
Keyword Search on Spatial Databases*
Ian De Felipe Vagelis Hristidis Naphtali Rishe

School of Computing and Information Sciences

Florida International University

Miami, FL 33199

{ian.de.felipe, vagelis, rishen}@cis.fiu.edu

* This research was supported in part by NSF grants CNS-0320956, CNS-0220562, HRD-0317692, and IIS-0534530

Abstract— Many applications require finding objects closest to a

specified location that contains a set of keywords. For example,

online yellow pages allow users to specify an address and a set of

keywords. In return, the user obtains a list of businesses whose

description contains these keywords, ordered by their distance

from the specified address. The problems of nearest neighbor

search on spatial data and keyword search on text data have

been extensively studied separately. However, to the best of our

knowledge there is no efficient method to answer spatial keyword

queries, that is, queries that specify both a location and a set of

keywords.

In this work, we present an efficient method to answer top-k

spatial keyword queries. To do so, we introduce an indexing

structure called IR2-Tree (Information Retrieval R-Tree) which

combines an R-Tree with superimposed text signatures. We

present algorithms that construct and maintain an IR2-Tree, and

use it to answer top-k spatial keyword queries. Our algorithms

are experimentally compared to current methods and are shown

to have superior performance and excellent scalability.

I. INTRODUCTION

An increasing number of applications require the efficient

execution of nearest neighbor (NN) queries constrained by the

properties of the spatial objects. Due to the popularity of

keyword search, particularly on the Internet, many of these

applications allow the user to provide a list of keywords that

the spatial objects (henceforth referred to simply as objects)

should contain, in their description or other attribute. For

example, online yellow pages allow users to specify an

address and a set of keywords, and return businesses whose

description contains these keywords, ordered by their distance

to the specified address location. As another example, real

estate web sites allow users to search for properties with

specific keywords in their description and rank them

according to their distance from a specified location. We call

such queries spatial keyword queries.

A spatial keyword query consists of a query area and a set

of keywords. The answer is a list of objects ranked according

to a combination of their distance to the query area and the

relevance of their text description to the query keywords. A

simple yet popular variant, which is used in our running

example, is the distance-first spatial keyword query, where

objects are ranked by distance and keywords are applied as a

conjunctive filter to eliminate objects that do not contain

them.

Figure 1, which is our running example, displays a dataset

of fictitious hotels with their spatial coordinates and a set of

descriptive attributes (name, amenities). An example of a

spatial keyword query is “find the nearest hotels to point

[30.5, 100.0] that contain keywords internet and pool”. The

top result of this query is the hotel object H7.

Unfortunately there is no efficient support for top-k spatial

keyword queries, where a prefix of the results list is required.

Instead, current systems use ad-hoc combinations of nearest

neighbor (NN) and keyword search techniques to tackle the

problem. For instance, an R-Tree is used to find the nearest

neighbors and for each neighbor an inverted index is used to

check if the query keywords are contained. We show that such

two-phase approaches are inefficient.

We present a method to efficiently answer top-k spatial

keyword queries, which is based on the tight integration of

data structures and algorithms used in spatial database search

and Information Retrieval (IR). In particular, our method

consists of building an Information Retrieval R-Tree (IR
2
-

Tree), which is a structure based on the R-Tree [Gut84]. At

query time an incremental algorithm is employed that uses the

IR
2
-Tree to efficiently produce the top results of the query.

The IR
2
-Tree is an R-Tree where a signature (Faloutsos and

Christodoulakis [FC84]) is added to each node v of the IR
2
-

Tree to denote the textual content of all spatial objects in the

subtree rooted at v. Our top-k spatial keyword search

algorithm, which is inspired by the work of Hjaltason and

Samet [HS99], exploits this information to locate the top

query results by accessing a minimal portion of the IR
2
-Tree.

This work has the following contributions:

• The problem of top-k spatial keyword search is defined.

• The IR
2
-Tree is proposed as an efficient indexing

structure to store spatial and textual information for a set

of objects. Efficient algorithms are also presented to

maintain the IR
2
-Tree, that is, insert and delete objects.

• An efficient incremental algorithm is presented to answer

top-k spatial keyword queries using the IR
2
-Tree. Its

performance is evaluated and compared to current

approaches. Real datasets are used in our experiments

that show the significant improvement in execution times.

Note that our method can be applied to arbitrarily-shaped

and multi-dimensional objects and not just points on the two

dimensions, which are used in our running examples for

clarity.

This paper is organized as follows. Section 2 formally

defines the top-k spatial keyword search problem. Section 3

presents required background knowledge. Section 4 presents

the IR
2
-Tree and its maintenance algorithms. Section 5

presents our incremental search algorithm along with other

baseline algorithms. Section 6 experimentally compares our

search algorithm to baseline algorithms. Section 7 discusses

related work and we conclude in Section 8.

Figure 1: Sample dataset of hotel objects.

II. PROBLEM DEFINITION

In this work, a (spatial) object T is defined as a pair

(T.p,T.t), where T.p is a location descriptor in the multi-

dimensional space, and T.t is a text document (textual

description). Let D be the universe of all objects in a database.

In Figure 1, T.p is the point composed of “latitude” and

“longitude”, while T.t is the concatenation of the “name” and

“amenities” attributes.

A top-k spatial query Qs searches through the multi-

dimensional space to find the k nearest objects to the specified

query point p. The spatial objects are ranked by distance such

that an object closer to p has a higher rank. In particular,

score(T) = distance(T.p, p). For example, in Figure 1, object

H4 is ranked first, given p=[30.5, 100.0].

A keyword query Qw is a set of keywords w1,…,wm. The

result of Qw is a list of objects ordered by the relevance

IRscore(T.t, Qw) of their textual descriptions to the query

keywords, as measured by an IR ranking function [Sin01].

A special case, used in our running examples, is the

Boolean keyword query which returns the set of all objects

whose text document contains all of w1,…,wm. That is,

() { }tTwQwDTQAns ww . , ∈∈∀∈=

For example, in Figure 1, objects H2, H7 are the results of

Boolean keyword query {“internet”, “pool”}.

A top-k spatial keyword query Q is a combination of a top-

k spatial query and a keyword query. In particular, Q is

defined as a number Q.k of requested results, a point Q.p, a

set Q.t = {w1,…,wm} of keywords, and a ranking function:

f(distance(T.p, Q.p), IRscore(T.t, Q.t))

The result of Q is a list of the top-k objects T ranked

according to the ranking function f.

A special case is the distance-first top-k spatial keyword

query Q, used in our running examples, which returns a

ranked list of the k objects that contain all of w1,…,wm and are

closest to Q.p. That is, distance-first top-k spatial keyword

query is a combination of a top-k spatial query and a Boolean

keyword query. It is,

()
()









∈∈∀

∈
=

tTwtQw

pQT.p,DTkQ
QAns

. ,.

 .distanceby ordered first .

For example, in Figure 1, objects H7, H2 are the results of

a distance-first top-k spatial query with Q.k = 2, Q.p =

[30.5,100.0] and Q.t = {“internet”, “pool”}. Our work

tackles the problem of efficiently answering top-k spatial

keyword queries.

III. BACKGROUND ON INCREMENTAL NN

Figure 2 shows an example of an R-Tree using the hotel

dataset of Figure 1. An MBR is represented by its southwest

and its northeast points. An R-Tree is typically stored on disk

and each R-Tree node takes a whole disk block; hence access

to a node requires one disk I/O. The number of children each

node can reference is called node capacity.

[47.3,-122.2]

[47.3,-122.2]
Pointer to H2

[40.4,-73.5]

[40.4,-73.5]
Pointer to H6

Leaf Node N4

[-33.2,-70.4]

[-33.2,-70.4]
Pointer to H7

[25.4,-80.1]

[25.4,-80.1]
Pointer to H1

Leaf Node N5

[-41.1,174.4]

[-41.1,174.4]
Pointer to H8

[35.5,139.4]

[35.5,139.4]
Pointer to H3

Leaf Node N6

[51.3,-0.5]

[51.3,-0.5]
Pointer to H5

[39.5,116.2]

[39.5,116.2]
Pointer to H4

Leaf Node N7

[-41.1,139.4]
[35.5,174.4]

[39.5,-0.5]
[51.3,116.2]

Inner Node N3

[-33.2,-122.2]
[47.3,-70.4]

[-41.1,-0.5]
[51.3,174.4]

Root Node N1

[40.4,-122.2]
[47.3,-73.5]

[-33.2,-80.1]
[25.4,-70.4]

Inner Node N2

Figure 2: R-Tree for dataset of Figure 1.

The Incremental Nearest Neighbor algorithm presented by

Hjaltason and Samet [HS99] uses the structure of an R-Tree

to access a minimal number of R-Tree nodes and objects to

retrieve the objects nearest to a given point or area in an

incremental fashion. Figure 3 shows the Incremental Nearest

Neighbor algorithm for two-dimensional objects. The input

parameters are a point p, which is the query point (an area

could be used instead), and a priority queue U which is

initialized with the root of the R-Tree R. Line 2 returns the

queue element which has the smallest distance from the query

point.

Figure 3: Incremental Nearest Neighbor algorithm.

If the element is a leaf node, then each child object,

referenced by ObjPtr, is inserted in the queue based on its

distance. If it is a non-leaf node, each child node, referenced

NearestNeighbor(p,U)

/* priority queue U initially contains root node of R with distance 0 */

1 while not U.IsEmpty()
2 E � U.Dequeue()

3 if E is a non-Leaf Node

4 for each (NodePtr,MBR) in E
5 U.Enqueue(LoadNode(NodePtr),Dist(p,MBR))

6 else if E is a Leaf Node

7 for each (ObjPtr,MBR) in E
8 U.Enqueue(ObjPtr,Dist(p,MBR))

9 else /* E is an object pointer */

10 return E as next nearest object pointer to p

by NodePtr, is inserted in the queue. Finally, if the element is

a pointer to a spatial object, it is reported as the next result of

the algorithm, as show in Line 10. The Dist function

computes the distance between the query point p and a MBR.

We assume that the R-Tree is disk resident, thus, the LoadNode

function loads the node from the disk block.

Example 1: Executing the Incremental Nearest Neighbor

algorithm on the R-Tree of Figure 2 for the query point [30.5,

100.0] results in the following sequence of steps:

1. Enqueue N1; U={(N1, 0.0)}

2. Dequeue N1; Enqueue N2, N3; U={(N3, 0.0), (N2, 170.4)}

3. Dequeue N3; Enqueue N6, N7; U={(N7, 9.0), (N6, 39.4), (N2, 170.4)}

4. Dequeue N7; Enqueue H5, H4; U={(H4, 18.5), (N6, 39.4),

(H5, 102.6), (N2, 170.40)}

5. Dequeue and Return H4

If we continue, objects H3, H5, H8, H6, H1, H7, H2 are

returned next. 

IV. IR
2
-TREE

Τhe IR
2
-Tree is a combination of an R-Tree and signature

files. In particular, each node of an IR
2
-Tree contains both

spatial and keyword information; the former in the form of a

minimum bounding area and the latter in the form of a

signature. An IR
2
-Tree facilitates both top-k spatial queries

and top-k spatial keyword queries as we explain below.

More formally, an IR
2
-Tree R is a height-balanced tree data

structure, where each leaf node has entries of the form

(ObjPtr, A, S). ObjPtr and A are defined as in the R-Tree

while S is the signature of the object referred by ObjPtr. A

non-leaf node has entries of the form (NodePtr, A, S).

NodePtr and A are defined as in the R-Tree while S is the

signature of the node. The signature of a node is the

superimposition (OR-ing) of all the signatures of its entries.

Thus a signature of a node is equivalent to a signature for all

the documents in its subtree. Figure 6 shows an IR
2
-Tree for

the sample dataset of Figure 1. To simplify the following

presentation we focus on the two-dimensional space.

[47.3,-122.2]

[47.3,-122.2]
Pointer to H2

[40.4,-73.5]

[40.4,-73.5]
Pointer to H6

Leaf Node N4

[-33.2,-70.4]

[-33.2,-70.4]
Pointer to H7

[25.4,-80.1]

[25.4,-80.1]
Pointer to H1

Leaf Node N5

[-41.1,174.4]

[-41.1,174.4]
Pointer to H8

[35.5,139.4]

[35.5,139.4]
Pointer to H3

Leaf Node N6

[51.3,-0.5]

[51.3,-0.5]
Pointer to H5

[39.5,116.2]

[39.5,116.2]
Pointer to H4

Leaf Node N7

[-41.1,139.4]

[35.5,174.4]

[39.5,-0.5]

[51.3,116.2]

Inner Node N3

[-33.2,-122.2]

[47.3,-70.4]

[-41.1,-0.5]

[51.3,174.4]

Root Node N1

[40.4,-122.2]

[47.3,-73.5]

[-33.2,-80.1]

[25.4,-70.4]

Inner Node N2

11111111

10110111

11111101

11011011

10001111

00100011

11111111

10010110
10011001

01001011

01101101

10010011

10001011

00000010

00001110

00100011
10000011

00010110

01111110

10000010

00011001

01001011

10011001

00001010

01100101

10000011

00001001

10010010

Figure 4: IR2-Tree for dataset of Figure 1.

The IR
2
-Tree is maintained through insert and delete

operations, which are modifications of the corresponding R-

Tree operations. Figures 7 and 8 show the Insert and Delete

algorithms respectively.

The Insert algorithm uses a standard R-Tree

implementation of ChooseLeaf, which can be found in [Gut84].

We use the standard Quadratic Split technique [Gut84] for

node splitting. We modify the standard AdjustTree method to

also maintain the signatures of the modified nodes. That is, if

a new bit is set to 1 in a node N, then it must be also set to 1

for N’s ancestors. Finally, we assume that all tree related

algorithms have implicit access to the root node of the IR
2
-

Tree R.

The input of the Insert algorithm is a pointer to an object

T, its MBR, and its signature. Line 1 retrieves a leaf node N

which is best suited according to the MBR of T. Then T’s

pointer, MBR, and signature are stored in N. If N has reached

its maximum node capacity then it will split. If N is split into

nodes O and P, on Line 4, and it is the root node, a new node

M will be created. M becomes the parent O and P and stores

their pointer, MBR, and signature. Finally, M is declared the

new root node. If N is not the root then its parent node has to

be updated as is the case on line 14 or 18. Finally, since we

assume that the IR
2
-Tree is disk resident, the StoreNode

function stores the node to the corresponding disk block(s).

Standard implementation of FindLeaf is used in the

implementation of Delete. However, CondenseTree is modified

to maintain the signatures of updated nodes, similarly to

AdjustTree above. In Line 1 of Figure 8, a search for a leaf

node N containing an unwanted object T is performed. If such

N exists, T is removed from N, otherwise the algorithm stops.

If T is removed, the tree is condensed and proper tree

maintenance takes place.

Figure 5: Insert method for IR2-Tree.

Clearly, the complexity of the Insert and Delete algorithms

is the same as in an R-Tree, since the only additional

operation is the maintenance of the signatures of the updated

nodes and their ancestors. Note that the updating of the

signatures throughout a node and its ancestor is being done at

the same time the tree would normally update the MBR of a

node and its ancestors.

To account for the extra space needed to store the

signatures in an IR
2
-Tree node, and in order to have the same

number of children as in the corresponding R-tree, we allocate

additional disk block(s) to an IR
2
-Tree node when needed.

Insert(ObjPtr,MBR,S)

1 N � ChooseLeaf(MBR)
2 N.Add(ObjPtr,MBR,S)

3 if N needs to be split

4 {O,P} � N.Split() /* nodes O and P are returned */

5 if N.IsRoot()

6 initialize a new node M
7 M.Add(O.Ptr,O.MBR,O.S)
8 M.Add(P.Ptr,P.MBR,P.S)
9 StoreNode(M)
10 StoreNode(O)
11 StoreNode(P)

12 R.RootNode � M

13 else
14 AdjustTree(N.ParentNode,O,P)

15 else
16 StoreNode(N)

17 if not N.IsRoot()
18 AdjustTree(N.ParentNode,N,null)

This fact has a minor impact on the performance of the IR
2
-

Tree algorithms as shown in Section 6.1.

Figure 6: Delete method for IR2-Tree.

Multilevel IR
2
-Tree

A drawback of the IR
2
-Tree described above is that the

same signature length is used for all levels which leads to

more false positives in the higher levels, which have more 1’s

(since they are the superimpositions of the lower levels). To

address this problem, we use varying signature lengths for

different levels. This is achieved using multi-level

superimposed coding [CS89,DR83,LKP95], which reduces

the number of false positives, particularly in non-leaf nodes.

In this case, we use the optimal signature length for each level

(we use the optimal signature length formula from [MC94]),

and superimpose the signatures of all objects in the subtree of

each node, instead of the signatures of the children nodes as

before. A drawback of this variant, called Multi-level IR
2
-Tree

(MIR
2
-Tree), is that it significantly increases the complexity

of the tree maintenance operations (Insert and Delete) since

for each object inserted or deleted, we have to recompute the

signatures of all ancestor nodes by accessing all underlying

objects and not just by superimposing the children’s

signatures as before. We compare the performances of IR
2
-

Tree and MIR
2
-Tree in Section 6.

V. ALGORITHMS TO ANSWER TOP-K SPATIAL KEYWORD

QUERIES

We consider two baseline algorithms, in Section 5.1, which

are named based on the underlying data structures they use:

the R-Tree, and the Inverted Index Only (IIO). In Section 5.2

we present the distance-first IR
2
 algorithm which uses the IR

2
-

Tree structure to answer distance-first top-k spatial keyword

queries. Then in Section 5.3 we present the general IR
2

algorithm which uses the IR
2
-Tree structure to answer general

top-k spatial keyword queries. Note that these last two

algorithms can also operate on MIR
2
-Trees with no

modification.

A. Current Baseline Algorithms

For simplicity we describe the R-Tree and the IIO baseline

algorithms for the simpler distance-first top-k spatial keyword

queries, which are also used in the experiments (Section 6).

Both algorithms can be extended to answer general top-k

spatial keyword queries.

R-Tree Algorithm

The first baseline algorithm, R-Tree, makes use of only an

R-Tree data structure. Given a distance-first top-k spatial

keyword query, the algorithm first finds the top-1 nearest

neighbor object to the query point Q.p. Then it retrieves that

object (since the R-tree only contains object pointers) and

compares that object’s textual description with the keywords

of the query. If the comparison fails then that object is

discarded, and the next nearest object is retrieved. The

incremental NN algorithm in Figure 3 ([HS99]) is used. This

process continues until an object is found whose textual

description contains the query keywords. Once a satisfying

object is found it is returned and the process repeats until k

objects have been returned.

The drawback of this algorithm is that it has to retrieve

every object returned by the NN algorithm until the top-k

result objects are found. This potentially can lead to the

retrieval of many “useless” objects. In the worst case (when

none of the objects satisfies the query’s keywords) the entire

tree has to be traversed and every object has to be inspected.

IIO Algorithm

The IIO baseline algorithm makes use of an inverted index.

It first finds all the objects (object ids) whose text document

contains the query keywords by intersecting the lists returned

by the inverted index. Let V be the set of objects in this

intersection. Then the objects in V are retrieved and the

distance between the query point Q.p and each of the objects

in V is computed. These objects are sorted and the top-k

objects are returned. Figure 9 shows the IIO algorithm. The

input parameters are the inverted index I and the distance-first

top-k spatial keyword query Q.

Example 2: Consider the query top-2 hotels from point [30.5,

100.0] containing the keywords {“internet”, “pool”} on the data of

Figure 1. The trace of IIO algorithm is the following:

1. H1, H2, H6, H7 are returned by the inverted index for keyword

“internet”

2. H2, H3, H4, H7, H8 are returned by the inverted index for keyword

“pool”

3. H2, H7 are the result after the intersection

4. Objects H2, H7 are accessed to get their coordinates

5. Add H2 to list L={(H2, 222.8)}

6. Add H7 to list L={(H7, 181.9), (H2, 222.8)}

return H7, H2 as the result. 

The performance of this algorithm deteriorates if many

objects contain the query keywords. In this case the inverted

index would return many objects, which are then retrieved and

inspected. Notice that IIO is the only non-incremental

algorithm presented in this paper. That is, IIO computes all

the query results and its performance is independent of k, as

shown in Section 6.

B. Distance-First IR
2
-Tree Algorithm

In this section we present the distance-first version of the

IR
2
-Tree algorithm, which outputs the objects that contain all

Delete(ObjPtr)

1 N � R.FindLeaf(ObjPtr)

2 if N was not found

3 return
4 else
5 N.Remove(ObjPtr)
6 CondenseTree(N)

7 if R.RootNode has only one child M
8 R.RootNode � M

query keywords ordered by their distance from the query

point. In Section 5.3 we show how this algorithm is

generalized to handle general top-k spatial keyword queries.

Figure 7: Inverted Index Only (IIO) algorithm.

The distance-first IR
2
-Tree algorithm exploits the structure

of the IR
2
-Tree to efficiently answer distance-first top-k

spatial keyword queries. The tree traversal is based on the

Incremental Nearest Neighbor algorithm (Figure 3). The key

advantage of this algorithm is that it prunes whole subtrees if

their root-node signature does not match the query signature

Signature(Q.t). This happens because the signature of an IR
2
-

Tree node is composed from all the signatures of its children.

This pruning occurs in addition to the spatial pruning

provided by the traditional Incremental Nearest Neighbor. By

tightly integrating these two pruning mechanisms, the

distance-first IR
2
-Tree algorithm accesses a minimal set of

IR
2
-Tree nodes and objects to answer a distance-first top-k

spatial keyword query.

Figure 10 shows the distance-first IR
2
-Tree algorithm

(IR2TopK). The key methods is IR2NearestNeighbor(.), which

is based on the NearestNeighbor algorithm but inputs an

additional input parameter W, which is the signature of the

query. The signatures of nodes and objects are compared

against W and are skipped if their signatures do not match W

(i.e. they are dropped from the search queue). Notice that each

call to the IR2NearestNeighbor(.) method returns a candidate

result object, which is then checked (Line 21) to ensure it is

not a false positive.
Example 3: As an example we trace the execution of the algorithm

on the IR2-Tree of Figure 6 to answer the query: top-2 hotels from

point [30.5, 100.0] containing the keywords {“internet”, “pool”}.

1. Enqueue N1; U={(N1, 0.0)}

2. Dequeue N1; Enqueue N2; U={(N2, 170.4)}

3. Dequeue N2; Enqueue N4, N5; U={(N5, 170.5), (N4, 173.8)}

4. Dequeue N5; Enqueue H7; U={(N4, 173.8), (H7, 181.9)}

5. Dequeue N4; Enqueue H2; U={(H7, 181.9), (H2, 222.8)}

6. Dequeue and return H7;

7. Dequeue and return H2;

Notice how the IR
2
-Tree signature pruning ability starts to

emerge in Line 2. Only one child of N1 is enqueued. The other

child is discarded as it fails the signature check. Objects H1

and H6 also get pruned when their parent is visited (Lines 4

and 5).

C. IR2
-Tree Algorithm

In this section we present the general version of the IR
2
-

Tree algorithm, where objects are output ordered by a ranking

function f(distance(T.p, Q.p), IRscore(T.t, Q.t)) as defined in

Section 2. The key differences to the distance-first version are

that:

(i) We do not create a single signature Signature(Q.t) for the

query, but instead we use the individual signatures,

Signature(w), w∈ Q.t, of the query keywords. The reason is that

we do not use AND semantics, that is, an object containing

only some of the query keywords may be in the result.

(ii) We can no longer output an object as soon as we know

it is the next closest and contains all query keywords, because

a farther object may have a higher overall f(.) score. Hence,

the nodes v in the queue U are ordered by the maximum score

that an object T inside them may have, that is, by:
Upper(v)=UpperBoundT∈v(f(distance(T.p, Q.p), IRscore(T.t, Q.t))

Assuming that f() is decreasing with distance() and

increasing with IRscore() we have:
 Upper(v)=LowerBoundT∈v(f(distance(v.MBR, Q.p), UpperBoundT-has-

signature-v.S(IRscore(T.t, Q.t)))

Figure 8: Distance-First IR2-Tree algorithm.

To compute the maximum possible IR score

UpperBoundT-has-signature-v.S(IRscore(T.t, Q.t)) of an object in

the MBR of v we can assume that v has an imaginary object T

that contains all keywords of Q specified by the signature of

v.S exactly once (term frequency tf=1), that is, we assume no

false positives. Hence, the document length (dl) of T.t is the

number of such keywords. Then, we can use a traditional tfidf

IR ranking function [Sin01]. This method facilitates

outputting result-objects as early as possible. Note that it is

not possible to estimate a tight maximum possible IR score if

IR2NearestNeighbor(p,W,U)

1 while not U.IsEmpty()
2 E � U.Dequeue()

3 if E is a non-Leaf Node

4 for each (NodePtr,MBR,S) in E

5 if S matches W
6 U.Enqueue(LoadNode(NodePtr),Dist(p,MBR))

7 else if E is a Leaf Node

8 for each (ObjPtr,MBR,S) in E

9 if S matches W
10 U.Enqueue(ObjPtr,Dist(p,MBR))

11 else /* E is an object pointer */

12 return E as next nearest object pointer to p

IR2TopK(R,Q)

13 initialize a list L

14 Initialize a priority queue U
15 U.Enqueue(R.RootNode,0)

16 W � Signature(Q.t)

17 c � 0

18 while c < Q.k
19 ObjtPtr � IR2NearestNeighbor(Q.p,W,U)

20 T � LoadObject(ObjPtr)

21 if T.t contains all keywords in Q.t
22 c � c + 1
23 L.add(T)

24 return L

IIOTopK(I,Q)

/* I is the inverted index */

1 for each word wi in Q.t do
2 Li � I.RetrieveObjectPointersList(wi)

3 V � intersection of object pointers in Li’s

4 initialize a list L

5 for each ObjPtr in V do
6 T � LoadObject(ObjPtr)

7 d � Dist(Q.p,T.p)
8 L.Add(T,d)

9 sort items in L by distance

10 return first Q.k objects in L

the IR function uses advanced features like thesaurus or

ontology.

We make the following specific changes to the distance-

first version of Figure 10:

1. Replace Line 16 with:

2. Replace Lines 21-23 with:

3. Replace Lines 5-6 with:

4. Replace Lines 9-10 with:

VI. EXPERIMENTS

To measure the performance of the IR
2
-Tree, MIR

2
-Tree,

and baseline algorithms, we have implemented all algorithms

and underlying data structures in Java. All index structures

(R-Tree, IR
2
-Tree, MIR

2
-Tree and inverted index) are disk-

resident. We focus on the distance-first version of the top-k

spatial keyword query, since its results are easier to

comprehend and analyze. The spatial objects are stored in a

plain text file and the leaf nodes of the tree data structures

store pointers to the object locations in the file. We make

comparisons based on the disk accessed required to satisfy a

query and the execution time. An Athlon 64 3400+

(NewCastle) with 2GB of RAM and 74GB 10000RPM drive

was used for the experiments.

We present the results of two datasets provided by the High

Performance Database Research Center (http://hpdrc.fiu.edu/).

Both datasets are plain text files (tab delimited) where each

spatial object occupies a row. The first dataset contains

objects that represent hotels and will be referred as the Hotels

dataset. The second dataset will be referred as the Restaurants

dataset and contains restaurant data. Table 1 shows more

details of the two datasets.

In all experiments the disk block size is 4,096 KB. Also,

the number of children of a node of the R-Tree is computed

given the fact the each node is a disk block. This translates to

113 children per node in our implementation. We use this

same number of children for the IR
2
- and MIR

2
-Trees, which

typically requires two disk blocks per node. As the

experiments show, the extra disk block overhead adds to the

size of the IR
2
- and MIR

2
-Trees but has little effect on the

execution time.

We compare the performance of the IR
2
-Tree and MIR

2
-

Tree algorithm with that of the R-Tree and IIO algorithms.

Three sets of experiments were carried out. The first measures

the performance of the algorithms for varying values of

requested results k (top-k). The second set measures the effect

of the number of query keywords. Finally, the third set of

experiments shows the effect of the signature length r.

TABLE 1: DATASET DETAILS

Dataset Size

(MB)

Total # of

objects

Average #

unique

words per

object

Total #

unique

words in

dataset

Average #

disk

blocks

per object

Hotels 55.2 129,319 349 53906 2

Restaurants 61.3 456,288 14 73855 1

Varying k (top-k)

In this experiment we fix the number of query keywords to

2 and the signature length to 189 bytes (for Hotels dataset)

and 8 bytes (for Restaurants dataset). Note that this signature

length is longer at the top levels of the MIR
2
-Tree, which uses

variable signature sizes. These signature lengths were chosen

to balance space requirements and performance. The results of

this experiment are shown in Figures 9 and 12 for Hotels and

Restaurants respectively. The graph y-axes have logarithmic

scale to illustrate the difference more clearly.

The graph shows that IR
2
-Tree and MIR

2
-Tree perform

better than R-Tree for all values of k. This is expected since

the R-Tree approach will have to access more objects and

potentially more tree nodes as well. In contrast, the IR
2
-Tree

and MIR
2
-Tree use the signatures to prune whole subtrees. In

particular, the MIR
2
-Tree does a better job filtering inner

nodes since the optimal signature length is used for each tree

level, as described in Section 4.

Figures 9b and 12b show the disk block accesses for the

algorithms. The thick bars illustrate the number of random

disk block accesses while the thin lines on top of the thick

bars show the numbers of sequential disk block accesses. As

expected, the execution time is primarily proportional to the

random access numbers. Note that MIR
2
-Tree performs fewer

random disk block accesses than the IR
2
-Tree because of the

pruning effect, but performs more sequential disk block

accesses. This is mainly because the nodes of the top levels of

the MIR
2
-Tree occupy more disk blocks due to their longer

signatures. The IIO algorithm is insensitive to the k value

since it has to examine all objects that contain all keywords.

Score � UpperBoundT-has-signature-S(IRscore(T.t,Q.t))

if Score > 0

 U.Enqueue(ObjPtr,Score)

/* check if T has non-zero IR score. The “if” condition can be removed if
results with 0 IR score are acceptable*/

Score �UpperBoundT-has-signature-S(IRscore(T.t,Q.t))

if Score > 0

 U.Enqueue(LoadNode(NodePtr),Score)

/* check if there can be an object T with non-zero IR score. The “if”
condition can be removed if results with 0 IR score are acceptable*/

Score � f(distance(T.p,Q.p),IRscore(T.t,Q.t))

if Score ≥ Upper(U.top())
/* check if actual score of T is greater or equal to the max possible score
of the objects in the queue */

 c � c + 1

 L.add(T)

else
 U.Enqueue(T,Score) /*to be considered later*/

for each keyword wi in Q.t do
 Wi � Signature(wi)

1

10

100

1000

10000

100000

1 10 20 50 100

top-k

m
il
li
s
e
c
o
n
d
s
 _

IIO R-Tree IR2-Tree MIR2-Tree

1

10

100

1000

10000

100000

1 10 20 50 100

top-k

d
is
k
 a
c
c
e
s
s
e
s
 _

IIO R-Tree IR2-Tree MIR2-Tree

(a) Execution Time (b) Object Accesses

Figure 9: Results for varying k (top-k) searches for the Hotels dataset

1

10

100

1000

10000

100000

1 2 3 4

of keywords

m
il
li
s
e
c
o
n
d
s
 _

IIO R-Tree IR2-Tree MIR2-Tree

1

10

100

1000

10000

100000

1000000

1 2 3 4

of keywords

d
is
k
 a
c
c
e
s
s
e
s
 _

IIO R-Tree IR2-Tree MIR2-Tree

(a) Execution Time (b) Object Accesses

Figure 10: Results for varying number of keywords for the Hotels dataset

1

10

100

1000

10000

100000

63 126 189 252

signature size

m
il
li
s
e
c
o
n
d
s
 _

IIO R-Tree IR2-Tree MIR2-Tree

1

10

100

1000

10000

100000

63 126 189 252

signature size

d
is
k
 a
c
c
e
s
s
e
s
 _

IIO R-Tree IR2-Tree MIR2-Tree

(a) Execution Time (b) Object Accesses

Figure 11: Results for varying signature lengths (in bytes) for the Hotels dataset

Vary number of keywords

In this experiment we fix the number of requested objects k

to 10 and the signature lengths as above. Refer to Figures 10

and 13 for the results of this experiment. By increasing the

number of keywords we reduce the number of objects that

contain all of them (since distance-first top-k spatial keyword

queries are conjunctive). We note that the IIO algorithm

performs better as the number of keywords increases, since

the intersection of the inverted lists then becomes shorter and

hence the object accesses fewer.

Vary signature length

In this experiment we fix k to 10 and the number of

keywords to 2. Refer to Figures 11 and 14 for the results of

this experiment. First note, that the signatures chosen for the

Hotels dataset are different than those for the Restaurants

dataset. This is because a Hotel object contains more unique

words than a Restaurant object, as shown in Table 1. Note that

the displayed signature lengths are used for the leaf nodes of

MIR2-Tree. Longer signatures are used for the top nodes.

There is a trade-off in increasing the signature lengths for

IR2-Tree and MIR2-Tree. Increasing the signature length

decreases the false positives but increases the occupied space

of the tree structures, which can lead to more disk accesses.

Hence, there is no clear trend for varying the signature

lengths.

A. Space Requirements

Table 2 shows the total size (in MB) of each structure. For

IR
2
-Tree and MIR

2
-Tree we consider the instance used for the

“varying top-k” and “varying keywords” experiments above,

i.e., signature lengths of 189 and 8 bytes for the Hotels and

Restaurant dataset respectively.

Notice that the size of the IIO structure is significantly less

for the Restaurants dataset. This is because the Restaurant

dataset contains far less unique keywords per object than the

Hotels dataset as shown in Table 1. On the other hand, the

sizes of the tree structures are larger for the Restaurants

dataset because it has more objects than the Hotels dataset.

B. Discussion

As shown in the “vary signature length” experiment above,

by increasing the signature size we achieve fewer accesses to

spatial objects and inner nodes by eliminating false positives.

On the other hand, larger signatures also increase the size of

the IR
2
-Tree and MIR

2
-Tree. The larger signatures impact the

size of the IR
2
-Tree more than that of the MIR

2
-Tree, since

the signature size is consistent thought all nodes of an IR
2
-

Tree. The signature size only impact the leaf nodes of the

MIR
2
-Tree because the inner nodes are recalculated based on

the object that the subtree can reference.

TABLE 2: SIZES (MB) OF INDEXING STRUCTURES

Dataset IIO R-Tree IR2-Tree MIR2-Tree

Hotels 31.4 6.9 34.5 44.9

Restaurants 7.2 23.9 47.2 68.2

Also, in the rare case where every query keyword appears

in very few objects, the IIO method will be faster since the

inverted lists would be very short. On the other extreme, if the

query keywords appear in almost all objects, the R-Tree will

excel. Finally, the MIR
2
-Tree generally performs better than

the IR
2
-Tree; however, the MIR

2
-Tree is expensive to

maintain. Hence, for frequently updated datasets, IR
2
-Tree is

the choice.

VII. RELATED WORK

Nearest Neighbor Queries

Answering k-nearest neighbor queries on a spatial database

is a classical database problem. Most methods use indices

built on the data to assist the k-NN search. Perhaps the most

widely used algorithm is the branch-and-bound algorithm

[RKV95] which traverses an R-tree [Gut84] while

maintaining a list of k potential nearest neighbors in a priority

queue. There have also been attempts to use range queries to

solve the k-NN search problem, such as the one proposed by

Korn et al. [KSF+96]. The basic idea is to use a range query

to retrieve the potential k-NNs. This algorithm is further

extended by improving the region estimation [CG99], and by

a better search technique of the k-NN in the region [SK98].

Before the incremental NN algorithm by Hjaltason and

Samet [HS99] for R-Trees, used in this paper was developed,

the problem of incremental NN was tackled for three different

data structures: [Bro90,Hen94,HS95] operated on k-d trees,

LSD-Tree, and PM quadtree respectively. All algorithms have

similar principles and mainly differ in the data structures used

during execution. Recently there has also been work on

continuous k-NN queries [TPS02,XMA05] which find

continuously the k nearest objects to a query point. Park and

Kim [PK03] independently developed a technique similar to

ours to answer NN queries using a combination of an R-tree

and multiple S-trees, one for every non-spatial attribute.

Signature Files

Signature files were introduced by Faloutsos and

Christodoulakis [FC84,FC85,Fal85] as a method to efficiently

search a collection of text documents. Lee et al. [LKP95]

present methods to build structures on top of a signature file.

In this work we view the document describing a spatial object

as a text block in their notation and build similar structures on

top of this set of objects. In particular, we adopt the idea of an

indexed descriptor file structure [PBC80] (S-Tree [Dep86] is

a variant of an indexed descriptor), which is a tree where the

lowest level consists of block signatures. These are

superimposed codes obtained from the text blocks. A group of

b signatures at the i-th level is superimposed together to form

a signature at the (i-1)-th level. The signatures of each level

have the same length. Similarly, in our IR
2
-Tree, the parent

has a signature that superimposes (binary ORs) the signatures

of the children.

Finally, when building an indexed descriptor file, we

expect the top levels to have more 1’s due to the larger

number of words in their subtrees, which in turn leads to more

false positives. The principle of the multi-level superimposed

coding was proposed [CS89,DR83] as a solution to this

problem, where higher levels have longer signatures. This

principle allows fewer false positives by incurring a space

overhead. However, this makes updates on the underlying

documents expensive to maintain.

Top-k queries

Top-k query works [Fag01, BGM02] handle the aggregation

of attribute values of objects in the case where the attribute

values lie in different sources. For example [BGM02]

consider the problem of ordering a set of restaurants by

distance and price. They present an optimal sequence of

random or sequential accesses on the sources (e.g., Zagat for

price and Mapquest for distance) in order to compute the top-

k restaurants. They view the sources as black boxes in contrast

to our work where we assume full access which allows us to

build an IR
2
-Tree.

 Zhou et al. [ZXW+05] present techniques to combine an

inverted index with an R
*
 tree to answer Web queries with

spatial constraints on pages with spatial information. Their

experiments show that an inverted index whose keyword lists

are organized as R
*
 trees has the best performance. However,

their algorithms are not top-k, that is, they require the spatial

area as an input.

1

10

100

1000

10000

100000

1 10 20 50 100

top-k

m
il
li
s
e
c
o
n
d
s
 _

IIO R-Tree IR2-Tree MIR2-Tree

1

10

100

1000

10000

100000

1000000

1 10 20 50 100

top-k

d
is
k
 a
c
c
e
s
s
e
s
 _

IIO R-Tree IR2-Tree MIR2-Tree

(a) Execution Time (b) Object Accesses

Figure 12: Results for varying k (top-k) searches for the Restaurants dataset

1

10

100

1000

10000

100000

1 2 3 4

of keywords

m
il
li
s
e
c
o
n
d
s
 _

IIO R-Tree IR2-Tree MIR2-Tree

1

10

100

1000

10000

100000

1000000

1 2 3 4

of keywords

d
is
k
 a
c
c
e
s
s
e
s
 _

IIO R-Tree IR2-Tree MIR2-Tree

(a) Execution Time (b) Object Accesses

Figure 13: Results for varying number of keywords for the Restaurants dataset

1

10

100

1000

10000

3 6 8 11

signature size

m
il
li
s
e
c
o
n
d
s
 _

IIO R-Tree IR2-Tree MIR2-Tree

1

10

100

1000

10000

100000

3 6 8 11

signature size

d
is
k
 a
c
c
e
s
s
e
s
 _

IIO R-Tree IR2-Tree MIR2-Tree

(a) Execution Time (b) Object Accesses

Figure 14: Results for varying signature lengths (in bytes) for the Restaurants dataset

Furthermore, they do not scale well for multiple keywords

since multiple R
*
-trees must be traversed and intersected (a

combining algorithm is not presented). Vaid et al. [VJJS05]

and Martins et al. [MSA05] present techniques to combine the

output of a text and a spatial index to answer a spatial

keyword query. These techniques are very similar to the

baseline algorithms we use. However, they do not consider

combining these indexes in a single structure like our IR
2
-tree.

Further, Vaid et al. [VJJS05] use a grid-based distribution of

the spatial objects.

VIII. CONCLUSIONS

In this paper we introduced the problem of spatial keyword

search and explained the performance limitations of current

approaches. We proposed a solution which is dramatically

faster than current approaches and is based on a combination

of R-Trees and signature files techniques. In particular we

introduced the IR
2
-Tree and showed how it is maintained in

the presence of data updates. An efficient incremental

algorithm was presented that uses the IR
2
-Tree to answer

spatial keyword queries. We experimentally evaluated our

technique, which proved its superior performance.

IX. REFERENCES

[Bro90] A. J. Broder. Strategies for efficient incremental nearest

neighbor search. In Pattern Recognition, 23(1–2):171–178,

January 1990.

[BGM02] Nicolas Bruno, Luis Gravano, Amélie Marian. Evaluating Top-k

Queries over Web-Accessible Databases., ICDE 2002.

[CG99] S. Chaudhuri and L. Gravano. Evaluating top-k selection

queries. In VLDB, 1999.

[CS89] W. W. Chang, Hans-Jörg Schek: A Signature Access Method for

the Starburst Database System. VLDB 1989: 145-153

[CSM06] Yen-Yu Chen, Torsten Suel, Alexander Markowetz. Efficient

Query Processing in Geographic Web Search Engines. SIGMOD

2006

[Dep86] U. Deppisch. S-Tree: A dynamic balanced signature index for

office retrieval. In Proc. of the ACM Conf. on Research and

Development in Information Retrieval, Pisa, 1986.

[DR83] Ron Sacks-Davis, Kotagiri Ramamohanarao: A two level

superimposed coding scheme for partial match retrieval. Inf.

Syst. 8(4): 273-289 (1983)

[Fag01] Ronald Fagin, Amnon Lotem, Moni Naor: Optimal Aggregation

Algorithms for Middleware. In PODS 2001

[Fal85] Christos Faloutsos: Signature files: Design and Performance

Comparison of Some Signature Extraction Methods. In

SIGMOD Conference 1985

[FC84] Christos Faloutsos, Stavros Christodoulakis: Signature Files: An

Access Method for Documents and Its Analytical Performance

Evaluation. In ACM Trans. Inf. Syst. 2(4): 267-288(1984)

[FC85] Christos Faloutsos, Stavros Christodoulakis: Design of a

Signature File Method that Accounts for Non-Uniform

Occurrence and Query Frequencies. In VLDB 1985: 165-170

[FO95] C. Faloutsos, D. W. Oard. A survey of information retrieval and

filtering methods. Technical Report. UMI Order Number: CS-

TR-3514., University of Maryland at College Park, 1995

[Gut84] A. Guttman. R-Trees: a dynamic index structure for spatial

searching. In SIGMOD Conference, 1984.

[Hen94] A. Henrich. A distance-scan algorithmfor spatial access

structures. In Proceedings of the Second ACM Workshop on

Geographic Information Systems, pages 136–143,

Gaithersburg,MD, December 1994.

[HS95] G. R. Hjaltason and H. Samet. Ranking in spatial databases. In

Advances in Spatial Databases — Fourth International

Symposium, pages 83–95, Portland, ME, August 1995.

[HS99] G.R. Hjaltason and H. Samet. Distance browsing in spatial

databases. In ACM Transactions on Database Systems, Vol. 24,

No. 2, 1999

[KSF+96] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and Z.

Protopapas. Fast nearest neighbor search in medical image

databases. In VLDB, 1996.

[LKP95] Dik Lun Lee, Young Man Kim, Gaurav Patel: Efficient

Signature File Methods for Text Retrieval. Pages 423-435.

TKDE Vol 7, Number 3, June 1995

[MC94] Malcolm Campbell. The Design of Text Signatures for Text

Retrieval Systems. Technical Reports 1994

[MSA05] B. Martins, M. Silva, and L. Andrade. Indexing and ranking in

Geo-IR systems. In Proc. of the 2nd Int. Workshop on Geo-IR

(GIR), November 2005.

[NMN+00] G. Navarro, E. Silva de Moura, M. S. Neubert, N. Ziviani, R. A.

Baeza-Yates: Adding Compression to Block Addressing

Inverted Indexes. Inf. Retrieval 3(1): 49-77 (2000), 2000

[PBC80] John L. Pfaltz, William J. Berman, Edgar M. Cagley: Partial-

Match Retrieval Using Indexed Descriptor Files. In Commun.

ACM 23(9): 522-528 (1980)

[PK03] D. Park, H. Kim: An Enhanced Technique for k-Nearest

Neighbor Queries with Non-Spatial Selection Predicates. In

Multimedia Tools and Applications archive, Volume 19 , Issue

1 (January 2003), Pages: 79 – 103

[RKV95] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor

queries. In SIGMOD Conference, 1995.

[Sal97] D. Salomon. Data Compression. The Complete Reference.

Springer, New York, 1997.

[Sin01] A. Singhal: Modern Information Retrieval: A Brief Overview,

Google, IEEE Data Eng. Bull, 2001

[SK98] T. Seidl and H.-P. Kriegel. Optimal multi-step k-nearest

neighbor search. In SIGMOD Conference, 1998.

[TPS02] Yufei Tao, Dimitris Papadias, and Qiongmao Shen. Continuous

Nearest Neighbor Search. In VLDB, 2002.

[VJJS05] S. Vaid, C. B. Jones, H. Joho, and M. Sanderson. Spatio-textual

indexing for geographical search on the web. SSTD 2005.

[XMA05] Xiaopeng Xiong, Mohamed F. Mokbel, Walid G. Aref: SEA-

CNN: Scalable Processing of Continuous K-Nearest Neighbor

Queries in Spatio-temporal Databases. In ICDE 2005

[ZMR98] J. Zobel, A. Moffat, K. Ramamohanarao: Inverted Files Versus

Signature Files for Text Indexing. In ACM Trans. Database Syst.

23(4): 453-490 (1998)

[ZXW+05] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W. Ma. Hybrid index

structures for location-based web search. ACM CIKM 2005

