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Abstract—Detecting duplicate and near-duplicate documents is 

critical in applications like Web crawling since it helps save 

document processing resources. Simhash is a state-of-art 

method to assign a bit-string fingerprint to a document, such 

that similar documents have similar fingerprints. Finding the 

near-duplicates in a large collection of documents consists of 

two stages: (a) compute the simhash fingerprint of each 

document, and (b) find pairs of similar fingerprints by 

computing their Hamming distance.  

Previous work has focused on optimizing the second stage, i.e., 

avoiding the quadratic number of comparisons to compute the 

all to all Hamming distance. However, our experiments show 

that the total time is dominated by the first stage (the 

fingerprints computation), which is the focus of this paper. We 

propose an implementation of simhash on Field Programmable 

Gate Arrays (FPGAs), by implementing a customized 

fingerprint computing engine in hardware that exploits 

parallelization and pipelining opportunities. We present a 

comprehensive experimental evaluation on large diverse real 

document datasets. Our experiments show a speedup of 362x in 

the simhash computation, and savings of up to 98% in overall 

near-duplicate detection execution time compared to using 

multi-core CPUs. 

Keywords-duplicate detection; FPGA; hardware; document 

similarity; hashing 

I. INTRODUCTION 

Detecting duplicate and near-duplicate documents is 
important in many applications. In Web crawling, it avoids 
spending resources on parsing and indexing near duplicate 
document, which have little value to users. In Web or news 
search, it allows grouping together results with near-identical 
content, in order to avoid overwhelming the user. 

Simhash [3] is a popular hash-based method to detect 
near-duplicates in document collections [9, 12, 17]. The key 
idea is that each document is represented by a short, e.g., 64-
bit, fingerprint that summarizes its terms. These fingerprints 
are then used for comparing documents, which leads to great 
time savings. 

In particular, the process consists of two stages: (a) the 
simhash calculation stage computes the fingerprint value of 
every document in the collection; (b) the matching stage 
finds pairs of near-duplicates documents by comparing their 

simhash fingerprint values. Note that for matching 
fingerprints, the actual documents must be compared since 
the process may generate false positive matches. 

Previous work [12, 17] has focused on how to optimize 
the second stage of the process, i.e., the matching stage, to 
avoid performing a quadratic number of simhash fingerprint 
value comparisons. For instance, the key contribution of [12] 
is a redundant organization of the simhash signatures of a 
collection of documents that is used for quickly testing if a 
new document is a near-duplicate of one of the documents in 
the collection. We provide more details in Section II.B. 

However, our experiments show that the fingerprint 
calculation stage dominates the overall execution time by a 
factor of up to 75 to 1 (see Section IV).  In this paper we 
propose a novel approach to optimize the first stage of 
simhash-based near-duplicate detection, by leveraging 
FPGAs to quickly read through large numbers of documents 
and generating their simhash fingerprints. 

The key idea is to configure multiple customized 
fingerprint-computing engines in hardware through which 
documents are streamed one character (byte) every cycle. 
Eight such engines can be configured on each of four 
FPGAs, on the Convey Computers HC-2ex [4] allowing up 
to 32 documents to be processed concurrently. The engines 
operate at 150 MHz resulting in a processing capacity of 4.8 
GB/s. 

The contributions of this paper are: 

1) We show how the simhash signature of a document 
can be efficiently computed using FPGAs (Section 
III). 

2) We perform comprehensive experiments on large 
real data sets. The experiments show a speedup of 
362x in the simhash computation, and savings of up 
to 98% in overall near-duplicate detection execution 
time compared to using multi-core CPUs (Section 
IV). 

We present background on FPGAs and simhash in 
Section II. Related work is discussed in Section V. We 
conclude and present a discussion on the significance of our 
results in Section VI. 



II. BACKGROUND 

A. Field Programmable Gate Arrays (FPGAs) 

Field Programmable Gate Arrays (FPGAs) are integrated 

circuits on which digital logic structures can be dynamically 

configured under software control. They can be viewed as a 

very large collection of logic gates, flip-flops and other 

hardwired logic devices whose connections, set in software 

by a configuration file, make it possible to instantiate any 

logic circuit on the chip. At the heart of FPGAs is a 

programmable N-input Look-Up Table (LUT) that can 

implement any Boolean function of N inputs (N=4 in Figure 

2). Typical values of N range from four to six. Multiple 

LUTs can be combined to implement large and complex 

logic functions. A typical FPGA architecture consists of a 

rectangular array of logic blocks, called Common Logic 

Block (CLB), shown in Figure 1, each consisting of a small 

number of LUTs, two to four, with some flip-flops and 

multiplexers. Signals are routed between CLBs over a grid 

of routing channels, itself programmable in software.  

To program an FPGA, the logic design is described 

using a Hardware Description Language (HDL, e.g. VHDL, 

Verilog or SystemC). This program is then processed 

through a complex tool chain (synthesis, technology 

mapping, place and route) to generate the bit file that would 

configure the FPGA. 

The performance advantages of FPGA-based 

heterogeneous platforms arise from their ability to map 

highly repetitive computations to the FPGA as a hardware 

circuit through which data is streamed. This model allows 

the large-scale exploitation of parallelism at various levels 

of granularity. Furthermore, in recent years FPGAs have 

witnessed a tremendous increase in size, speed and I/O 

bandwidth making this model even more attractive. While 

these advantages are shared with Application Specific 

Integrated Circuits (ASIC), FPGAs however can also be 

reconfigured, are more adaptable to changes in applications 

and specifications, and exhibit a faster time to market. In 

summary, FPGA accelerators combine the re-

programmability of software with the inherent speed of 

hardware, albeit slower than ASICs. A survey of FPGAs and 

ASICs can be found at [7]. 

B. Simhash and Near-Duplicate Document Detection 

The process of discovering near-duplicate documents 
consists of two stages: (a) the simhash fingerprint calculation 
stage computes the simhash fingerprint value of all 
documents in the collection; (b) the matching stage finds 
pairs of near-duplicates documents by comparing their 
fingerprint values. 

a) Simhash Calculation Stage 

Simhash [3] is a hashing scheme that maps an object 
(document) that consists of features (terms) to a fingerprint 
bit-string. The key desirable property of simhash is that the 
number of common bits in the simhash fingerprint of two 
documents is positively correlated to the cosine similarity of 
the documents. (Cosine similarity is a popular distance 
function in Information Retrieval.) 

To compute the f-bits simhash of a document, we first 
have to compute the f-bits signature of each term, as we 
explain below. Further, we have to count the number of 
occurrences of each term t in the document, which is the 
weight of t. Then, we create a vector V of f integers. To 
compute V[i] we add the weight of each term whose 
signature has a 1 in the i-th position, and subtract the weight 
of each term whose signature has a 0 in the i-th position. 
Finally, the simhash vector has 1 in positions i with V[i]>0, 
and 0 in the other positions. 

1) Term Hash Function: To generate a hash signature 
for a term (word) we can use various hashing schemes whose 
goal is that very different documents should have very 
different signatures [8, 19]. We use the sdbm hashing 
function in our implementation and experiments, which is 
the most popular function for simhash implementations, and 
is also used in other popular text handling systems like 
Berkeley DB due to its effectiveness.  sdbm generates a 
signature for a term (word) using the following function that 
iterates over the characters of the word: 

hash(i) = hash(i-1)*65599 + str[i]  (1) 

Variable i goes over the characters of the word, 0 to s, where 
s-1 is the length of the word. The signature of the word is 

Figure 2: Example of a Common Logic Block (CLB) of an 

FPGA. 

  Unsigned long sdbm (unsigned char *str) 

  { 

    Unsigned long h = 0; 

    int c; 

    while (c = *str++) 

      h = c + (h << 6) + (h << 16) - h; 

    return h; 

  } 

Figure 1: Implementation of sdbm hash function in C. 



 

Figure 3: Simhash calculation example using sdbm as word hashing function. 

 

 

Figure 4 - Architecture of the Convey HC-2ex heterogeneous multiprocessor: 

hash(s). To initialize, we set hash(-1)=0. The constant 65599 
was picked after experimenting with different constants, and 
is a prime number. An efficient implementation of Equation 

1 in C is shown in Figure 1. Figure 3 shows an example of 

the simhash computation for a small document. 

b) Matching Stage 

After the simhash fingerprints are calculated, the problem is 

how to efficiently detect near-duplicate pairs of documents, 

that is, documents whose fingerprint values have at most k 

different bits. For 64-bit fingerprints, k=3 is a typical value 

used [13]. Researchers have proposed ways to optimize this 

stage by avoiding the naïve quadratic cost of fingerprint 

comparisons [13, 18]. In particular, the key problem is how 

to decide if a new document is near duplicate to any of the 

existing documents in the collection. 

The main idea in [13], which we have also implemented 
in our experiments (Section IV), is to create several copies of 
the table of fingerprints of the collections, where in each 
copy we permutate the positions of the bits. The key intuition 
is that the prefix of a new simhash will match the prefix of at 
least one of the copies of each near-duplicate simhash in the 
collection. Hence, we can do a binary search on each of the 

table copies using the prefix bits to find all near-duplicate 
documents. The number of copies and the length of the 
matching prefix are determined based on the value of k and 
space vs. time tradeoff considerations. More details are 
available at [12]. 

 

Figure 5: FPGA interface to memory, all channels are 64-bit wide. 

III. COMPUTING SIMHASH SIGNATURES USING FPGAS 

A. The Convey Computers Heterogeneous Architecture 

The Convey Computers [4, 5, 6], shown in Figure 4, are the 

first heterogeneous machines with a cache coherent virtual 

Consider document: “A school is a school if it has students and teachers” 

The terms, with their weight and their 64-bit term hash signatures are: 

Term Weight sdbm signature 

school 2 0001100010100100001000101000010101011000001101010000111011110100 

students 1 0110001001010100000110011101001010001000110100111001101100111000 

teachers 1 1010011000101110111000111100110100100111001000010100000110110001 

Hence, the vector V is: -2,-2,0,0,0,-2,0,-4,0,-2,2,-2,-2,4,-2,-4,-2,-2,2,-2,-2,-4,2,0,4,0,-4,-2,-2,2,-2,2,-2,0,-2,0,2,-2,-2,-2,-2,-

2,2,2,-4,0,-2,4,-2,-2,-4,-2,2,0,2,0,2,0,4,4,-2,0,-4,-2 

and the simhash of the document is:  0011101010100100001000111100010101011000001101010000111111110100 

 

 



 

Figure 6: The Fingerprint Engine, implements the simhash algorithm on eight 8-bit consecutive values. 

 

 

Figure 7: The SimHash Core computes the 64-bit signature. 

memory space that is shared between the software (CPU 

execution) and hardware (FPGA execution). This allows an 

application to switch its execution between software and 

hardware without needing to offload data, and thus it could 

be done with little overhead. Furthermore, the user need not 

worry about virtual to physical address translation. It should 

be noted that this memory space is divided into two regions: 

host and co-processor memory spaces. While both spaces 

are shared, improperly assigned data can hinder 

performance due to inefficient accesses across these spaces 

[1]. The Coprocessor consists of four large FPGAs, called 

Application Engines (AEs). Each AE interfaces to eight 

Memory Controllers (MC) via a full crossbar supporting 

memory requests reordering. Each MC supports two ports, 

even/odd, each capable of eight bytes per cycle at 150 MHz 

[4]. A total of 16 memory ports deliver a peak bandwidth of 

19.2 GB/sec per AE. 

Each FPGA on the Convey HC-2ex has 16 memory 

channels; to fully use its bandwidth, eight will be used as 

input channels and eight as output channels. As shown in 

Figure 5, the input and output channels are connected to a 

Fingerprint Engine (FE). Eight such engines are configured 

on each of the four FPGAs. 

The structure of the Fingerprint Engine is shown in 

Figure 6: inside each FE are eight SimHash Cores (SHC) 

feeding an eight-to-one multiplexer. Each SHC processes 

the data from one document, which is represented in ASCII.  

A 64-bit word is read from each of eight documents, in a 

round robin fashion each cycle, and fed to one of the SHC 

on the FE. The eight characters in the 64-bit word are 

processed sequentially by each SHC, as shown in Figure 7. 

Once a character is read, the SHC executes the pseudo-

code shown Figure 8: either the hash value or the summing 

weight is updated based on the character’s value. When a 

64-bit 

fingerprint 

output 

8
-1

 M
U

X
 

64-bit input 

Document 0 

Document 7 

Document 1 

64-bit 

fingerprint 

64-bit 

fingerprint 

64-bit 

fingerprint 

64-bit input 

64-bit input 

64-bit input 

8-bit 

8-bit 

8-bit 

SHC: simhash core 

1
-8

 D
E

M
U

X
 

64-bit 

buffer 
SHC-0 

64-bit 

buffer 

64-bit 

buffer 
SHC-1 

Document 0 

Document 1 

Document 7 

SHC-7 

. 

. 

. 

If(8-bit==0) 

compute fingerprint  

Set done signal =1 

If(8-bit !=32 or !=0)  

update hashing value 

If(8-bit==32) 

update counters 

SHC 

64-bit hash 

value 

 

8-bit 

 64 64-bit 

counters 



space is found, (ASCII value 32), a word has been 

processed and the summing weights are updated, otherwise 

the hash value is updated. The end of document is marked 

by NULL (ASCII zero), which triggers the generation of 

that fingerprint based on the current summing weights (by 

setting done=1 in the code of Figure 8). 

Since there are eight SHC, it is possible that eight 

fingerprints are generated during the same cycle, where one 

character is read from each document at each cycle. The 

multiplexer serves also as a priority encoder and latch to 

allow only one fingerprint output every cycle. We assume 

that any useful document is at least eight characters long, so 

no fingerprint will be lost. When two or more fingerprints 

are generated in the same cycle, one is sent to the output and 

the others are latched and returned in subsequent cycles. 

 

 

Figure 8: Code executed at SimHash Cores (SHC). 

There are four FPGAs on Convey. They can process data 

in parallel. To achieve best performance, the documents in a 

collection are split into four roughly equal sets, one for each 

FPGSA. Each FPGA will then process its own data set at the 

same time. That is, this configuration can process up to 

4x8=32 document concurrently, one character from each 

document during each cycle. This means that we can 

process up to 32 bytes per cycle, 150 MHz.  

IV. EXPERIMENTS 

A. Hardware Configurations and Experimental Setup 

In our experiments we used the HC-2ex described in Section 

II.A for both the software (CPU based) as well as the 

hardware (FPGA based) implementations. The HC-2ex has 

four Virtex-6 LX760 FPGAs in the AE, two Intel Xeon 

processors E5-2643 4-core 3.3GHz (used in the software 

implementation), and 96 GB shared memory (used by both 

implementations). Both the software and hardware 

implementations were evaluated on the same machine. The 

software implementation was run in multithreaded mode 

(eight threads on four cores).  

Both experiments were run with the data (documents) 

resident in memory to factor out the effects of disk I/O. All 

software results are measured using eight way multi-

threaded implementations on the multi-core CPUs. All 

FPGAs are running at 150 MHz clocks. 

We use 64-bit simhash signatures, which is the standard 

length used in simhash implementations [12]. As shown in 

Figure 1, sdbm hashing is chosen as the term hash function, 

which has been proven to be both efficient and with low 

collision rates. It is also hardware friendly, as we show in 

Section III. 

B. Data Sets Used 

The data sets used are Wikipedia pages
1
, TREC

2
 

documents and Twitter posts. All Wikipedia pages were 

downloaded. The TREC data are English documents from 

TREC Volumes 1 to 5
3
. The Twitter data are one month of 

the sample of about 1% of the Twitter data, provided by the 

Twitter Streaming API
4
, from May 11 to June 10 2013. 

All data was preprocessed by applying standard 

information retrieval techniques: stop words removal, html 

tag removal, and punctuation removal. Some key statistics 

of the data sets are shown in Table  I. 

TABLE  I – DATA SET STATISTICS 

 
Size before 

preprocess

ing (GB) 

Size after 

preproces

sing (GB) 

Number of 

documents 

Average 

number of 

words per 

document 

Wikipedia 41 17 4,017,414 4,431 

TREC 8.9 3.6 1,634,249 2,346 

Twitter 11.3 5.1 114,333,421 48 

 

                                                 
1 Downloaded from 

http://en.wikipedia.org/wiki/Wikipedia:Database_download 
2 Text REtrieval Conference (TREC), trec.nist.gov/  
3 as described in http://trec.nist.gov/data/docs_eng.html 
4 https://dev.twitter.com/docs/streaming-apis 

uint_64 [64] summing_weight; 

uint_64 hash_value, fingerprint;  

char letter; 

bool done; 

 

while (done! =1) 

{ 

   if (letter!=32 || letter!=0) 

hash_value = letter  +  (hash_value << 6) + (hash_value << 

16) - hash_value; 

   else if (letter == 32) 

      for (int i =0; i<64; i++) 

      { 

           if (hash[i] ==0) 

 summing_weight [i]++; 

           else 

 summing_weight [i]--; 

      } 

} 

 

while (done ==1) 

{ 

     for (int i =0; i<64; i++) 

     { 

           if (summing_weight [i] >=0) 

 fingerprint [i]==0; 

           else 

 fingerprint [i]==1; 

     } 

} 

http://en.wikipedia.org/wiki/Wikipedia:Database_download
http://trec.nist.gov/data/docs_eng.html
https://dev.twitter.com/docs/streaming-apis


One key difference between Twitter and other two data 

sets is that Twitter contains documents with very small 

number of words. Since simhash is a dimensionality 

reduction technique, low dimensional data limits its 

effectiveness. Nevertheless, it is interesting to see how our 

methods perform for collections of many short documents. 

C. Results 

1) Execution Time of First Stage of Simhash: Table II 

shows the execution times for computing the simhash 

signatures of all documents in each data set for both the 

software and FPGA-accelerated implementations. 

TABLE II- SIMHASH EXECUTION TIME  

 CPU (s) FPGA (s) Speed-up 

Wikipedia 605 1.67 362 

TREC 130 0.36 361 

Twitter 192 0.53 362 

 

It is interesting to note that the speed-up is independent of 

the data sets used and is around 362X. This can be 

explained by the fact that the FPGA implementation is a 

collection of statically configured concurrent pipelines that 

together can achieve a throughput of 4.8 GB/s. 

2) Execution Time of Second Stage of Simhash: Next, 

we study the performance relationship between the two 

stages of simhash near-duplicate detection. In particular, we 

measure the execution time of the second stage, which is the 

matching phase. We adopt the matching implementation 

described in [13], summarized in Section II.B. We use 

software (CPU) to execute this stage, since using FPGAs is 

not a natural choice for this, given the frequent memory 

access patterns and the large memory required. We define 

near-duplicates to be documents with up to k=3 different 

bits in their simhash, as was also selected in [12].  

In particular, the 64 simhash bits are divided into 4 

groups. Each group contains 16 bits. We must consider all 

permutations of these four groups. There are four ways to 

choose one group from the four groups. Therefore, four 

tables will be created in memory, i.e., four copies of the 

simhash fingerprints. 

For each fingerprint, we look up the four tables using 

binary search on the first 16 bits, and probe all matching 

fingerprints. The numbers of fingerprints (smallest power of 

2 larger than the number of documents in data set) being 

generated, and the average number of probes per match
5
 are 

shown in Table III, along with the total time to perform this 

                                                 
5  The second and third columns are not important for this paper, 

and require understanding the details of the method in [13]; we 

provide them for completeness. 

process for all fingerprints in the data set (the last column). 

We see that the ratio of time for the first and second stage of 

simhash is about 75 to 1 (605 to 8.11) for software 

execution for the Wikipedia data set. 

TABLE III- SIMHASH MATCHING TIMES USING SOFTWARE 

EXECUTION 

 # fingerprints Avg # 

probes 

Time 

consumed (s) 

Wikipedia 223 27 8.11 

TREC 225 29 3.12 

Twitter 228 212 276.00 

 

Note that the matching time for Twitter is much larger 

because of the much larger number of documents, which 

leads to much more probes per match as shown in Table III. 

This time can be easily reduced by considering more tables, 

that is, more copies of the data, e.g., using 5 or 6 tables 

instead of four. However, the goal of Table III is to show 

that the second phase of simhash is generally much faster 

than the first phase (Table II), which is the focus of this 

paper. 

3) Analysis of overall Simhash Execution Time: 

Table IV summarizes the execution time of the two stages of 

simhash, and shows that using FPGAs for the first stage 

leads to dramatic overall time savings. We see a 98% time 

reduction for the Wikipedia and TREC datasets. Note that 

the overall savings for the Twitter data set would be much 

larger if we used more tables in the second stage as 

discussed above. 

Table IV shows the total execution time for the second 

stage of simhash, using CPU implementation. 

TABLE IV- TOTAL TIMES (SIMHASH CALCULATION AND 

MATCHING) 

 CPU (s) FPGA (s) Time Savings 

Wikipedia 613 9.78 98.4% 

TREC 133 3.48 97.4% 

Twitter 468 276.53 40.9% 

 

4) Analysis of overall Simhash Execution Time with 
Different Multi-thread Strategy and Different Number of 
CPU Cores: In the above software implementation, we used 
document-level multithreading strategy. That means each 
thread will calculate one document’s fingerprint at a time.  
For completeness, we also implemented a word-level 
multithreading strategy, where each thread calculates one 
word’s sdbm signature at a time. The results show that word-
level multithreading is slower. Using Wikipedia, TREC, and 
Twitter data to test word-level multithreading 
implementation, the execution times are 1153 s, 206 s, and 
1016 s, respectively. 



We also ran our software implementation on another 
cluster with more CPU cores to see how the number of CPU 
cores affects our result. The test cluster has four AMD 
Opteron™ processors 6272 8-core 1.4GHz. While testing 
with Wikipedia, TREC and Twitter data, the execution times 
are 440 s, 100 s, 380 s. As expected, the execution times 
decrease with CPU core number and clock frequency. 

 

V. RELATED WORK 

Simhash Documents Matching: [17] proposed a way to 

improve the performance of the matching stage of simhash-

based similarity detection by using a probabilistic approach 

that considers which bits in simhash are more volatile. This 

allows them to improve on the time and space complexity 

over [12] if a small amount of recall can be sacrificed. 

However, they do not propose any optimization of the 

simhash calculation stage, which is the focus of this paper. 

FPGAs in Information Retrieval: [20] propose an FPGA-

based Web search query execution, where FPGAs are used 

to read inverted indexes, and rank documents. In contrast, 

our work focuses on the crawling phase of Web search, 

where near-duplicate elimination is critical.  

Vanderbauwhede et al. [18] propose an FPGA-based 

approach to match documents to profiles described by 

keywords and weights. They split the profiles into bins of 

fixed length and use a hash signature for each bin. Then, 

each document term is compared against these hash 

signatures. In contrast, we map documents to simhash 

fingerprints, and also all documents have a fingerprint of the 

same length. These differences allow us to have a higher 

speedup than [8], even though the problems addressed are 

not the same. [16] proposed methods for computing the 

similarities between vectors using FPGAs, to be used in data 

mining applications. 

FPGAs in Database Queries: [10] propose an FPGA-based 

query execution approach, where FPGAs are used to find 

XML projections to improve query performance. The 

acceleration of XML queries on XML documents, using 

FPGAs, has been proposed in several papers [13, 14, 15].   

VI. SIGNIFICANCE AND CONCLUSIONS 

In this paper we showed how FPGAs can be used to 

dramatically speedup the process of detecting near-

duplicates in large document collections. Our experiments 

show that a machine with four FPGAs can achieve a 

speedup of up to 362x compared to a four core CPU.  

In addition to the significance of detecting near-

duplicates (or exact duplicates which can also be handled 

similarly), our work shows the great potential of using 

FPGAs for various document processing applications.  

Our techniques can be applied to applications that need 

to read documents and for each document the computation 

requires a relatively small size of intermediate storage (in 

simhash we need to store the intermediate value of simhash) 

and output for each document (in simhash we output the 

simhash value of each document). 

Other applications can benefit from this configuration. 

For instance, if we have a high-throughput stream of 

documents like news or social posts, and we want to 

perform document filtering [2] or build a publish-subscribe 

system [11]. That is, we want to match the documents of the 

stream against continuous queries. A query could be a user-

specified bag of keywords of interest, or a structured query 

that has a condition on the location, user, and text of a social 

post (e.g., tweet). 

However, not all document applications can directly 

benefit from our FPGAs setting. For instance, to build an 

inverted index, one has to count the frequency of each word 

in a document; the number of unique words can be large and 

hence an FPGA does not offer a natural solution without 

relying on a large external storage. 
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