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Abstract— Many applications require finding objects closest to a 

specified location that contains a set of keywords. For example, 

online yellow pages allow users to specify an address and a set of 

keywords. In return, the user obtains a list of businesses whose 

description contains these keywords, ordered by their distance 

from the specified address. The problems of nearest neighbor 

search on spatial data and keyword search on text data have 

been extensively studied separately. However, to the best of our 

knowledge there is no efficient method to answer spatial keyword 

queries, that is, queries that specify both a location and a set of 

keywords. 

In this work, we present an efficient method to answer top-k 

spatial keyword queries. To do so, we introduce an indexing 

structure called IR2-Tree (Information Retrieval R-Tree) which 

combines an R-Tree with superimposed text signatures. We 

present algorithms that construct and maintain an IR2-Tree, and 

use it to answer top-k spatial keyword queries. Our algorithms 

are experimentally compared to current methods and are shown 

to have superior performance and excellent scalability. 

I. INTRODUCTION 

An increasing number of applications require the efficient 

execution of nearest neighbor (NN) queries constrained by the 

properties of the spatial objects. Due to the popularity of 

keyword search, particularly on the Internet, many of these 

applications allow the user to provide a list of keywords that 

the spatial objects (henceforth referred to simply as objects) 

should contain, in their description or other attribute. For 

example, online yellow pages allow users to specify an 

address and a set of keywords, and return businesses whose 

description contains these keywords, ordered by their distance 

to the specified address location. As another example, real 

estate web sites allow users to search for properties with 

specific keywords in their description and rank them 

according to their distance from a specified location. We call 

such queries spatial keyword queries. 

A spatial keyword query consists of a query area and a set 

of keywords. The answer is a list of objects ranked according 

to a combination of their distance to the query area and the 

relevance of their text description to the query keywords. A 

simple yet popular variant, which is used in our running 

example, is the distance-first spatial keyword query, where 

objects are ranked by distance and keywords are applied as a 

conjunctive filter to eliminate objects that do not contain 

them. 

Figure 1, which is our running example, displays a dataset 

of fictitious hotels with their spatial coordinates and a set of 

descriptive attributes (name, amenities). An example of a 

spatial keyword query is “find the nearest hotels to point 

[30.5, 100.0] that contain keywords internet and pool”. The 

top result of this query is the hotel object H7. 

Unfortunately there is no efficient support for top-k spatial 

keyword queries, where a prefix of the results list is required. 

Instead, current systems use ad-hoc combinations of nearest 

neighbor (NN) and keyword search techniques to tackle the 

problem. For instance, an R-Tree is used to find the nearest 

neighbors and for each neighbor an inverted index is used to 

check if the query keywords are contained. We show that such 

two-phase approaches are inefficient. 

We present a method to efficiently answer top-k spatial 

keyword queries, which is based on the tight integration of 

data structures and algorithms used in spatial database search 

and Information Retrieval (IR). In particular, our method 

consists of building an Information Retrieval R-Tree (IR
2
-

Tree), which is a structure based on the R-Tree [Gut84]. At 

query time an incremental algorithm is employed that uses the 

IR
2
-Tree to efficiently produce the top results of the query. 

The IR
2
-Tree is an R-Tree where a signature (Faloutsos and 

Christodoulakis [FC84]) is added to each node v of the IR
2
-

Tree to denote the textual content of all spatial objects in the 

subtree rooted at v. Our top-k spatial keyword search 

algorithm, which is inspired by the work of Hjaltason and 

Samet [HS99], exploits this information to locate the top 

query results by accessing a minimal portion of the IR
2
-Tree. 

This work has the following contributions: 

• The problem of top-k spatial keyword search is defined. 

• The IR
2
-Tree is proposed as an efficient indexing 

structure to store spatial and textual information for a set 

of objects. Efficient algorithms are also presented to 

maintain the IR
2
-Tree, that is, insert and delete objects. 

• An efficient incremental algorithm is presented to answer 

top-k spatial keyword queries using the IR
2
-Tree. Its 

performance is evaluated and compared to current 

approaches. Real datasets are used in our experiments 

that show the significant improvement in execution times. 

Note that our method can be applied to arbitrarily-shaped 

and multi-dimensional objects and not just points on the two 



dimensions, which are used in our running examples for 

clarity. 

This paper is organized as follows. Section 2 formally 

defines the top-k spatial keyword search problem. Section 3 

presents required background knowledge. Section 4 presents 

the IR
2
-Tree and its maintenance algorithms. Section 5 

presents our incremental search algorithm along with other 

baseline algorithms. Section 6 experimentally compares our 

search algorithm to baseline algorithms. Section 7 discusses 

related work and we conclude in Section 8.  

 

 

Figure 1: Sample dataset of hotel objects. 

II. PROBLEM DEFINITION 

In this work, a (spatial) object T is defined as a pair 

(T.p,T.t), where T.p is a location descriptor in the multi-

dimensional space, and T.t is a text document (textual 

description). Let D be the universe of all objects in a database. 

In Figure 1, T.p is the point composed of “latitude” and 

“longitude”, while T.t is the concatenation of the “name” and 

“amenities” attributes. 

A top-k spatial query Qs searches through the multi-

dimensional space to find the k nearest objects to the specified 

query point p. The spatial objects are ranked by distance such 

that an object closer to p has a higher rank. In particular, 

score(T) = distance(T.p, p). For example, in Figure 1, object 

H4 is ranked first, given p=[30.5, 100.0]. 

A keyword query Qw is a set of keywords w1,…,wm. The 

result of Qw is a list of objects ordered by the relevance 

IRscore(T.t, Qw) of their textual descriptions to the query 

keywords, as measured by an IR ranking function [Sin01]. 

A special case, used in our running examples, is the 

Boolean keyword query which returns the set of all objects 

whose text document contains all of w1,…,wm. That is, 
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For example, in Figure 1, objects H2, H7 are the results of 

Boolean keyword query {“internet”, “pool”}. 

A top-k spatial keyword query Q is a combination of a top-

k spatial query and a keyword query. In particular, Q is 

defined as a number Q.k of requested results, a point Q.p, a 

set Q.t = {w1,…,wm} of keywords, and a ranking function: 

f(distance(T.p, Q.p), IRscore(T.t, Q.t)) 

The result of Q is a list of the top-k objects T ranked 

according to the ranking function f.  

A special case is the distance-first top-k spatial keyword 

query Q, used in our running examples, which returns a 

ranked list of the k objects that contain all of w1,…,wm and are 

closest to Q.p. That is, distance-first top-k spatial keyword 

query is a combination of a top-k spatial query and a Boolean 

keyword query. It is,  
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For example, in Figure 1, objects H7, H2 are the results of 

a distance-first top-k spatial query with Q.k = 2, Q.p = 

[30.5,100.0] and Q.t = {“internet”,  “pool”}. Our work 

tackles the problem of efficiently answering top-k spatial 

keyword queries. 

III. BACKGROUND ON INCREMENTAL NN 

Figure 2 shows an example of an R-Tree using the hotel 

dataset of Figure 1. An MBR is represented by its southwest 

and its northeast points. An R-Tree is typically stored on disk 

and each R-Tree node takes a whole disk block; hence access 

to a node requires one disk I/O. The number of children each 

node can reference is called node capacity. 
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Figure 2: R-Tree for dataset of Figure 1. 

The Incremental Nearest Neighbor algorithm presented by 

Hjaltason and Samet [HS99] uses the structure of an R-Tree 

to access a minimal number of  R-Tree nodes and objects to 

retrieve the objects nearest to a given point or area in an 

incremental fashion. Figure 3 shows the Incremental Nearest 

Neighbor algorithm for two-dimensional objects. The input 

parameters are a point p, which is the query point (an area 

could be used instead), and a priority queue U which is 

initialized with the root of the R-Tree R. Line 2 returns the 

queue element which has the smallest distance from the query 

point.  

 

Figure 3: Incremental Nearest Neighbor algorithm. 

If the element is a leaf node, then each child object, 

referenced by ObjPtr, is inserted in the queue based on its 

distance. If it is a non-leaf node, each child node, referenced 

NearestNeighbor(p,U) 

/* priority queue U initially contains root node of R with distance 0 */ 

1 while not  U.IsEmpty() 
2   E � U.Dequeue() 

3   if E is a non-Leaf Node 

4    for each (NodePtr,MBR) in E 
5     U.Enqueue(LoadNode(NodePtr),Dist(p,MBR)) 

6   else if E is a Leaf Node 

7    for each (ObjPtr,MBR) in E 
8     U.Enqueue(ObjPtr,Dist(p,MBR)) 

9   else /* E is an object pointer */ 

10    return E as next nearest object pointer to p 
 



by NodePtr, is inserted in the queue. Finally, if the element is 

a pointer to a spatial object, it is reported as the next result of 

the algorithm, as show in Line 10. The Dist function 

computes the distance between the query point p and a MBR. 

We assume that the R-Tree is disk resident, thus, the LoadNode 

function loads the node from the disk block. 

Example 1: Executing the Incremental Nearest Neighbor 

algorithm on the R-Tree of Figure 2 for the query point [30.5, 

100.0] results in the following sequence of steps: 

1. Enqueue N1; U={(N1, 0.0)} 

2. Dequeue N1; Enqueue N2, N3; U={(N3, 0.0), (N2, 170.4)} 

3. Dequeue N3; Enqueue N6, N7; U={(N7, 9.0), (N6, 39.4), (N2, 170.4)} 

4. Dequeue N7; Enqueue H5, H4; U={(H4, 18.5), (N6, 39.4), 

(H5, 102.6), (N2, 170.40)} 

5. Dequeue and Return H4 

If we continue, objects H3, H5, H8, H6, H1, H7, H2 are 

returned next.  

IV. IR
2
-TREE 

Τhe IR
2
-Tree is a combination of an R-Tree and signature 

files. In particular, each node of an IR
2
-Tree contains both 

spatial and keyword information; the former in the form of a 

minimum bounding area and the latter in the form of a 

signature. An IR
2
-Tree facilitates both top-k spatial queries 

and top-k spatial keyword queries as we explain below. 

More formally, an IR
2
-Tree R is a height-balanced tree data 

structure, where each leaf node has entries of the form 

(ObjPtr, A, S). ObjPtr and A are defined as in the R-Tree 

while S is the signature of the object referred by ObjPtr. A 

non-leaf node has entries of the form (NodePtr, A, S). 

NodePtr and A are defined as in the R-Tree while S is the 

signature of the node. The signature of a node is the 

superimposition (OR-ing) of all the signatures of its entries. 

Thus a signature of a node is equivalent to a signature for all 

the documents in its subtree. Figure 6 shows an IR
2
-Tree for 

the sample dataset of Figure 1. To simplify the following 

presentation we focus on the two-dimensional space.  
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Figure 4: IR2-Tree for dataset of Figure 1. 

The IR
2
-Tree is maintained through insert and delete 

operations, which are modifications of the corresponding R-

Tree operations. Figures 7 and 8 show the Insert and Delete 

algorithms respectively.  

The Insert algorithm uses a standard R-Tree 

implementation of ChooseLeaf, which can be found in [Gut84]. 

We use the standard Quadratic Split technique [Gut84] for 

node splitting. We modify the standard AdjustTree method to 

also maintain the signatures of the modified nodes. That is, if 

a new bit is set to 1 in a node N, then it must be also set to 1 

for N’s ancestors.  Finally, we assume that all tree related 

algorithms have implicit access to the root node of the IR
2
-

Tree R. 

The input of the Insert algorithm is a pointer to an object 

T, its MBR, and its signature. Line 1 retrieves a leaf node N 

which is best suited according to the MBR of T. Then T’s 

pointer, MBR, and signature are stored in N. If N has reached 

its maximum node capacity then it will split. If N is split into 

nodes O and P, on Line 4, and it is the root node, a new node 

M will be created. M becomes the parent O and P and stores 

their pointer, MBR, and signature. Finally, M is declared the 

new root node. If N is not the root then its parent node has to 

be updated as is the case on line 14 or 18. Finally, since we 

assume that the IR
2
-Tree is disk resident, the StoreNode 

function stores the node to the corresponding disk block(s). 

Standard implementation of FindLeaf is used in the 

implementation of Delete. However, CondenseTree is modified 

to maintain the signatures of updated nodes, similarly to 

AdjustTree above. In Line 1 of Figure 8, a search for a leaf 

node N containing an unwanted object T is performed. If such 

N exists, T is removed from N, otherwise the algorithm stops. 

If T is removed, the tree is condensed and proper tree 

maintenance takes place. 

 

Figure 5: Insert method for IR2-Tree. 

Clearly, the complexity of the Insert and Delete algorithms 

is the same as in an R-Tree, since the only additional 

operation is the maintenance of the signatures of the updated 

nodes and their ancestors. Note that the updating of the 

signatures throughout a node and its ancestor is being done at 

the same time the tree would normally update the MBR of a 

node and its ancestors. 

To account for the extra space needed to store the 

signatures in an IR
2
-Tree node, and in order to have the same 

number of children as in the corresponding R-tree, we allocate 

additional disk block(s) to an IR
2
-Tree node when needed. 

Insert(ObjPtr,MBR,S) 

1 N � ChooseLeaf(MBR) 
2 N.Add(ObjPtr,MBR,S) 

3 if N needs to be split 

4   {O,P} � N.Split() /* nodes O and P are returned */ 

5   if N.IsRoot() 

6    initialize a new node M 
7    M.Add(O.Ptr,O.MBR,O.S) 
8    M.Add(P.Ptr,P.MBR,P.S) 
9    StoreNode(M) 
10    StoreNode(O) 
11    StoreNode(P) 

12    R.RootNode � M 

13   else 
14     AdjustTree(N.ParentNode,O,P) 

15 else 
16   StoreNode(N) 

17   if not N.IsRoot() 
18    AdjustTree(N.ParentNode,N,null) 



This fact has a minor impact on the performance of the IR
2
-

Tree algorithms as shown in Section 6.1. 

 

 

Figure 6: Delete method for IR2-Tree. 

Multilevel IR
2
-Tree 

A drawback of the IR
2
-Tree described above is that the 

same signature length is used for all levels which leads to 

more false positives in the higher levels, which have more 1’s 

(since they are the superimpositions of the lower levels). To 

address this problem, we use varying signature lengths for 

different levels. This is achieved using multi-level 

superimposed coding [CS89,DR83,LKP95], which reduces 

the number of false positives, particularly in non-leaf nodes. 

In this case, we use the optimal signature length for each level 

(we use the optimal signature length formula from [MC94]), 

and superimpose the signatures of all objects in the subtree of 

each node, instead of the signatures of the children nodes as 

before. A drawback of this variant, called Multi-level IR
2
-Tree 

(MIR
2
-Tree), is that it significantly increases the complexity 

of the tree maintenance operations (Insert and Delete) since 

for each object inserted or deleted, we have to recompute the 

signatures of all ancestor nodes by accessing all underlying 

objects and not just by superimposing the children’s 

signatures as before. We compare the performances of IR
2
-

Tree and MIR
2
-Tree in Section 6. 

V. ALGORITHMS TO ANSWER TOP-K SPATIAL KEYWORD 

QUERIES 

We consider two baseline algorithms, in Section 5.1, which 

are named based on the underlying data structures they use: 

the R-Tree, and the Inverted Index Only (IIO). In Section 5.2 

we present the distance-first IR
2
 algorithm which uses the IR

2
-

Tree structure to answer distance-first top-k spatial keyword 

queries. Then in Section 5.3 we present the general IR
2
 

algorithm which uses the IR
2
-Tree structure to answer general 

top-k spatial keyword queries. Note that these last two 

algorithms can also operate on MIR
2
-Trees with no 

modification. 

A. Current Baseline Algorithms 

For simplicity we describe the R-Tree and the IIO baseline 

algorithms for the simpler distance-first top-k spatial keyword 

queries, which are also used in the experiments (Section 6). 

Both algorithms can be extended to answer general top-k 

spatial keyword queries. 

 

 

R-Tree Algorithm 

The first baseline algorithm, R-Tree, makes use of only an 

R-Tree data structure.  Given a distance-first top-k spatial 

keyword query, the algorithm first finds the top-1 nearest 

neighbor object to the query point Q.p. Then it retrieves that 

object (since the R-tree only contains object pointers) and 

compares that object’s textual description with the keywords 

of the query. If the comparison fails then that object is 

discarded, and the next nearest object is retrieved. The 

incremental NN algorithm in Figure 3 ([HS99]) is used. This 

process continues until an object is found whose textual 

description contains the query keywords. Once a satisfying 

object is found it is returned and the process repeats until k 

objects have been returned.  

The drawback of this algorithm is that it has to retrieve 

every object returned by the NN algorithm until the top-k 

result objects are found. This potentially can lead to the 

retrieval of many “useless” objects. In the worst case (when 

none of the objects satisfies the query’s keywords) the entire 

tree has to be traversed and every object has to be inspected. 

 

IIO Algorithm 

The IIO baseline algorithm makes use of an inverted index. 

It first finds all the objects (object ids) whose text document 

contains the query keywords by intersecting the lists returned 

by the inverted index. Let V be the set of objects in this 

intersection. Then the objects in V are retrieved and the 

distance between the query point Q.p and each of the objects 

in V is computed. These objects are sorted and the top-k 

objects are returned. Figure 9 shows the IIO algorithm. The 

input parameters are the inverted index I and the distance-first 

top-k spatial keyword query Q. 

Example 2: Consider the query top-2 hotels from point [30.5, 

100.0] containing the keywords {“internet”, “pool”} on the data of 

Figure 1. The trace of IIO algorithm is the following: 

1. H1, H2, H6, H7 are returned by the inverted index for keyword 

“internet” 

2. H2, H3, H4, H7, H8 are returned by the inverted index for keyword 

“pool” 

3. H2, H7 are the result after the intersection 

4. Objects H2, H7 are accessed to get their coordinates 

5. Add H2 to list L={(H2, 222.8)} 

6. Add H7 to list L={(H7, 181.9), (H2, 222.8)} 

return H7, H2 as the result.  
 

The performance of this algorithm deteriorates if many 

objects contain the query keywords. In this case the inverted 

index would return many objects, which are then retrieved and 

inspected. Notice that IIO is the only non-incremental 

algorithm presented in this paper. That is, IIO computes all 

the query results and its performance is independent of k, as 

shown in Section 6. 

B. Distance-First IR
2
-Tree Algorithm 

In this section we present the distance-first version of the 

IR
2
-Tree algorithm, which outputs the objects that contain all 

Delete(ObjPtr) 

1 N � R.FindLeaf(ObjPtr) 

2 if N was not found 

3   return 
4 else 
5   N.Remove(ObjPtr) 
6   CondenseTree(N) 

7   if R.RootNode has only one child M 
8    R.RootNode � M 



query keywords ordered by their distance from the query 

point. In Section 5.3 we show how this algorithm is 

generalized to handle general top-k spatial keyword queries.  

 

 

Figure 7: Inverted Index Only (IIO) algorithm. 

The distance-first IR
2
-Tree algorithm exploits the structure 

of the IR
2
-Tree to efficiently answer distance-first top-k 

spatial keyword queries. The tree traversal is based on the 

Incremental Nearest Neighbor algorithm (Figure 3). The key 

advantage of this algorithm is that it prunes whole subtrees if 

their root-node signature does not match the query signature 

Signature(Q.t). This happens because the signature of an IR
2
-

Tree node is composed from all the signatures of its children. 

This pruning occurs in addition to the spatial pruning 

provided by the traditional Incremental Nearest Neighbor. By 

tightly integrating these two pruning mechanisms, the 

distance-first IR
2
-Tree algorithm accesses a minimal set of 

IR
2
-Tree nodes and objects to answer a distance-first top-k 

spatial keyword query.  

Figure 10 shows the distance-first IR
2
-Tree algorithm 

(IR2TopK). The key methods is IR2NearestNeighbor(.), which 

is based on the NearestNeighbor algorithm but inputs an 

additional input parameter W, which is the signature of the 

query. The signatures of nodes and objects are compared 

against W and are skipped if their signatures do not match W 

(i.e. they are dropped from the search queue). Notice that each 

call to the IR2NearestNeighbor(.) method returns a candidate 

result object, which is then checked (Line 21) to ensure it is 

not a false positive. 
Example 3: As an example we trace the execution of the algorithm 

on the IR2-Tree of Figure 6 to answer the query: top-2 hotels from 

point [30.5, 100.0] containing the keywords {“internet”, “pool”}. 

1. Enqueue N1; U={(N1, 0.0)} 

2. Dequeue N1; Enqueue N2; U={(N2, 170.4)} 

3. Dequeue N2; Enqueue N4, N5; U={(N5, 170.5), (N4, 173.8)} 

4. Dequeue N5; Enqueue H7; U={(N4, 173.8), (H7, 181.9)} 

5. Dequeue N4; Enqueue H2; U={(H7, 181.9), (H2, 222.8)} 

6. Dequeue and return H7; 

7. Dequeue and return H2; 

Notice how the IR
2
-Tree signature pruning ability starts to 

emerge in Line 2. Only one child of N1 is enqueued. The other 

child is discarded as it fails the signature check. Objects H1 

and H6 also get pruned when their parent is visited (Lines 4 

and 5). 

C. IR2
-Tree Algorithm 

In this section we present the general version of the IR
2
-

Tree algorithm, where objects are output ordered by a ranking 

function f(distance(T.p, Q.p), IRscore(T.t, Q.t)) as defined in 

Section 2. The key differences to the distance-first version are 

that: 

(i) We do not create a single signature Signature(Q.t) for the 

query, but instead we use the individual signatures, 

Signature(w), w∈ Q.t, of the query keywords. The reason is that 

we do not use AND semantics, that is, an object containing 

only some of the query keywords may be in the result. 

(ii) We can no longer output an object as soon as we know 

it is the next closest and contains all query keywords, because 

a farther object may have a higher overall f(.) score. Hence, 

the nodes v in the queue U are ordered by the maximum score 

that an object T inside them may have, that is, by: 
Upper(v)=UpperBoundT∈v(f(distance(T.p, Q.p), IRscore(T.t, Q.t)) 

Assuming that f() is decreasing with distance() and 

increasing with IRscore() we have: 
 Upper(v)=LowerBoundT∈v(f(distance(v.MBR, Q.p), UpperBoundT-has-

signature-v.S(IRscore(T.t, Q.t))) 

 

 

Figure 8: Distance-First IR2-Tree algorithm. 

To compute the maximum possible IR score 

UpperBoundT-has-signature-v.S(IRscore(T.t, Q.t)) of an object in 

the MBR of v we can assume that v has an imaginary object T 

that contains all keywords of Q specified by the signature of 

v.S exactly once (term frequency tf=1), that is, we assume no 

false positives. Hence, the document length (dl) of T.t is the 

number of such keywords. Then, we can use a traditional tfidf 

IR ranking function [Sin01]. This method facilitates 

outputting result-objects as early as possible. Note that it is 

not possible to estimate a tight maximum possible IR score if 

IR2NearestNeighbor(p,W,U) 

1 while not  U.IsEmpty() 
2   E � U.Dequeue() 

3   if E is a non-Leaf Node 

4    for each (NodePtr,MBR,S) in E 

5     if S matches W 
6      U.Enqueue(LoadNode(NodePtr),Dist(p,MBR)) 

7   else if E is a Leaf Node 

8    for each (ObjPtr,MBR,S) in E 

9     if S matches W 
10      U.Enqueue(ObjPtr,Dist(p,MBR)) 

11   else /* E is an object pointer */ 

12    return E as next nearest object pointer to p 

IR2TopK(R,Q) 

13 initialize a list L 

14 Initialize a priority queue U  
15 U.Enqueue(R.RootNode,0) 

16 W � Signature(Q.t) 

17 c � 0 

18 while c < Q.k 
19  ObjtPtr � IR2NearestNeighbor(Q.p,W,U) 

20  T � LoadObject(ObjPtr) 

21   if T.t contains all keywords in Q.t 
22    c � c + 1 
23    L.add(T) 

24 return L 

IIOTopK(I,Q) 

/* I is the inverted index */ 

1 for each word wi in Q.t do 
2   Li � I.RetrieveObjectPointersList(wi) 

3 V � intersection of object pointers in Li’s 

4 initialize a list L 

5 for each ObjPtr in V do 
6   T � LoadObject(ObjPtr) 

7   d � Dist(Q.p,T.p) 
8  L.Add(T,d) 

9 sort items in L by distance 

10 return first Q.k objects in L 



the IR function uses advanced features like thesaurus or 

ontology. 

We make the following specific changes to the distance-

first version of Figure 10: 

 

1. Replace Line 16 with: 

 

2. Replace Lines 21-23 with: 

 

3. Replace Lines 5-6 with: 

 

4. Replace Lines 9-10 with: 

 

VI. EXPERIMENTS 

To measure the performance of the IR
2
-Tree, MIR

2
-Tree, 

and baseline algorithms, we have implemented all algorithms 

and underlying data structures in Java. All index structures 

(R-Tree, IR
2
-Tree, MIR

2
-Tree and inverted index) are disk-

resident. We focus on the distance-first version of the top-k 

spatial keyword query, since its results are easier to 

comprehend and analyze. The spatial objects are stored in a 

plain text file and the leaf nodes of the tree data structures 

store pointers to the object locations in the file. We make 

comparisons based on the disk accessed required to satisfy a 

query and the execution time. An Athlon 64 3400+ 

(NewCastle) with 2GB of RAM and 74GB 10000RPM drive 

was used for the experiments. 

We present the results of two datasets provided by the High 

Performance Database Research Center (http://hpdrc.fiu.edu/). 

Both datasets are plain text files (tab delimited) where each 

spatial object occupies a row. The first dataset contains 

objects that represent hotels and will be referred as the Hotels 

dataset. The second dataset will be referred as the Restaurants 

dataset and contains restaurant data. Table 1 shows more 

details of the two datasets. 

In all experiments the disk block size is 4,096 KB. Also, 

the number of children of a node of the R-Tree is computed 

given the fact the each node is a disk block. This translates to 

113 children per node in our implementation. We use this 

same number of children for the IR
2
- and MIR

2
-Trees, which 

typically requires two disk blocks per node. As the 

experiments show, the extra disk block overhead adds to the 

size of the IR
2
- and MIR

2
-Trees but has little effect on the 

execution time.  

We compare the performance of the IR
2
-Tree and MIR

2
-

Tree algorithm with that of the R-Tree and IIO algorithms. 

Three sets of experiments were carried out. The first measures 

the performance of the algorithms for varying values of 

requested results k (top-k). The second set measures the effect 

of the number of query keywords. Finally, the third set of 

experiments shows the effect of the signature length r.  

TABLE 1: DATASET DETAILS 

Dataset Size 

(MB) 

Total # of 

objects 

Average # 

unique 

words per 

object 

Total # 

unique 

words in 

dataset 

Average # 

disk 

blocks 

per object 

Hotels 55.2 129,319 349 53906 2 

Restaurants 61.3 456,288 14 73855 1 

 

Varying k (top-k)  

In this experiment we fix the number of query keywords to 

2 and the signature length to 189 bytes (for Hotels dataset) 

and 8 bytes (for Restaurants dataset). Note that this signature 

length is longer at the top levels of the MIR
2
-Tree, which uses 

variable signature sizes. These signature lengths were chosen 

to balance space requirements and performance. The results of 

this experiment are shown in Figures 9 and 12 for Hotels and 

Restaurants respectively. The graph y-axes have logarithmic 

scale to illustrate the difference more clearly. 

The graph shows that IR
2
-Tree and MIR

2
-Tree perform 

better than R-Tree for all values of k. This is expected since 

the R-Tree approach will have to access more objects and 

potentially more tree nodes as well. In contrast, the IR
2
-Tree 

and MIR
2
-Tree use the signatures to prune whole subtrees. In 

particular, the MIR
2
-Tree does a better job filtering inner 

nodes since the optimal signature length is used for each tree 

level, as described in Section 4. 

Figures 9b and 12b show the disk block accesses for the 

algorithms. The thick bars illustrate the number of random 

disk block accesses while the thin lines on top of the thick 

bars show the numbers of sequential disk block accesses. As 

expected, the execution time is primarily proportional to the 

random access numbers. Note that MIR
2
-Tree performs fewer 

random disk block accesses than the IR
2
-Tree because of the 

pruning effect, but performs more sequential disk block 

accesses. This is mainly because the nodes of the top levels of 

the MIR
2
-Tree occupy more disk blocks due to their longer 

signatures. The IIO algorithm is insensitive to the k value 

since it has to examine all objects that contain all keywords. 

Score � UpperBoundT-has-signature-S(IRscore(T.t,Q.t)) 

if Score > 0 

 U.Enqueue(ObjPtr,Score) 

/* check if T has non-zero IR score. The “if” condition can be removed if 
results with 0 IR score are acceptable*/ 

 

Score �UpperBoundT-has-signature-S(IRscore(T.t,Q.t)) 

if Score > 0 

 U.Enqueue(LoadNode(NodePtr),Score) 

/* check if there can be an object T with non-zero IR score. The “if” 
condition can be removed if results with 0 IR score are acceptable*/ 

Score � f(distance(T.p,Q.p),IRscore(T.t,Q.t)) 

if Score ≥ Upper(U.top()) 
/* check if actual score of T is greater or equal to the max possible score 
of the objects in the queue */ 

 c � c + 1 

 L.add(T) 

else  
 U.Enqueue(T,Score) /*to be considered later*/ 

 

for each keyword wi in Q.t do 
 Wi � Signature(wi) 
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(a) Execution Time    (b) Object Accesses 

Figure 9: Results for varying k (top-k) searches for the Hotels dataset 
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(a) Execution Time    (b) Object Accesses 

Figure 10: Results for varying number of keywords for the Hotels dataset 
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(a) Execution Time    (b) Object Accesses 

Figure 11: Results for varying signature lengths (in bytes) for the Hotels dataset 

Vary number of keywords 

In this experiment we fix the number of requested objects k 

to 10 and the signature lengths as above. Refer to Figures 10 

and 13 for the results of this experiment. By increasing the 

number of keywords we reduce the number of objects that 

contain all of them (since distance-first top-k spatial keyword 

queries are conjunctive). We note that the IIO algorithm 

performs better as the number of keywords increases, since 

the intersection of the inverted lists then becomes shorter and 

hence the object accesses fewer. 

 

Vary signature length 

In this experiment we fix k to 10 and the number of 

keywords to 2. Refer to Figures 11 and 14 for the results of 

this experiment. First note, that the signatures chosen for the 

Hotels dataset are different than those for the Restaurants 

dataset. This is because a Hotel object contains more unique 

words than a Restaurant object, as shown in Table 1. Note that 

the displayed signature lengths are used for the leaf nodes of 

MIR2-Tree. Longer signatures are used for the top nodes. 

There is a trade-off in increasing the signature lengths for 

IR2-Tree and MIR2-Tree. Increasing the signature length 

decreases the false positives but increases the occupied space 

of the tree structures, which can lead to more disk accesses. 

Hence, there is no clear trend for varying the signature 

lengths. 

A. Space Requirements  

Table 2 shows the total size (in MB) of each structure. For 

IR
2
-Tree and MIR

2
-Tree we consider the instance used for the 

“varying top-k” and “varying keywords” experiments above, 



i.e., signature lengths of 189 and 8 bytes for the Hotels and 

Restaurant dataset respectively. 

Notice that the size of the IIO structure is significantly less 

for the Restaurants dataset. This is because the Restaurant 

dataset contains far less unique keywords per object than the 

Hotels dataset as shown in Table 1. On the other hand, the 

sizes of the tree structures are larger for the Restaurants 

dataset because it has more objects than the Hotels dataset. 

B. Discussion 

As shown in the “vary signature length” experiment above, 

by increasing the signature size we achieve fewer accesses to 

spatial objects and inner nodes by eliminating false positives. 

On the other hand, larger signatures also increase the size of 

the IR
2
-Tree and MIR

2
-Tree. The larger signatures impact the 

size of the IR
2
-Tree more than that of the MIR

2
-Tree, since 

the signature size is consistent thought all nodes of an IR
2
-

Tree. The signature size only impact the leaf nodes of the 

MIR
2
-Tree because the inner nodes are recalculated based on 

the object that the subtree can reference. 

 

TABLE 2: SIZES (MB) OF INDEXING STRUCTURES 

Dataset IIO R-Tree IR2-Tree MIR2-Tree 

Hotels 31.4 6.9 34.5 44.9 

Restaurants 7.2 23.9 47.2 68.2 

 

 

Also, in the rare case where every query keyword appears 

in very few objects, the IIO method will be faster since the 

inverted lists would be very short. On the other extreme, if the 

query keywords appear in almost all objects, the R-Tree will 

excel. Finally, the MIR
2
-Tree generally performs better than 

the IR
2
-Tree; however, the MIR

2
-Tree is expensive to 

maintain. Hence, for frequently updated datasets, IR
2
-Tree is 

the choice. 

 

VII. RELATED WORK 

Nearest Neighbor Queries 

Answering k-nearest neighbor queries on a spatial database 

is a classical database problem. Most methods use indices 

built on the data to assist the k-NN search. Perhaps the most 

widely used algorithm is the branch-and-bound algorithm 

[RKV95] which traverses an R-tree [Gut84] while 

maintaining a list of k potential nearest neighbors in a priority 

queue. There have also been attempts to use range queries to 

solve the k-NN search problem, such as the one proposed by 

Korn et al. [KSF+96]. The basic idea is to use a range query 

to retrieve the potential k-NNs. This algorithm is further 

extended by improving the region estimation [CG99], and by 

a better search technique of the k-NN in the region [SK98].  

Before the incremental NN algorithm by Hjaltason and 

Samet [HS99] for R-Trees, used in this paper was developed, 

the problem of incremental NN was tackled for three different 

data structures: [Bro90,Hen94,HS95] operated on k-d trees, 

LSD-Tree, and PM quadtree respectively. All algorithms have 

similar principles and mainly differ in the data structures used 

during execution. Recently there has also been work on 

continuous k-NN queries [TPS02,XMA05] which find 

continuously the k nearest objects to a query point. Park and 

Kim [PK03] independently developed a technique similar to 

ours to answer NN queries using a combination of an R-tree 

and multiple S-trees, one for every non-spatial attribute.  

 

Signature Files 

Signature files were introduced by Faloutsos and 

Christodoulakis [FC84,FC85,Fal85] as a method to efficiently 

search a collection of text documents. Lee et al. [LKP95] 

present methods to build structures on top of a signature file. 

In this work we view the document describing a spatial object 

as a text block in their notation and build similar structures on 

top of this set of objects. In particular, we adopt the idea of an 

indexed descriptor file structure [PBC80] (S-Tree [Dep86] is 

a variant of an indexed descriptor), which is a tree where the 

lowest level consists of block signatures. These are 

superimposed codes obtained from the text blocks. A group of 

b signatures at the i-th level is superimposed together to form 

a signature at the (i-1)-th level. The signatures of each level 

have the same length. Similarly, in our IR
2
-Tree, the parent 

has a signature that superimposes (binary ORs) the signatures 

of the children. 

Finally, when building an indexed descriptor file, we 

expect the top levels to have more 1’s due to the larger 

number of words in their subtrees, which in turn leads to more 

false positives. The principle of the multi-level superimposed 

coding was proposed [CS89,DR83] as a solution to this 

problem, where higher levels have longer signatures. This 

principle allows fewer false positives by incurring a space 

overhead. However, this makes updates on the underlying 

documents expensive to maintain. 

 

Top-k queries 

Top-k query works [Fag01, BGM02] handle the aggregation 

of attribute values of objects in the case where the attribute 

values lie in different sources. For example [BGM02] 

consider the problem of ordering a set of restaurants by 

distance and price. They present an optimal sequence of 

random or sequential accesses on the sources (e.g., Zagat for 

price and Mapquest for distance) in order to compute the top-

k restaurants. They view the sources as black boxes in contrast 

to our work where we assume full access which allows us to 

build an IR
2
-Tree.  

 Zhou et al. [ZXW+05] present techniques to combine an 

inverted index with an R
*
 tree to answer Web queries with 

spatial constraints on pages with spatial information. Their 

experiments show that an inverted index whose keyword lists 

are organized as R
*
 trees has the best performance. However, 

their algorithms are not top-k, that is, they require the spatial 

area as an input. 
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(a) Execution Time    (b) Object Accesses 

Figure 12: Results for varying k (top-k) searches for the Restaurants dataset 
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(a) Execution Time    (b) Object Accesses 

Figure 13: Results for varying number of keywords for the Restaurants dataset 
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(a) Execution Time    (b) Object Accesses 

Figure 14: Results for varying signature lengths (in bytes) for the Restaurants dataset 

Furthermore, they do not scale well for multiple keywords 

since multiple R
*
-trees must be traversed and intersected (a 

combining algorithm is not presented). Vaid et al. [VJJS05] 

and Martins et al. [MSA05] present techniques to combine the 

output of a text and a spatial index to answer a spatial 

keyword query. These techniques are very similar to the 

baseline algorithms we use. However, they do not consider 

combining these indexes in a single structure like our IR
2
-tree. 

Further, Vaid et al. [VJJS05] use a grid-based distribution of 

the spatial objects. 

VIII. CONCLUSIONS 

In this paper we introduced the problem of spatial keyword 

search and explained the performance limitations of current 

approaches. We proposed a solution which is dramatically 

faster than current approaches and is based on a combination 

of R-Trees and signature files techniques. In particular we 

introduced the IR
2
-Tree and showed how it is maintained in 

the presence of data updates. An efficient incremental 

algorithm was presented that uses the IR
2
-Tree to answer 

spatial keyword queries. We experimentally evaluated our 

technique, which proved its superior performance.  
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