: sl :=

arg minv∈V \S dist(v, S).

5: Call updateMetaData(T , s) . BFS starting on s
6: end for
7: Return set S
8: end procedure
9: procedure updateMetaData(T = (V,E), s) . Each node v ∈ V

maintains dist(v, s) for every s ∈ S
10: Create queue Q and enqueue s in Q; label s as visited
11: while Q! = ∅ do
12: u← Q.pop()
13: for Edges e = {u, v} in adjacentEdges(s) do
14: if v is not visited then
15: Label u as visited
16: Q = Q ∪ v; dist(s, v) = dist(s, u) + dist(u, v)
17: end if
18: end for
19: end while
20: end procedure

search over all textual entries, text is indexed using Apache
Lucene/SOLR [2]. Search over the dynamic nodes of the
Query Tree is based on a combined weighted sum of approx-
imate, prefix, edit distance and phonetic match. Our test
system contains a total of approximately 16 million indexed
entities. The index size of the textual terms was on the or-
der of 20.2 GBytes. In Figure 7 we show snapshots of the
Graphical Interface of the system.

Path Scoring and Selection: First, we qualitatively
demonstrate the effectiveness of our framework using a few
representative examples. Given a set of keywords and a pos-
itive integer k, we perform the following steps: First, using
the input keywords, we generate the set of all valid paths.
Then, we use Algorithm 1 to highlight k paths that maxi-
mize the objective function defined in Section 2.4.3. Figure 8
demonstrates the generation of the Query tree and the paths
selected for a progressively formed query search. Figure 5
depicts an actual query on the system with keywords“wacker
contracts” and k = 9, and also shows that (i) a diversified
set of paths is selected, and (ii) dynamic nodes client.name
client.address and client.city have been populated.

Evaluation: Here, we present the experimental evalua-
tion of the diversification algorithms we proposed in Sec-
tion 3. We compare the efficiency in terms of running time
for three diversification algorithms: OPTtree which is Al-
gorithm 1, FastGreedy, which corresponds to Algorithm 2,
and Greedy, which corresponds to a naive implementation of
the greedy algorithm on trees, i.e., brute-force computation
of all pairwise distances of the tree. Moreover, we evaluate
Algorithm 1 in terms of the average path score (relevance)
and average path distance (diversity).

Figure 9 depicts the running time of the algorithms versus
the number of nodes selected for a tree with 1350 nodes, a
maximum depth of 9 and 582 leaves. This figure suggests
that both greedy solutions are superior to OPTtree. More-
over, Figure 9 demonstrates the quadratic dependency of the
greedy algorithms for large values of k. Figure 10 depicts the
running time of the algorithms for k = 25 and trees having
size between 30 and 1350 nodes. This figure confirms the
scalability of Algorithm 2 for constant values of k.
Parameter setting: Figure 11 depicts the average shortest
path distance over k selected paths using Algorithm 2, see
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client view

Figure 7: Left: An instance of the Query Interface generating valid queries based on the query templates. Right: The Answer
Interface directs to different view templates to best accommodate the user’s keywords.
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(c) Query: “clients bought SPSS Berlin”.

Figure 8: Progressive query path generation. In red are the queries selected that offer the best relevance, coverage and
diversification as in Equation (4).
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Figure 9: Elapsed time versus number of paths selected (k)
for a generated tree with 1350 nodes, 582 leaves, and maxi-
mum depth of 9.

Equation (1). It is evident that as k increases the average
distance decreases after peaking out. This peak happens at
the same value of k ≈ 20 for all values of λ depicted. This
suggests that a good value of k for our system is approxi-
mately 20. A similar experiment can be used to tune one’s
system before deployment.

Now, we turn our attention on how to set the parameter
λ, which controls the relative importance between relevance
and diversity. Figure 12 depicts the average path score over
the k paths selected using Algorithm 2. As anticipated,
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Figure 10: Elapsed time versus size of tree. We generate a
tree with 30 to 1350 nodes and step 10.

the average relevance score of the paths selected eventually
decreases as k increases. For fixed small values of k, we
observe that the average relevance score is sensitive to the
values of λ. We suggest fixing λ ≈ 0.6 so that a fair trade-off
between diversity and relevance exists.

User study: Even though our platform is intended for non-
technical users, we also wanted to evaluate how effective the
system can be for technical users. We gave 15 questions in
plain English that can be answered by our system to 5 users,
familiar with the database schema. Questions ranged from
simple to elaborate. An indicative sample of questions that
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were given included the following:

- ”All clients who bought [product name]”
- ”All clients with recommendations for [product name] who
have not bought [product name]”
- ”All clients who bought [product name 1] and [product
name 2]”
- ”News about [client name]”
- ”Cxx contacts of [client name]”
- ”All clients who bought [product name 1] and with recom-
mendations for [product name 2]”
- ”All clients in industry [industry name] who bought [prod-
uct name] and with expiring contracts in the next 6 months
for product [product name]”
...and so on.

We asked them to write the query for each question in
SQL and also to use our system, after a brief introduction
of the Templated Search interface. We measured the time
taken by each user to formulate the question, when issuing
the query in SQL, or when using the Templated Search in-
terface. Fig. 13 shows boxplots of the time taken by the
users to formulate the questions. It is apparent, that even
for advanced database users the presented system can offer
distinct advantages. Users also commented that they found
the new search paradigm to be very powerful and at the
same time simple to use, and particularly useful for answer-
ing questions pertinent to the operations of our enterprise.

5. RELATED WORK
Keyword search on databases: DISCOVER [20],

DBXplorer [1], BANKS [4], and others, have proposed ways
to search structured databases using keywords. The key
idea is that, given a set of keywords, the system looks for
trees of tuples connected through primary-foreign key links
(candidate networks), that collectively contain all the query
keywords. Other ranking methods have also been proposed:
(i) Aggregation and OLAP: IBM’s SQAK [34] (SQL Ag-
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Figure 13: Boxplots of time of formulate proper search query
in SQL and using the Templated-Search.

gregates with Keywords) allows users to compute a variety
of aggregate queries.Given such a keyword query and the
schema graph, the system will compute candidate aggre-
gate SQL queries and return the ones with highest score
to the user. IBM’s Keyword-Driven Analytical Processing
(KDAP) [36] combines intuitive keyword-based search with
the power of aggregation in OLAP. (ii) Semantic Web:
There are also works on using keyword search on seman-
tic graphs (e.g., RDF graphs) [25]. SemSearch [25] assumes
each keyword of the query is either a class (e.g., person),
an instance (e.g., John) or a property (e.g., has-job-title).
(iii) Web search: Given that Web search engines have an
increasing number of vertical structured databases, such as
tickets or products, there has also been work on finding the
right database and attributes to match a web keyword query
[33]. The above works do not consider progressive building
of structured queries in an autocomplete-like fashion, nor
distinguish between return and match relations. Moreover,
query (candidate networks) semantics in keyword search on
databases [20, 1] are different as each relation in the query
must contribute (or link to) a query keyword. Instead, our
queries (valid paths) are generated based on a combination
of the templates and the query keywords, e.g., for a single-
keyword query we may have a multi-relation question, but
DISCOVER or DBXplorer would only have single-relation
queries (the same holds for the results in BANKS). Also,
query diversity is not considered. Finally, in our model the
return relation is a primary class citizen, which allows our
queries to be converted directly to natural language ques-
tions.

Database query construction interface: In [37], given
an initial keyword query, they construct a query interpreta-
tion tree, each node corresponds to a decision – i.e., a ques-
tion to the user. A sequence of such questions are asked
until a query is constructed. In [13], this work is extended
to leverage ontologies to group candidate queries, so fewer
questions are posed to the user. The above works, neither
support an autocomplete-style query construction, nor con-
sider the diversity among the proposed queries.

Query forms: Another approach is to predefine a set of
query forms (templates) and then let the user select a form
and instantiate it. In [21] techniques are presented to auto-
matically generate a set of forms for a relational database,
using the data properties, without using a query workload.
In [22] the authors show how to modify existing forms to
create new forms. QURSED [27] is a tool to create query
forms for XML data. In [9] keyword search on databases
is combined with a form-based search. Limitations of using
forms include: users rarely like to fill out forms; the number
of forms to cover all possible queries is too high; no diversity



measures are supported.
Natural language interfaces to databases: Much re-

search was conducted especially in the 70’s and 80’s, on au-
tomatically converting natural language to SQL (e.g., [28]).

Facebook graph search: This is the project closest to
our work. Users start with a few keywords and the system
suggests possible search queries on the social graph. The
Unicorn [10] system is the underlying index of the Face-
book Social Graph on top of which Graph Search operates
[32]. Although we do not know the details of how queries
are generated, we speculate that the method has been de-
veloped specifically for social search and may not be easily
adapted to other schemas, e.g., enterprise search. Also, there
is no mention of how (if at all) diversity and coverage are
addressed [26].

6. LIMITATIONS AND CONCLUSION
We have introduced a scalable, templated search tech-

nique over relational databases. Our approach guides the
users and lets them easily query the potentially complex
underlying data schema. The technical contributions of our
work include:

- A tree-based question generation framework that is
based on information retrieval and graph theoretical tools.

- Two provably accurate algorithms for path diversifi-
cation over rooted trees: an optimal and a scalable 2-
approximation algorithm.

Speaking in SQL lingo our system supports the following:
multi-way joins, selections, projections, unions, intersections
and exclusions over sets, and simple orderings of the results.
Current limitations include: the absence of ’Group By’ and
aggregate queries operations. ’Group by’ queries could easily
be detected and expressed with the incorporation of static
nodes using keywords such as ’per’ or ’every’. Finally, the
ideas in [34] could be applied in the future to support aggre-
gate queries. In the long term, we plan to include support
for basic data-mining operations. For example, when the
desired outcome of a query is not already present in the
data, but is the result of some analytic operation (e.g., clus-
tering or classification). This will broaden the scope of our
solution, allowing it to answer even more complex tasks.

7. REFERENCES
[1] S. Agrawal, S. Chaudhuri, and G. Das. DBXplorer: A system

for keyword-based search over relational databases. In Proc.
ICDE, pages 5–16, 2002.

[2] ApacheFoundation. Lucene/solr. http://lucene.apache.org/solr,
2013.

[3] Z. Bao, B. Kimelfeld, and Y. Li. Automatic suggestion of
query-rewrite rules for enterprise search. In Proc. SIGIR, pages
591–600, 2012.

[4] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and
S. Sudarshan. Keyword searching and browsing in databases
using banks. In Proc. ICDE, pages 431–440, 2002.

[5] S. Bhatia, D. Majumdar, and P. Mitra. Query suggestions in
the absence of query logs. In Proc. SIGIR, pages 795–804, 2011.

[6] J. Carbonell and J. Goldstein. The use of MMR,
diversity-based reranking for reordering documents and
producing summaries. In Proc. SIGIR, pages 335–336, 1998.

[7] B. Chandra and M. M. Halldórsson. Approximation algorithms
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