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Abstract—Given a user keyword query, current Web search engines return a list of individual Web pages ranked by their “goodness”

with respect to the query. Thus, the basic unit for search and retrieval is an individual page, even though information on a topic is often

spread across multiple pages. This degrades the quality of search results, especially for long or uncorrelated (multitopic) queries (in

which individual keywords rarely occur together in the same document), where a single page is unlikely to satisfy the user’s information

need. We propose a technique that, given a keyword query, on the fly generates new pages, called composed pages, which contain all

query keywords. The composed pages are generated by extracting and stitching together relevant pieces from hyperlinked Web pages

and retaining links to the original Web pages. To rank the composed pages, we consider both the hyperlink structure of the original

pages and the associations between the keywords within each page. Furthermore, we present and experimentally evaluate heuristic

algorithms to efficiently generate the top composed pages. The quality of our method is compared to current approaches by using user

surveys. Finally, we also show how our techniques can be used to perform query-specific summarization of Web pages.

Index Terms—Internet search, search process, Web search.

Ç

1 INTRODUCTION

GIVEN a user keyword query, current Web search engines
return a list of pages ranked by their “goodness” with

respect to the query. However, the information for a topic,
especially for long or uncorrelated (multitopic) queries (in
which individual query keywords occur relatively fre-
quently in the document collection but rarely occur together
in the same document), is often distributed among multiple
physical pages connected via hyperlinks [26]. It is often the
case that no single page contains all query keywords. Li
et al. [26] make a first step toward this problem by returning
a tree of hyperlinked pages that collectively contain all
query keywords. The limitation of this approach is that it
operates at the page level, which ignores the specific context
where the keywords are found in the pages. More
importantly, it is cumbersome for the user to locate the
most desirable tree of pages due to the amount of data in
each page and the large number of page trees.

We propose a technique that, given a keyword query, on
the fly generates new pages, called composed pages, which
contain all query keywords. A preliminary version of this
work was presented as a poster paper in the 2006 ACM
SIGIR [39]. The composed pages are generated by stitching
together appropriate pieces from hyperlinked Web pages
(hyperlinks to the original Web pages are also displayed).
To rank the composed pages, we consider both the
hyperlink structure of the original (source) pages and the
associations between the keywords within each page.

Our technique has the following key steps: During the
preprocessing stage, for each Web page, we create a labeled
weighted graph, called the page graph, by splitting the page
to a set of text fragments (graph nodes) and computing the

semantic associations between them (graph edges). Then, at
query time, given a set of keywords, we first find a tree,
called Web spanning tree, of hyperlinked pages that collec-
tively contain all the query keywords. Then, we perform a
keyword proximity search on the each page’s page graph to
discover how the keywords contained in the page are
associated with each other. For each page in the Web
spanning tree, we extract a page spanning tree that contains a
subset of the query keywords. The page spanning trees of
the pages of the Web spanning tree are appropriately
combined into a composed page, which is returned to the
user. As we will explain later, smaller Web spanning trees
are preferable and, hence, single-page results, as created by
current Web search engines for AND semantics, are ranked
higher.

Note that a key assumption that we make in this paper is
that hyperlinked pages are associated with each other. This
is a reasonable assumption. Furthermore, each result should
be composed of pages associated to each other to have a
cohesive meaning. Hence, we only consider hyperlinked
pages in building a Web spanning tree.

Example 1. Fig. 1 shows a Web graph extracted from the
www.fiu.edu Web site. The hyperlinks between pages
are depicted in the Web graph as edges. The nodes in the
graph represent the Web pages. Fig. 2 shows the page
graph of page 1 in Fig. 1. As denoted in Fig. 1, page 1 is
split into seven text fragments v1; . . . ; v7, using the
newline delimiter, and each one is represented by a
node in the page graph. The edges denote semantic
associations. Table 1 shows the top-3 search results
(composed pages) for the query “Graduate Research
Scholarships.” We represent the nodes of a Web
spanning tree by using rectangles and the nodes of a
page spanning tree by using circles. Hyperlinks are solid
lines, whereas the semantic links within a page graph are
dotted lines. The page spanning trees represent the most
“relevant pieces” of each page.

Query-specific summarization. The extraction of the
most relevant pieces of information from a Web page using
the notion of the page spanning tree has another application
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(by-product), in addition to being a component in creating
composed pages. In particular, it is used to perform query-
specific summarization of Web pages. The most popular use
of query-specific summarization today is the snippets
displayed for each of the page results of Web search
engines. We show how the query-specific summaries
corresponding to page spanning trees have better quality
than current approaches.

Example 1 (continued). For Web page 1 of Fig. 1 and the
keyword query “Research Scholarships,” the top sum-
mary v3-v4 is shown in Fig. 3. The top summary is the
top spanning tree of the page graph of page 1 shown in
Fig. 2. Nodes v3 and v4 are associated, because they are
adjacent in the text (stronger associations are assigned
when the nodes have common words, as explained in the
following).

In summary, this work has the following contributions:

. We introduce the notion of composed pages to
improve the quality of Web search. Composed pages
are created on the fly by combining appropriate
content from other pages.

. We show how the most relevant information is
extracted from a page by viewing a page as a page
graph and computing a query-specific page span-
ning tree. This has applications to query-specific
summarization, in addition to the generation of
composed pages.

. We propose efficient heuristic algorithms to com-
pute the top composed pages and query-specific
summaries. The efficiency of the algorithms is
evaluated experimentally.

. We show through user surveys that the inclusion of
composed pages in the search results increases the
user satisfaction. Furthermore, we show that by
using the idea of the page spanning tree, we produce
query-specific summaries that are superior to cur-
rent approaches.

. We have developed prototypes of the Composed
Pages system, available at http://dbir.cs.fiu.edu/
ComposedPages, and the summarization system,
available at http://dbir.cs.fiu.edu/summarization.

The rest of this paper is organized as follows: Section 2
describes the framework used in our paper. Section 3
describes how page graphs are built. Section 4 describes the
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Fig. 1. Sample Web pages from www.fiu.edu.

Fig. 2. A page graph of page 1 in Fig. 1.

TABLE 1
Top-3 Search Results for the Query
“Graduate Research Scholarships”



idea of query-specific document summarization. Section 5
introduces the idea of searching the Web using composed
pages. Section 6 presents the algorithms used in our system.
Sections 7 and 8 present the quality and performance
experiments, respectively. Section 9 describes the related
work and, finally, in Section 10, we present our conclusions.

2 FRAMEWORK

2.1 Data Model

Web graph. Let D ¼ d1; d2; . . . ; dn be a set of Web pages
d1; d2; . . . ; dn. In addition, let sizeðdiÞ be the length of di, in
numbers of words. The term frequency tfðd; wÞ of term
(word) w in a Web page d is the number of occurrences of w
in d. Inverse document frequency idfðw;DÞ is the inverse of
the number of Web pages containing term w in them.

The Web graph GW ðVW;EW Þ of a set of Web pages
d1; d2; . . . ; dn is defined as follows:

. A node vi 2 VW is created for each Web page di in D.

. An (undirected) edge eðu; vÞ 2 EW is added between
nodes u, v 2 VW , if there is a hyperlink between u
and v.

An example of a Web graph is shown in Fig. 1. We view the
Web graph as undirected, since an association between
pages occurs along both directions of a hyperlink.

Page graph. In contrast to previous work in Web search
[25], [26], [31], we go beyond the page granularity. To do so,
we view each page as a set of text fragments connected
through semantic associations.

A key component of our work is the page graph GdðVd; EdÞ
of a Web page d, which is defined as follows:

. d is split into a set of nonoverlapping text fragments,
and each fragment is represented by a node v 2 Vd.
A text fragment corresponding to a node v is
denoted as tðvÞ.

. An undirected weighted edge eðu; vÞ 2 Ed is added
between nodes u, v 2 Vd, if there is an association
(further discussed in Section 3) between tðuÞ and tðvÞ
in d.

Fig. 2 shows the page graph of page 1 in Fig. 1. The
process of building page graphs is explained in Section 3.
The page graph is equivalent to the document graph in [38].
Notice that there are many ways of defining the page graph
for a Web page. In this work, we exploit the HTML tags to
split the page into text fragments, and edges are added
when the text fragments are associated through common (or
related) words, as we will explain in Section 3. The semantic
association between the nodes is used to compute the edge
weights (query independent), whereas the relevance of a
node to the query is used to define the node weight (query

dependent). Note that the Web graph now becomes a graph
of page graphs.

Search result. A keyword query Q is a set of keywords
Q ¼ fw1; . . . ; wmg. Before defining the result of a keyword
query, we need a few more definitions.

Definition 1 (Minimal Total Web Spanning Tree). Given a

Web graph GW ðVW;EW Þ, the minimal total Web spanning

tree of GW with respect to a keyword query Q ¼ fw1; . . . ; wmg
is a subtree T of GW that is both

. Total: every keyword w 2 Q is contained in at least
one node (page) of T , and

. Minimal: we cannot remove any node from T and still
have a total subtree.

Fig. 4 shows the minimal total spanning trees for the
query “Graduate Research Scholarships” on the Web graph
in Fig. 1. The result of a keyword query Q at the page
granularity is the minimal total Web spanning tree T . We go
one step further in order to improve the user’s experience
and locate the specific parts of each Web page in T that are
relevant to Q. For that, we need the following definition.

Definition 2 (Minimal Total Page Spanning Tree). Given a
page graph GdðVd; EdÞ for a Web page d and a set of keywords
Qi � Q (Qi ¼ Q for query-specific summarization), the
minimal total page spanning tree p of Gd is a subtree of Gd

that is both

. Total: every keyword w 2 Qi is contained in at least
one node of p, and

. Minimal: we cannot remove any node from p and still
have a total subtree.

Fig. 5 shows two minimal page spanning trees for
Pages 2 and 4, respectively, for the query “Graduate
Research Scholarships.” In both cases, v2 is a Steiner node;
that is, it does not contain any query keyword in it but is
helpful in forming the minimal total spanning tree for the
pages, as it has semantic links to the nodes that contain the
keywords.

There is a subtle difference in the page spanning tree
computation for our two different applications searching
using composed pages and query-specific summarization.
For the query-specific summarization of a Web page, we
compute the page spanning tree that contains all of the
keywords in Q. For the composed pages application, for
single-page results, we compute the page spanning tree for
Q, whereas for multipage results, we compute them for
subsets of Q (see Definition 3). Note that for Steiner nodes,
Qi is empty. In this case, p is an empty tree, which we
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Fig. 3. Top summary of Web page 1 of Fig. 1 for the query “Research

Scholarships”.

Fig. 4. The minimal total Web spanning trees of the Web graph in Fig. 1

for the query “Graduate Research Scholarships.”

Fig. 5. The minimal total page spanning trees of pages 2 and 4 in Fig. 1

for the query “Graduate Research Scholarships.”



represent by just displaying the title of the page in our
system.

The minimal total Web spanning tree T is “refined” by
finding the minimal total page spanning tree p for each of
the Web pages d 2 T , as formally explained in Definition 3.
Henceforth, we omit the words “minimal total” for brevity
if it is clear from the context when referring to the minimal
total Web spanning trees or page spanning trees. The size of
a Web or page spanning tree is the number of edges that it
contains.

Definition 3 (Search Result). Given a Web graph
GW ðVW;EW Þ, page graphs for each Web page in GW , and
keyword query Q ¼ fw1; . . . ; wmg, the search result R is the
minimal total Web spanning tree T with nodes (pages)
d1; ::; dz, along with the minimal total page spanning tree for
each di with respect to a subset Qi of Q. Each page di is
assigned a subset Qi of Q (di must contain all keywords in Qi,
although it may contain more keywords of Q than Qi) such
that Qi \Qj ¼ ; for every i 6¼ j, and Q1 [ . . . [Qz ¼ Q.

For example, Table 1 shows the top-3 search results for
the query “Graduate Research Scholarships.” The Web
spanning tree 3-1 gives rise to two search results. Page 3
contains the keywords “graduate” and “research,” and
page 1 contains “research” and “scholarships,” that is, the
keyword “research” appears in both pages. One search
result is computed with subsets Q1 ¼ fgraduate; researchg
for page 3 and Q2 ¼ fscholarshipsg for page 1, whereas the
other is computed with Q1 ¼ fgraduateg for page 3 and
Q2 ¼ fresearch; scholarshipsg for page 1. We only return the
best (see Section 5.1 for ranking) search result for each Web
spanning tree to the user, as shown in Table 1.

Problem Definitions. We are now ready to formally
define the two problems addressed in this work. The
scoring of search results and summary trees is presented in
Sections 5.1 and 3.1, respectively. Smaller scores correspond
to higher ranking.

Problem 1 (Top-k Search Results). Given a Web graph GW ,
the page graphs for all pages in GW , and a keyword query Q,
find the k search results R with minimum ScoreðRÞ.

Problem 2 (Query-Specific Summarization). Given a docu-
ment d 2 D and its page graph Gd, as well as a keyword query
Q, find the best summary, that is, the minimal total spanning
tree with minimum score.

Notice that typically, a single summary per page is
required and, hence, problem 2 is a top-1 problem. Notice
that the totality property implies that we use conjunctive
query semantics (AND). Applying OR semantics to Pro-
blem 2 is straightforward, as we just replace Q by Q0, where
Q0 is the set of query keywords contained in the page.
Applying OR semantics to Problem 1 is unintuitive, since
the primary purpose of the composed pages approach is to
produce complete (total) answers to the user.

3 BUILDING PAGE GRAPHS

The page graph GdðVd; EdÞ of a page d 2 D is constructed as
follows: First, we parse d and split it into text fragments by
using parsing delimiters (for example, < p > and < br >
tags). Each text fragment becomes a node in the page graph.
A weighted undirected edge is added to the page graph
between two nodes if they either correspond to adjacent text
fragments in the text or they are semantically associated.

The weight of an edge denotes the association degree of the
association.

There are many possible ways of defining the association
degree between two text fragments. In this work, we
consider two fragments to be associated if they share
common words (excluding stop words), and the degree of
association is calculated by an adaptation of traditional IR
term weighting formulas [35], as described in the following.
We also consider a thesaurus to enhance the word-matching
capability of the system. In future versions of our system,
we will consider using WordNet and Latent Semantic
Indexing (LSI) techniques to improve the quality of the edge
weights. To avoid dealing with a highly interconnected
graph, which would lead to slower execution times and
higher maintenance cost, we only add edges with weights
above a threshold. In addition, notice that the edge weights
are query independent, so they can be precomputed. Q is
only used in assigning weights to the nodes of Gd.

The following input parameters are required during the
precomputation stage to construct the page graph:

1. Threshold for edge weights. Only edges with weights
not below a threshold will be created in the page
graph. The choice of the threshold is a trade-off
between performance and quality, since a zero
threshold would build a dense graph, which would
increase the processing time, whereas a higher
threshold would decrease the quality of results by
not including enough edges.

2. Parsing delimiters. Parsing delimiters are used to split
the Web page into text fragments. Typical choices
are the < p > (paragraph) tag (each text fragment
corresponds to a paragraph) or the < br > (each text
fragment is a sentence). Other tags that could be
surrounding a possible text fragment are the
< table > , < ul > , < ol > tags, and so on. For all
of these tags, the text between the opening and
closing counterparts constitute a text fragment. This
way, we found a set of tags that, when used as
delimiters, leads to paragraphs that are typically
short and leads to more compact page graphs. For
plaintext documents, typical choices are newline
characters (each text fragment corresponds to a
paragraph) or periods (each text fragment corre-
sponds to a sentence).

3. Maximum text fragment size. This is used in cases
where a fragment is too long, which would lead to
large nodes (text fragments) and, hence, large
summaries. Users typically desire concise and short
summaries.

After parsing the page and creating the graph nodes (text
fragments), for each pair of nodes u, v, we compute the
association degree between them, that is, the score (weight)
EScoreðeÞ of the edge eðu; vÞ. If EScoreðeÞ � threshold, then
e is added to Ed. The score of edge eðu; vÞ, where nodes u
and v have text fragments tðuÞ and tðvÞ, respectively, is

EScoreðeÞ ¼

P
w2ðtðuÞ\tðvÞÞ

�
ðtfðtðuÞ; wÞ þ tfðtðvÞ; wÞÞ � idfðwÞÞ

�
sizeðtðuÞÞ þ sizeðtðvÞÞ ;

ð1Þ

where tfðd; wÞ is the number of occurrences of w in d,
idfðw;DÞ is the inverse of the number of pages containing w,
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and sizeðdÞ is the size of the page (in numbers of words).
That is, for every word w appearing in both text fragments,
we add a quantity proportional to the tf � idf score of w.
Notice that stop words are ignored. Furthermore, we use a
thesaurus and stemmer (we rely on Oracle interMedia [30],
as explained in Section 8) to match words that are related.
The sum is divided by the sum of the lengths of the text
fragments in the same way as the document length ðdlÞ is
used in traditional IR formulas.

Edges between adjacent fragments. We consider adjacent
fragment edges as a special case, because two adjacent
fragments are semantically related because of their close
proximity. Furthermore, linking the adjacent nodes ensures
the connectivity of the page graph. We use the following
formula, which ensures that there is always an edge
between nodes with adjacent text fragments:

EScoreðeÞ ¼ maxðEScoreðeÞ; thresholdÞ: ð2Þ

The calculation of the edge weights concludes the query-
independent part of the page graph creation. Next, when a
query Q arrives, the nodes in Vd are assigned query-
dependent weights according to their relevance to Q. In
particular, we assign to each node v corresponding to a text
fragment tðvÞ node score NScoreðvÞ defined by the Okapi
formula [35] and, in order to accelerate this step of
assigning node scores, we build a full-text index on the
set D of pages (the details of this index are out of the scope
of this paper):

X
t2Q;d

ln
N � df þ 0:5

df þ 0:5
� ðk1 þ 1Þtf
ðk1ð1� bÞ þ b dl

avdlÞ þ tf
� ðk3 þ 1Þqtf
k3 þ qtf

;

ð3Þ

where tf is the term’s frequency in the document (page), qtf
is the term’s frequency in the query, N is the total number
of documents in the collection, df is the number of
documents that contain the term, dl is the document length
(in words), avdl is the average document length, and k1
(between 1.0 and 2.0), b (usually 0.75), and k3 (between 0
and 1,000) are constants.

3.1 Ranking of Page Spanning Trees

In this section, we present our ranking framework for page
spanning trees. Recall that the top page spanning tree is the
query-specific summary for Problem 2 (Section 2.1). Given
the page graph Gd of page d and a query Q, a page spanning
tree p is assigned a score ScoreðpÞ by combining the scores
of the nodes v 2 p and the edges e 2 p:

ScoreðpÞ ¼ a
X

edgee2p

1

EScoreðeÞ þ b
1P

nodev2p
NScoreðvÞ ; ð4Þ

where a and b are constants, as discussed in the following.
EScoreðeÞ is the score of edge e by using (1), and NScoreðvÞ
is the score of node v by using (3).

Intuitively, if p is larger (has more edges), then its score
should degrade (increase), since larger trees denote looser
semantic connections [2], [7], [21], [22]. The reason is that
we take the sum of the inverse of the edge scores in (4).
Furthermore, if more nodes of p are relevant to Q, the score
should be improved (decreased). Hence, we take the inverse
of the sum of the node scores.

Constants a and b are used to calibrate the importance of

the size of the summary (in numbers of edges) versus the
amount of relevant information contained. In particular,
higher a values boost the score of smaller and tightly

connected summaries, whereas higher b values benefit
summaries with more relevant content (that is, containing

nodes with a high score with respect to the query). Notice
that a and b can also be viewed as adjusting parameters for
the query-independent and query-dependent parts of the

scoring function, respectively. We use a ¼ 1 and b ¼ 0:5 in
our system, which we have found to produce high-quality

answers.

4 QUERY-SPECIFIC SUMMARIZATION

This section tackles Problem 2 of Section 2.1. Given a query

Q and a page graph Gd for a page d, the query-specific
summary is the page spanning tree p of the Gd with
minimum ScoreðpÞ, according to (4).

Example 2. Fig. 7 shows the page graph for the page in
Fig. 6. The page is first split into text fragments

v0; . . . ; v16, which correspond to its paragraphs (the
newline delimiter was used). Notice that the edge
between nodes v8 and v7 has the highest weight, because

there are many infrequent (hence with high idf value)
words that are common between them, like “Donoghue”

and “BrainGate.”
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Fig. 6. Sample news page from www.cnn.com.



Table 2 shows the top-ranked spanning trees for the page
graph in Fig. 7 for the query “Brain Chip Research.” The
values shown above the nodes in Table 2 indicate the node
scores with respect to the query, as computed by (3). The
top result (whose textual representation is shown in Fig. 8)
is the best summary for this query. Intuitively, this result is
the best, because it contains the minimum possible number
of nodes, and the edge that connects the two nodes is
strong. In addition, observe that result 4 is ranked lower
than result 3, even though it has fewer nodes. The reason is
that the nodes of result 4 are connected through very
commonly occurring words like “computer” and “brain,”
whereas in result 3, they are connected through infrequent
words like “Friehs.”

5 SEARCH USING COMPOSED PAGES

This section tackles Problem 1 in Section 2.1. In Section 5.1,
we explain how a search result (Definition 3) is ranked,
whereas Section 5.2 discusses how a composed page is
constructed for a search result.

5.1 Ranking Search Results

Recall that a search result R is a Web spanning tree T , where
each page d in T is represented by its page spanning tree p.
Clearly, there is no optimal ranking function, since it is
possible to come up with different ranking functions for
different domains or specific queries. In this work, we adopt
principles that are well accepted in previous work on
ranking Web pages [25], [26], [31] and trees of data [2], [7],
[14], [17], [21], [38].

The first ranking principle that we adopt [26] is that search
results involving fewer pages are ranked higher. Intuitively,
if a search result is larger (has more edges), then its score
should degrade (increase), since larger trees denote looser
semantic connections. Hence, search results are primarily
ranked by the (inverse of the) size of their Web spanning
tree. Recall that by Definition 3, all search results contain all
query keywords.

Within search results with the same size of the Web
spanning tree, we rank according to the scores of the
involved page spanning trees, as computed by (4). Note that
the first ranking principle also applies in ranking individual
page spanning trees as expressed in (4); that is, page
spanning trees with smaller size are ranked higher.

What is left is defining how the scores of the constituting
page spanning trees computed by (4) are combined to

compute the overall score of a search result. Again, we do
not claim that we have the optimal combining function, but
we rely on previous work to define the next principle. The
second ranking principle is that the scores of the page
spanning trees are combined using a monotone combining
function to compute the score of the search result. Notice
that we have already used another variant of this principle
in (4), where the scores of the nodes and edges are
combined using a monotone function.

To incorporate the global importance of the pages used
in constructing a search result, we use their PageRank [31]
values. The score of a search result R is computed as
follows, given the scores of its page spanning trees p, where
we chose summation as our monotone combining function:

ScoreðRÞ ¼
X
p2R

ScoreðpÞ
PRðpÞ ; ð5Þ

where PRðpÞ is the PageRank score of page d that contains
the page spanning tree p.

5.2 Composed Pages

A composed page is a dynamic page created on the fly by
stitching together pieces from other pages. Given a query Q,
a composed page is a representation of a search result, as
defined in Definition 3, in a Web page format. The score of a
composed page is the score of the corresponding search
result defined by (5).

The key requirements in constructing a composed page
are the following: First, display the tree-structured (more
specifically tree of trees) search result in a page format.
Second, allow users to easily navigate to the original pages
that were used to construct the composed page. Fig. 9
shows the composed page constructed for search result 1 in
Table 1. A composed page for a search result is constructed
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Fig. 7. Page graph of the sample page in Fig. 6.

TABLE 2
Top Summaries for the Query “Brain Chip Research”

Fig. 8. Top summary for the document in Fig. 6 for the query “Brain Chip

Research.”



by displaying links to all pages in its Web spanning tree,

along with the text fragments of the page spanning trees.

The page spanning trees are displayed in an unordered list

format that depicts their structure. A subbulleted list

denotes the parent-child relationship in the page spanning

tree of text fragments.

6 ALGORITHMS

In this section, we present various algorithms used in our

system. Note that the algorithms used in the query-specific

summarization problem are also used as a component of the

composed-pages problem. The precomputation require-

ments are also the same. Section 6.1 presents the algorithm

for preprocessing the Web pages and creating a database of

page graphs. Section 6.2 presents algorithms for solving the

query-specific summarization problem (Problem 2), which

are adopted in Section 6.3 to solve the top-k search results

problem (Problem 1).

6.1 Preprocessing Algorithm

Fig. 10 describes the preprocessing algorithm. Before any
query arrives, we precompute and store the following:

. The page graph for each page. In particular, we parse the
HTML documents based on the tags, as described in
Section 3, and compute the edge weights. The
parameters described in Section 3 are taken as input,
and page graphs are built accordingly.

. The PageRank values of each page. These are obtained
by executing the PageRank algorithm [31].

. A full-text index. This is used to efficiently locate the
pages, specifically the text fragments that contain the
keywords, and to calculate their query-specific score.

. The all-pairs shortest paths. In order to boost the
performance of the algorithms, we use the all-pairs
shortest paths between the nodes of the page graph
Gd of every page d. Note that the inverse of the edge
weights is used, since larger edge weights denote
tighter association in our setting.

6.2 Compute the Top-1 Page Spanning Trees
(Query-Specific Summaries)

For both Problems 1 or 2, we need to solve a variant of the
Group Steiner Tree problem, which is referred to as the
keyword proximity search problem [7], [14] and is defined
as follows:

Given a weighted data graph GðV ;EÞ, a keyword query Q,
which is a set of keywords, and an integer k, find the k minimum-
weight subtrees of G such that every keyword in Q is contained in
at least one vertex of the subtree, and we cannot remove any node
from it and still have a tree.

When k ¼ 1, the keyword proximity search problem has
been shown to be equivalent to the Group Steiner problem,
which is NP-complete. The keyword proximity search
problem is slightly more complex, since the groups of
nodes are not disjoint, in contrast to the Group Steiner
Problem, which is defined as follows:

Given an undirected, connected, and weighted graph G ¼
ðV ;EÞ and a family R ¼ fR1; . . . :Rkg of disjoint groups of
vertices, where Ri is a subset of V , find a minimum-cost tree T
that contains at least one vertex from each group Ri. Since the
weights of the graph are nonnegative, the solution is a tree
structure.

This section presents two algorithms adopted from
BANKS [7] to compute the top query-specific summary:
the enumeration and the expanding search algorithms. The
algorithms return a top-1 summary for a Web page d, given
its page graph Gd and a query Q. The reason that we
employ top-1 summary algorithms is that typically, the user
only requests a single summary for a document, as in the
case of snippets in Web search engine results.
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Fig. 9. Composed page for search result 1 for the query “Graduate Research Scholarships.”

Fig. 10. Preprocessing algorithm.



Top-1 Enumeration Algorithm. This algorithm Top-1-
Minimal-TotalPageSpanningTree-Enumeration (Top-1-
MTPST-Enumeration) is shown in Fig. 11. First, we find all
combinations of nodes in Gd that are minimal (no node is
redundant) and total (collectively contain all keywords in
Q). Then, for each combination, we create a complete graph
Gc (called closure graph) that contains all nodes in the
combination and all pairs of edges between them, with their
weight equal to their precomputed shortest path distance.
We then calculate all possible spanning trees in Gc, compute
their scores by using (4), and so on (see Fig. 11 for more
details). This algorithm accepts a quality parameter !.
Higher values of ! yield higher quality results. Intuitively,
this parameter decides the number of different summaries
that are considered before we pick the best one, given that
this is an NP-complete problem.

Example 2 (continued). Consider the page graph in Fig. 7
and the query “Brain Chip Research.” The nodes that
contain the keywords are v0, v1, v3, v4, v10, v11, and v15.
We then find all minimal and total node combinations,
which are fv0; v10g, fv15; v0g, fv0; v3g, fv4; v0g, and so
on. For each combination, we create a closure graph. For
example, the closure graph for the second combination is
v15 � v0 with edge weight 88.74 (which is the length of
the shortest path from v15 to v0). We then find all possible
spanning trees of this graph, which is just v15 � v0, for the
above closure graph. Then, we replace the edge between
v15 and v0 with the shortest path between them, which is
v15 � v14 � v1 � v0. This tree is not minimal and, hence,
we trim it to get the minimal result v15 � v14 � v1 and
output this result, along with its score.

Top-1 Expanding Search Algorithm. The basic idea is
that an expanding area is created for each keyword node (a
node that contains a query keyword) of Gd, and we start
from the nodes that contain the query keywords and
progressively expand them according to a shortest path
algorithm until we find all minimal total spanning trees. In
particular, the algorithm (Fig. 12) finds (using the pre-
computed full-text index) all the nodes that match some
keywords in the query and starts expanding them incre-
mentally. We call the subgraph created from each keyword
node v the expanding area of v. At each iteration, we
expand each expanding area in parallel by adding all
adjacent edges (later, we will discuss heuristics of expan-
sion) to the expanding area of the previous iteration. A
result (summary) is generated when a set of expanding
areas meet at a common point (node) and form the minimal
total page spanning tree for Q.

We use the precomputed all-pairs shortest paths data to
efficiently grow the expanding area. That is, we only
consider the edges that are contained in the shortest path
from the current node v to any other node u that contains
additional query keywords than v. When two or more
expanding areas meet, we check for possible new summa-
ries. If a summary is found, it is trimmed to become
minimal, and its score is calculated using (4).

Example 2 (continued). For the page graph in Fig. 7 and the
query “Brain Chip Research,” we grow the expanding
area of v0 to v0 � v10, which is the first precomputed
shortest path of source v0, and check for possible
summaries. v0 � v10 is total and minimal and, hence,
we add it to the set of results. We continue growing each
expanding area by using its precomputed shortest paths.
Then, we grow v1 to v1 � v2, v3 to v3 � v2, v4 to v4 � v3,
v10 to v10 � v9, and v11 to v11 � v10, and once we
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Fig. 11. Top-1 enumeration algorithm.

Fig. 12. Top-1 expanding search algorithm.



expand v11, we have another summary v11 � v10 that is
total and minimal.

6.3 Computing the Top-k Search Results

This algorithm is an adaptation of the top-1 expanding
search algorithm in Section 6.2. It also uses the Top-1-
MTPST-ExpandingSearch method as a subroutine to com-
pute the page spanning trees of the pages in a Web
spanning tree. We adopt expanding search and not the
naive enumeration algorithm, since the former is shown to
perform better in Section 8. The key differences from the
algorithm in Fig. 12 are the following. First, Heuristic-Top-k-
Expanding-Search (Fig. 13) operates on Web graphs, instead
of page graphs and, hence, produces Web spanning trees
instead of page spanning trees. Second, we introduce the
following heuristic based on (5), which is our ranking
function. In particular, we first expand toward pages d with
the highest HeuristicWeight value as defined by

HeuristicWeightðdÞ ¼ PRðdÞ � IRScoreðdÞ; ð6Þ

where d is a Web page, PR is its PageRank value, and
IRScoreðdÞ is its Information Retrieval score for Q. The
PRðdÞ component of (6) is intuitive, since it also appears in

the ranking equation (5). The IRScoreðdÞ component is a
heuristic estimate of the ScoreðpÞ component of (5), where p
is the page spanning tree for page d. The intuition is that a
page with high IR score for Q is also expected to have page
spanning trees with high score for Q. We use the full-text
indexer to compute IRScoreðdÞ. Finally, notice that the
Heuristic-Top-k-Expanding-Search algorithm has two steps.
First it computes the Web spanning trees, and for each of
them, it computes the top search results by computing the
corresponding page spanning trees for its pages (the
getTopSearchResult method). The following are the key steps
of the algorithm involved in computing the top-k search
results for a query Q:

. Compute the minimal total Web spanning tree WST ,
given the Web graph Gw and query Q.

. Then, compute the best search result for WST , given
the page graphs of each page in WST and the query
Q, by considering all possible combinations of
keyword assignments to the pages of WST , accord-
ing to the constraints of Definition 3.

The above steps are repeated until k search results are
computed. The getTopSearchResult method takes as input a
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Fig. 13. The heuristic top-k expanding search algorithm.



Web spanning tree and the page graphs of the constituent
pages and returns the best search result after evaluating all
possible search results. It uses the Top-1-MTPST-Expanding-
Search method to compute the top page spanning trees
corresponding to the query.

7 QUALITY EXPERIMENTS

To evaluate the quality of the results of our approach for
Problems 1 and 2, we conducted three surveys: one for
Problem 1 and two for Problem 2. The subjects of the survey
are 20 students (of all levels and various majors) from
Florida International University (FIU), who were not
involved in the project. In these surveys, the users were
asked to evaluate the results based on their quality.
Sections 7.1 and 7.2 present the results for Problems 1 and
2, respectively.

Data sets. We use two real data sets (Table 3). FIU1 is a
hyperlinked set of 25,108 Web pages (nodes) crawled from
the fiu.edu domain, connected through 137,929 hyperlinks
(edges) used for performance evaluation. FIU2 is a subset of
the Web pages available at the fiu.edu domain used for
quality evaluation, which offers faster response times and
more focused results that are easier to compare.

7.1 Composed Pages

We used FIU2 for our user surveys. The participants were
asked to evaluate the quality of the search results with
respect to 10 queries. We chose both long-sized and
medium-sized queries. For each query, users were asked
to rate their satisfaction for the top-5 search results
produced from the Heuristic Top-k Expanding Search
algorithm in Fig. 13 and for the results produced by
Google. We chose the first five results from Google that are
included in the subset of crawled FIU Web pages. The
Google query was constrained to pages using the “site:
fiu.edu” condition. Each participant was asked to assign a
score between 1 and 5 to each alternative query answer,
where 5 denotes the highest user satisfaction. The results of
the survey prove the superiority of our approach, as shown
in Table 4.

7.2 Query-Specific Summarization

To evaluate the quality of our query-specific summaries, we

created two user surveys on a DUC and a Web data set, as

explained in the following. The size of a result was also

taken into consideration by the participants: A longer result

carries more information but is less desirable. Each

participant was asked to compare the summaries and rank

them, assigning a score of 1 to 5, according to their quality

for the corresponding query. A rank of 5 (1) represents a

summary that is most (least) descriptive.

7.2.1 Comparison with the DUC Data Set

The data set used in this survey consists of 20 documents
and four queries taken from the DUC 2005 data set [10], as
shown in Table 6. We compare our summaries with the
DUC Peer summaries for quality. The DUC peers are
human and automatic summaries used in quality evalua-
tion. We compared our summaries against the DUC peers
with the highest linguistic quality. Unfortunately, most of
the summaries in the DUC data sets are query indepen-
dent, and the few query-dependent ones are multidocu-
ment. Hence, in order to compare our work to that of
DUC, we used the following method to extract single-
document summaries from query-dependent multidocu-
ment summaries for a set of 20 documents over four
topics. The sentences that have been extracted from a
document d to construct the multidocument summary are
viewed as d’s single-document summary for the query/
topic. Notice that the DUC summaries are created by
extracting whole sentences from documents.

The results of the survey prove the superiority of our
approach, as shown in Table 6. Our method of combining
extracted sentences using semantic connections in the form
of Steiner trees leads to higher user satisfaction than the
traditional sentence extraction methods. In particular, the
Steiner sentences in summaries provide coherency in the
aggregation of the keyword-containing sentences.

7.2.2 Comparison with the Google and MSN Desktop

The data set used in this survey consists of seven news
documents taken from the technology section of cnn.com.
The participants were asked to evaluate the quality of the
summaries of the seven documents with respect to five
queries each (35 queries in total). We chose queries where
keywords appear both close and far from each other. For
each query-document pair, three summaries are displayed,
corresponding to 1) the result of the top-1 expanding search
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TABLE 3
Real and Synthetic Data Sets

TABLE 4
Average Top-5 Search Result Ratings for 10 Queries



algorithm, 2) Google Desktop’s summary, and 3) MSN
Desktop’s summary. Summaries 2 and 3 were created by
indexing the two documents in our desktop and then
submitting the five queries to the Desktop engines.

The summaries are the snippets output for these
documents. In order to compare apples to apples, we
chose queries for which the length of the summaries
produced by all three methods are similar, since clearly, it
is not fair to compare summaries of different lengths, as
some people favor conciseness, whereas others the amount
of information.

In this survey, we set constant a to 1 and b to 0.5 in (4),
which we found to produce higher quality summaries.
Notice that by increasing the value of constant a, we favor
short results, whereas by increasing constant b, we favor
longer and more informative results. Hence, by setting a to
1 and b to 0.5, we favor shorter summaries, which have
similar size to the ones produced by the Google and MSN
Desktop. This makes their comparison fairer.

The results of the survey, which show the superiority of

our approach, are presented in Table 5, whereas the queries

are shown in Table 7 (only 10 queries are shown, whereas

the remaining 25 are omitted due to space constraints).

Notice that Google and MSN Desktop systems do not

always include all keywords in the summary when they are

more than two and have big distances between them. In

contrast, our approach always finds a meaningful way to

connect them.

8 PERFORMANCE EXPERIMENTS

We evaluate the performance of the algorithms presented in

Section 6. Section 8.1 shows our results for Problem 2,

whereas Section 8.2 is for Problem 1. We used a Linux

machine with Power 4þ 1:7-GHz processor and 3.7 Gbytes

of RAM. The algorithms were implemented in Java. To

build the full-text index, we used Oracle interMedia [30]

and stored the documents in the database. JDBC was used

to connect to the database system. We used the precompu-

tation technique described in Section 6.1. We used FIU1
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Average Summary Ratings for Documents

TABLE 6
Average Summary Ratings for the DUC Topics

TABLE 7
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(described in Section 7) for performance evaluation, as FIU2
is a very small data set for this purpose.

8.1 Query-Specific Summarization

First, we compare the performance of the two algorithms in
Section 6.2 for summarizing keyword queries of various
lengths. The execution time consists of two parts: 1) the
computation of the scores of the nodes of the page graph
(remember that this is query specific and cannot be
precomputed) and 2) the generation of the top summaries
(minimal total page spanning trees) in the page graph. The
first part is handled by Oracle interMedia [30], and the
average time for a single page for various-length queries is
shown in Table 8. The second part of the execution is
handled separately by the two algorithms, and the results
are shown in Fig. 14. In particular, Fig. 14 compares the
performance of the Top-1 Enumeration and Top-1 Expand-
ing search algorithms.

We observe that the expanding search algorithms are
faster than the enumeration ones, especially for long
queries. Notice that we do not compare the performance
of our algorithms to BANKS, since our Top-1 algorithms are
adaptations of the BANKS algorithms to our problem. In
particular, we use the precomputed all-pairs shortest paths
data to efficiently grow the expanding area in the Top-1
Expanding search algorithm and efficiently construct the
page spanning tree from the spanning trees of the closure
graph in the Top-1 Enumeration algorithm.

Finally, we measure the accuracy of the Top-1 algo-
rithms. In order to have a yardstick to compare the Top-1
algorithm results, we first perform an exhaustive search to
find all summaries, along with their optimal scores. In
particular, we measure (see Table 9) the average rank of the
summary of the Top-1 algorithms in the optimal list of
summaries. We observe that the Top-1 expanding algorithm
better approximates the Top summary in the optimal list of
summaries when compared to the Top-1 enumeration
algorithm, as shown in Table 9.

8.2 Searching Using Composed Pages

First, we measure the quality of the Heuristic-Top-k-Expand-
ing-Search algorithm as follows: In order to have a yardstick
to compare our results, we first perform an exhaustive

search to find all search results, along with their optimal
scores. Then, we measure the quality of the heuristic top-k
algorithm by comparing its top-k search results produced
with the optimal top-k search results. We compare two
top-k lists by using Spearman’s rho metric:

�ð�1; �2Þ ¼
XK
i¼1

�1ðiÞ � �2ðiÞj j2
 !1=2

; ð7Þ

where � is Spearman’s rho metric, �1 and �2 are two top-k
lists, and �1ðiÞ and �2ðiÞ are the ranks of the ith search result
in each of the top-k lists. Fig. 16 shows the average quality
of the results (over 50 queries) of our heuristic search and
the Nonheuristic expanding search (where a random page is
chosen for expansion at every step) compared to the
optimal exhaustive search. Fig. 16a shows the quality of
the Heuristic and Nonheuristic Top k for fixed m ¼ 2 (two
keyword queries) and varying number k of requested
results. Fig. 16b shows the quality for a fixed number k ¼ 25
of requested results and varying the query length. As
shown in Fig. 16, the expansion based on the Heuristic-
Weight (6) yields better Top-k results.

Next, we compare the execution time of the algorithms,
which consists of two parts: 1) the computation of the Web
spanning trees in the Web graph and 2) the generation of
the top-k search results. Fig. 15 shows the execution time of
the different algorithms for computing the Top-k search
results (Definition 3). As before, we measure the perfor-
mance with changing k and fixed m ¼ 2 (Fig. 15a) and
changing m with fixed k ¼ 25 (Fig. 15b). Notice that Fig. 15
shows the total execution time of the Heuristic-Top-k-
Expanding-Search algorithm and its Nonheuristic and
Optimal counterparts. The Heuristic algorithm has longer
execution time when compared to the Nonheuristic algo-
rithm, because during each expansion step, it has to select
among the available neighbors the one with the highest
HeuristicWeight (6), whereas the Nonheuristic algorithm
selects a random page for expansion.

9 RELATED WORK

Document Summarization. A large corpus of work has
focused on generating query-independent summaries [3],
[5], [6], [15]. The OCELOT system [6] provides the summary
of a Web page by selecting and arranging the most (query-
independent) “important” words of the page. Amitay and
Paris [3] propose a new fully automatic pseudosummariza-
tion technique for Web pages, where the anchor text of
hyperlinked pages is used to construct summaries. Barzilay
and Elhadad [5] use lexical chains for text summarization.

The majority of systems participating in the previous
Document Understanding Conference [10] (a large-scale
summarization evaluation effort sponsored by the US
Government) and the Text Summarization Challenge [13]
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TABLE 8
Average Times for Calculating Node Weights

Fig. 14. Processing time of Top-1 algorithms.

TABLE 9
Average Ranks of Top-1 Algorithms with Respect

to the Optimal List of Summaries



are extraction based. Extraction-based automatic text
summarization systems extract parts of original documents
and output the results as summaries [9], [11], [15], [19].
Other systems based on information extraction [32] and
discourse analysis [27] also exist, but they are not yet usable
for general-domain summarization. However, they do not
exploit the inherent structure of the document and mostly
focus on query-independent summaries. In this work (as in
[38]), we also show the semantic connections between the
extracted fragments, which improve the quality, as shown
in Section 7.2.

White et al. [40], Tombros and Sanderson [37], and

Goldstein et al. [15] create query-dependent summaries by
using a sentence extraction model, in which the documents

(Web pages) are broken up into their component sentences
and are scored according to factors such as their position. A

number of the highest scoring sentences are then chosen as
the summary. Abracos and Pereira-Lopes [1], Hearst [18],

and Salton et al. [34] select the best passage of a document as
its summary. However, these works ignore possible seman-

tic connections between the sentences or the possibility that
linking a relevant set of text fragments will provide a better

summary. Radev et al. [33] provide a technique for multi-
document summarization used to cluster the results of a

Web keyword query. Erakan and Radev [12] and Mihalcea
and Tarau [28] provide a technique to rank sentences based

on their similarity with other sentences across multiple
documents and then provide a summary with the top-

ranked sentences. However, their methods are query
independent in contrast to our work.

The idea of splitting a Web page to fragments has been
used by Cai et al. [8] and Song et al. [36], where they extract
query-independent rankings for the fragments, for the
purpose of improving the performance of Web search. Cai
et al. [8] partition a Web page into blocks by using the
vision-based page segmentation algorithm. Song et al. [36]
provide learning algorithms for block importance.

Finally, all major Web search engines generate query-
specific snippets of the returned results. Although their
algorithms are not published, we observed that they simply
extract some of the query keywords and their surrounding
words. Recently, some of these companies have made
available tools to provide the same search and snippet
functionality on a user’s desktop [16], [29].

Keyword search in data graphs. For both Problems 1
and 2, when the page graphs are already created and a
query arrives, the system searches the page graphs (also the
Web graph) for subtrees that contain all (or a subset of)
query keywords. This problem has been studied by the
database and graph algorithm communities. In particular,
recent work [2], [7], [14], [17], [20], [21], [23], [24] has
addressed the problem of free-form keyword search on
structured and semistructured data. Li et al. [26] tackle the
problem of proximity search on the Web, which is viewed
as a graph of hyperlinked pages.

10 CONCLUSIONS

In this paper, we describe a technique to improve the
quality of Web search results by on the fly creating and
ranking composed pages. This technique is particularly
successful for long or multitopic queries, where single-page
results unlikely satisfy the user’s information need. We also
describe a technique for query-specific Web page summar-
ization, which, in addition to having its own merit, is used
for computing the top-k composed pages. We have
presented and evaluated efficient algorithms for both
problems. We also conducted user surveys to measure user
satisfaction.
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