
Efficient Near-Duplicate Document Detection using FPGAs

Xi Luo Walid Najjar Vagelis Hristidis

Computer Science and Engineering

UC Riverside

Riverside, CA, USA

{luox,najjar,vagelis}@cs.ucr.edu

Abstract—Detecting duplicate and near-duplicate documents is

critical in applications like Web crawling since it helps save

document processing resources. Simhash is a state-of-art

method to assign a bit-string fingerprint to a document, such

that similar documents have similar fingerprints. Finding the

near-duplicates in a large collection of documents consists of

two stages: (a) compute the simhash fingerprint of each

document, and (b) find pairs of similar fingerprints by

computing their Hamming distance.

Previous work has focused on optimizing the second stage, i.e.,

avoiding the quadratic number of comparisons to compute the

all to all Hamming distance. However, our experiments show

that the total time is dominated by the first stage (the

fingerprints computation), which is the focus of this paper. We

propose an implementation of simhash on Field Programmable

Gate Arrays (FPGAs), by implementing a customized

fingerprint computing engine in hardware that exploits

parallelization and pipelining opportunities. We present a

comprehensive experimental evaluation on large diverse real

document datasets. Our experiments show a speedup of 362x in

the simhash computation, and savings of up to 98% in overall

near-duplicate detection execution time compared to using

multi-core CPUs.

Keywords-duplicate detection; FPGA; hardware; document

similarity; hashing

I. INTRODUCTION

Detecting duplicate and near-duplicate documents is
important in many applications. In Web crawling, it avoids
spending resources on parsing and indexing near duplicate
document, which have little value to users. In Web or news
search, it allows grouping together results with near-identical
content, in order to avoid overwhelming the user.

Simhash [3] is a popular hash-based method to detect
near-duplicates in document collections [9, 12, 17]. The key
idea is that each document is represented by a short, e.g., 64-
bit, fingerprint that summarizes its terms. These fingerprints
are then used for comparing documents, which leads to great
time savings.

In particular, the process consists of two stages: (a) the
simhash calculation stage computes the fingerprint value of
every document in the collection; (b) the matching stage
finds pairs of near-duplicates documents by comparing their

simhash fingerprint values. Note that for matching
fingerprints, the actual documents must be compared since
the process may generate false positive matches.

Previous work [12, 17] has focused on how to optimize
the second stage of the process, i.e., the matching stage, to
avoid performing a quadratic number of simhash fingerprint
value comparisons. For instance, the key contribution of [12]
is a redundant organization of the simhash signatures of a
collection of documents that is used for quickly testing if a
new document is a near-duplicate of one of the documents in
the collection. We provide more details in Section II.B.

However, our experiments show that the fingerprint
calculation stage dominates the overall execution time by a
factor of up to 75 to 1 (see Section IV). In this paper we
propose a novel approach to optimize the first stage of
simhash-based near-duplicate detection, by leveraging
FPGAs to quickly read through large numbers of documents
and generating their simhash fingerprints.

The key idea is to configure multiple customized
fingerprint-computing engines in hardware through which
documents are streamed one character (byte) every cycle.
Eight such engines can be configured on each of four
FPGAs, on the Convey Computers HC-2ex [4] allowing up
to 32 documents to be processed concurrently. The engines
operate at 150 MHz resulting in a processing capacity of 4.8
GB/s.

The contributions of this paper are:

1) We show how the simhash signature of a document
can be efficiently computed using FPGAs (Section
III).

2) We perform comprehensive experiments on large
real data sets. The experiments show a speedup of
362x in the simhash computation, and savings of up
to 98% in overall near-duplicate detection execution
time compared to using multi-core CPUs (Section
IV).

We present background on FPGAs and simhash in
Section II. Related work is discussed in Section V. We
conclude and present a discussion on the significance of our
results in Section VI.

II. BACKGROUND

A. Field Programmable Gate Arrays (FPGAs)

Field Programmable Gate Arrays (FPGAs) are integrated

circuits on which digital logic structures can be dynamically

configured under software control. They can be viewed as a

very large collection of logic gates, flip-flops and other

hardwired logic devices whose connections, set in software

by a configuration file, make it possible to instantiate any

logic circuit on the chip. At the heart of FPGAs is a

programmable N-input Look-Up Table (LUT) that can

implement any Boolean function of N inputs (N=4 in Figure

2). Typical values of N range from four to six. Multiple

LUTs can be combined to implement large and complex

logic functions. A typical FPGA architecture consists of a

rectangular array of logic blocks, called Common Logic

Block (CLB), shown in Figure 1, each consisting of a small

number of LUTs, two to four, with some flip-flops and

multiplexers. Signals are routed between CLBs over a grid

of routing channels, itself programmable in software.

To program an FPGA, the logic design is described

using a Hardware Description Language (HDL, e.g. VHDL,

Verilog or SystemC). This program is then processed

through a complex tool chain (synthesis, technology

mapping, place and route) to generate the bit file that would

configure the FPGA.

The performance advantages of FPGA-based

heterogeneous platforms arise from their ability to map

highly repetitive computations to the FPGA as a hardware

circuit through which data is streamed. This model allows

the large-scale exploitation of parallelism at various levels

of granularity. Furthermore, in recent years FPGAs have

witnessed a tremendous increase in size, speed and I/O

bandwidth making this model even more attractive. While

these advantages are shared with Application Specific

Integrated Circuits (ASIC), FPGAs however can also be

reconfigured, are more adaptable to changes in applications

and specifications, and exhibit a faster time to market. In

summary, FPGA accelerators combine the re-

programmability of software with the inherent speed of

hardware, albeit slower than ASICs. A survey of FPGAs and

ASICs can be found at [7].

B. Simhash and Near-Duplicate Document Detection

The process of discovering near-duplicate documents
consists of two stages: (a) the simhash fingerprint calculation
stage computes the simhash fingerprint value of all
documents in the collection; (b) the matching stage finds
pairs of near-duplicates documents by comparing their
fingerprint values.

a) Simhash Calculation Stage

Simhash [3] is a hashing scheme that maps an object
(document) that consists of features (terms) to a fingerprint
bit-string. The key desirable property of simhash is that the
number of common bits in the simhash fingerprint of two
documents is positively correlated to the cosine similarity of
the documents. (Cosine similarity is a popular distance
function in Information Retrieval.)

To compute the f-bits simhash of a document, we first
have to compute the f-bits signature of each term, as we
explain below. Further, we have to count the number of
occurrences of each term t in the document, which is the
weight of t. Then, we create a vector V of f integers. To
compute V[i] we add the weight of each term whose
signature has a 1 in the i-th position, and subtract the weight
of each term whose signature has a 0 in the i-th position.
Finally, the simhash vector has 1 in positions i with V[i]>0,
and 0 in the other positions.

1) Term Hash Function: To generate a hash signature
for a term (word) we can use various hashing schemes whose
goal is that very different documents should have very
different signatures [8, 19]. We use the sdbm hashing
function in our implementation and experiments, which is
the most popular function for simhash implementations, and
is also used in other popular text handling systems like
Berkeley DB due to its effectiveness. sdbm generates a
signature for a term (word) using the following function that
iterates over the characters of the word:

hash(i) = hash(i-1)*65599 + str[i] (1)

Variable i goes over the characters of the word, 0 to s, where
s-1 is the length of the word. The signature of the word is

Figure 2: Example of a Common Logic Block (CLB) of an

FPGA.

 Unsigned long sdbm (unsigned char *str)

 {

 Unsigned long h = 0;

 int c;

 while (c = *str++)

 h = c + (h << 6) + (h << 16) - h;

 return h;

 }

Figure 1: Implementation of sdbm hash function in C.

Figure 3: Simhash calculation example using sdbm as word hashing function.

Figure 4 - Architecture of the Convey HC-2ex heterogeneous multiprocessor:

hash(s). To initialize, we set hash(-1)=0. The constant 65599
was picked after experimenting with different constants, and
is a prime number. An efficient implementation of Equation

1 in C is shown in Figure 1. Figure 3 shows an example of

the simhash computation for a small document.

b) Matching Stage

After the simhash fingerprints are calculated, the problem is

how to efficiently detect near-duplicate pairs of documents,

that is, documents whose fingerprint values have at most k

different bits. For 64-bit fingerprints, k=3 is a typical value

used [13]. Researchers have proposed ways to optimize this

stage by avoiding the naïve quadratic cost of fingerprint

comparisons [13, 18]. In particular, the key problem is how

to decide if a new document is near duplicate to any of the

existing documents in the collection.

The main idea in [13], which we have also implemented
in our experiments (Section IV), is to create several copies of
the table of fingerprints of the collections, where in each
copy we permutate the positions of the bits. The key intuition
is that the prefix of a new simhash will match the prefix of at
least one of the copies of each near-duplicate simhash in the
collection. Hence, we can do a binary search on each of the

table copies using the prefix bits to find all near-duplicate
documents. The number of copies and the length of the
matching prefix are determined based on the value of k and
space vs. time tradeoff considerations. More details are
available at [12].

Figure 5: FPGA interface to memory, all channels are 64-bit wide.

III. COMPUTING SIMHASH SIGNATURES USING FPGAS

A. The Convey Computers Heterogeneous Architecture

The Convey Computers [4, 5, 6], shown in Figure 4, are the

first heterogeneous machines with a cache coherent virtual

Consider document: “A school is a school if it has students and teachers”

The terms, with their weight and their 64-bit term hash signatures are:

Term Weight sdbm signature

school 2 0001100010100100001000101000010101011000001101010000111011110100

students 1 0110001001010100000110011101001010001000110100111001101100111000

teachers 1 1010011000101110111000111100110100100111001000010100000110110001

Hence, the vector V is: -2,-2,0,0,0,-2,0,-4,0,-2,2,-2,-2,4,-2,-4,-2,-2,2,-2,-2,-4,2,0,4,0,-4,-2,-2,2,-2,2,-2,0,-2,0,2,-2,-2,-2,-2,-

2,2,2,-4,0,-2,4,-2,-2,-4,-2,2,0,2,0,2,0,4,4,-2,0,-4,-2

and the simhash of the document is: 0011101010100100001000111100010101011000001101010000111111110100

Figure 6: The Fingerprint Engine, implements the simhash algorithm on eight 8-bit consecutive values.

Figure 7: The SimHash Core computes the 64-bit signature.

memory space that is shared between the software (CPU

execution) and hardware (FPGA execution). This allows an

application to switch its execution between software and

hardware without needing to offload data, and thus it could

be done with little overhead. Furthermore, the user need not

worry about virtual to physical address translation. It should

be noted that this memory space is divided into two regions:

host and co-processor memory spaces. While both spaces

are shared, improperly assigned data can hinder

performance due to inefficient accesses across these spaces

[1]. The Coprocessor consists of four large FPGAs, called

Application Engines (AEs). Each AE interfaces to eight

Memory Controllers (MC) via a full crossbar supporting

memory requests reordering. Each MC supports two ports,

even/odd, each capable of eight bytes per cycle at 150 MHz

[4]. A total of 16 memory ports deliver a peak bandwidth of

19.2 GB/sec per AE.

Each FPGA on the Convey HC-2ex has 16 memory

channels; to fully use its bandwidth, eight will be used as

input channels and eight as output channels. As shown in

Figure 5, the input and output channels are connected to a

Fingerprint Engine (FE). Eight such engines are configured

on each of the four FPGAs.

The structure of the Fingerprint Engine is shown in

Figure 6: inside each FE are eight SimHash Cores (SHC)

feeding an eight-to-one multiplexer. Each SHC processes

the data from one document, which is represented in ASCII.

A 64-bit word is read from each of eight documents, in a

round robin fashion each cycle, and fed to one of the SHC

on the FE. The eight characters in the 64-bit word are

processed sequentially by each SHC, as shown in Figure 7.

Once a character is read, the SHC executes the pseudo-

code shown Figure 8: either the hash value or the summing

weight is updated based on the character’s value. When a

64-bit

fingerprint

output

8
-1

 M
U

X

64-bit input

Document 0

Document 7

Document 1

64-bit

fingerprint

64-bit

fingerprint

64-bit

fingerprint

64-bit input

64-bit input

64-bit input

8-bit

8-bit

8-bit

SHC: simhash core

1
-8

 D
E

M
U

X

64-bit

buffer
SHC-0

64-bit

buffer

64-bit

buffer
SHC-1

Document 0

Document 1

Document 7

SHC-7

.

.

.

If(8-bit==0)

compute fingerprint

Set done signal =1

If(8-bit !=32 or !=0)

update hashing value

If(8-bit==32)

update counters

SHC

64-bit hash

value

8-bit

 64 64-bit

counters

space is found, (ASCII value 32), a word has been

processed and the summing weights are updated, otherwise

the hash value is updated. The end of document is marked

by NULL (ASCII zero), which triggers the generation of

that fingerprint based on the current summing weights (by

setting done=1 in the code of Figure 8).

Since there are eight SHC, it is possible that eight

fingerprints are generated during the same cycle, where one

character is read from each document at each cycle. The

multiplexer serves also as a priority encoder and latch to

allow only one fingerprint output every cycle. We assume

that any useful document is at least eight characters long, so

no fingerprint will be lost. When two or more fingerprints

are generated in the same cycle, one is sent to the output and

the others are latched and returned in subsequent cycles.

Figure 8: Code executed at SimHash Cores (SHC).

There are four FPGAs on Convey. They can process data

in parallel. To achieve best performance, the documents in a

collection are split into four roughly equal sets, one for each

FPGSA. Each FPGA will then process its own data set at the

same time. That is, this configuration can process up to

4x8=32 document concurrently, one character from each

document during each cycle. This means that we can

process up to 32 bytes per cycle, 150 MHz.

IV. EXPERIMENTS

A. Hardware Configurations and Experimental Setup

In our experiments we used the HC-2ex described in Section

II.A for both the software (CPU based) as well as the

hardware (FPGA based) implementations. The HC-2ex has

four Virtex-6 LX760 FPGAs in the AE, two Intel Xeon

processors E5-2643 4-core 3.3GHz (used in the software

implementation), and 96 GB shared memory (used by both

implementations). Both the software and hardware

implementations were evaluated on the same machine. The

software implementation was run in multithreaded mode

(eight threads on four cores).

Both experiments were run with the data (documents)

resident in memory to factor out the effects of disk I/O. All

software results are measured using eight way multi-

threaded implementations on the multi-core CPUs. All

FPGAs are running at 150 MHz clocks.

We use 64-bit simhash signatures, which is the standard

length used in simhash implementations [12]. As shown in

Figure 1, sdbm hashing is chosen as the term hash function,

which has been proven to be both efficient and with low

collision rates. It is also hardware friendly, as we show in

Section III.

B. Data Sets Used

The data sets used are Wikipedia pages
1
, TREC

2

documents and Twitter posts. All Wikipedia pages were

downloaded. The TREC data are English documents from

TREC Volumes 1 to 5
3
. The Twitter data are one month of

the sample of about 1% of the Twitter data, provided by the

Twitter Streaming API
4
, from May 11 to June 10 2013.

All data was preprocessed by applying standard

information retrieval techniques: stop words removal, html

tag removal, and punctuation removal. Some key statistics

of the data sets are shown in Table I.

TABLE I – DATA SET STATISTICS

Size before

preprocess

ing (GB)

Size after

preproces

sing (GB)

Number of

documents

Average

number of

words per

document

Wikipedia 41 17 4,017,414 4,431

TREC 8.9 3.6 1,634,249 2,346

Twitter 11.3 5.1 114,333,421 48

1 Downloaded from

http://en.wikipedia.org/wiki/Wikipedia:Database_download
2 Text REtrieval Conference (TREC), trec.nist.gov/
3 as described in http://trec.nist.gov/data/docs_eng.html
4 https://dev.twitter.com/docs/streaming-apis

uint_64 [64] summing_weight;

uint_64 hash_value, fingerprint;

char letter;

bool done;

while (done! =1)

{

 if (letter!=32 || letter!=0)

hash_value = letter + (hash_value << 6) + (hash_value <<

16) - hash_value;

 else if (letter == 32)

 for (int i =0; i<64; i++)

 {

 if (hash[i] ==0)

 summing_weight [i]++;

 else

 summing_weight [i]--;

 }

}

while (done ==1)

{

 for (int i =0; i<64; i++)

 {

 if (summing_weight [i] >=0)

 fingerprint [i]==0;

 else

 fingerprint [i]==1;

 }

}

http://en.wikipedia.org/wiki/Wikipedia:Database_download
http://trec.nist.gov/data/docs_eng.html
https://dev.twitter.com/docs/streaming-apis

One key difference between Twitter and other two data

sets is that Twitter contains documents with very small

number of words. Since simhash is a dimensionality

reduction technique, low dimensional data limits its

effectiveness. Nevertheless, it is interesting to see how our

methods perform for collections of many short documents.

C. Results

1) Execution Time of First Stage of Simhash: Table II

shows the execution times for computing the simhash

signatures of all documents in each data set for both the

software and FPGA-accelerated implementations.

TABLE II- SIMHASH EXECUTION TIME

 CPU (s) FPGA (s) Speed-up

Wikipedia 605 1.67 362

TREC 130 0.36 361

Twitter 192 0.53 362

It is interesting to note that the speed-up is independent of

the data sets used and is around 362X. This can be

explained by the fact that the FPGA implementation is a

collection of statically configured concurrent pipelines that

together can achieve a throughput of 4.8 GB/s.

2) Execution Time of Second Stage of Simhash: Next,

we study the performance relationship between the two

stages of simhash near-duplicate detection. In particular, we

measure the execution time of the second stage, which is the

matching phase. We adopt the matching implementation

described in [13], summarized in Section II.B. We use

software (CPU) to execute this stage, since using FPGAs is

not a natural choice for this, given the frequent memory

access patterns and the large memory required. We define

near-duplicates to be documents with up to k=3 different

bits in their simhash, as was also selected in [12].

In particular, the 64 simhash bits are divided into 4

groups. Each group contains 16 bits. We must consider all

permutations of these four groups. There are four ways to

choose one group from the four groups. Therefore, four

tables will be created in memory, i.e., four copies of the

simhash fingerprints.

For each fingerprint, we look up the four tables using

binary search on the first 16 bits, and probe all matching

fingerprints. The numbers of fingerprints (smallest power of

2 larger than the number of documents in data set) being

generated, and the average number of probes per match
5
 are

shown in Table III, along with the total time to perform this

5 The second and third columns are not important for this paper,

and require understanding the details of the method in [13]; we

provide them for completeness.

process for all fingerprints in the data set (the last column).

We see that the ratio of time for the first and second stage of

simhash is about 75 to 1 (605 to 8.11) for software

execution for the Wikipedia data set.

TABLE III- SIMHASH MATCHING TIMES USING SOFTWARE

EXECUTION

 # fingerprints Avg #

probes

Time

consumed (s)

Wikipedia 223 27 8.11

TREC 225 29 3.12

Twitter 228 212 276.00

Note that the matching time for Twitter is much larger

because of the much larger number of documents, which

leads to much more probes per match as shown in Table III.

This time can be easily reduced by considering more tables,

that is, more copies of the data, e.g., using 5 or 6 tables

instead of four. However, the goal of Table III is to show

that the second phase of simhash is generally much faster

than the first phase (Table II), which is the focus of this

paper.

3) Analysis of overall Simhash Execution Time:

Table IV summarizes the execution time of the two stages of

simhash, and shows that using FPGAs for the first stage

leads to dramatic overall time savings. We see a 98% time

reduction for the Wikipedia and TREC datasets. Note that

the overall savings for the Twitter data set would be much

larger if we used more tables in the second stage as

discussed above.

Table IV shows the total execution time for the second

stage of simhash, using CPU implementation.

TABLE IV- TOTAL TIMES (SIMHASH CALCULATION AND

MATCHING)

 CPU (s) FPGA (s) Time Savings

Wikipedia 613 9.78 98.4%

TREC 133 3.48 97.4%

Twitter 468 276.53 40.9%

4) Analysis of overall Simhash Execution Time with
Different Multi-thread Strategy and Different Number of
CPU Cores: In the above software implementation, we used
document-level multithreading strategy. That means each
thread will calculate one document’s fingerprint at a time.
For completeness, we also implemented a word-level
multithreading strategy, where each thread calculates one
word’s sdbm signature at a time. The results show that word-
level multithreading is slower. Using Wikipedia, TREC, and
Twitter data to test word-level multithreading
implementation, the execution times are 1153 s, 206 s, and
1016 s, respectively.

We also ran our software implementation on another
cluster with more CPU cores to see how the number of CPU
cores affects our result. The test cluster has four AMD
Opteron™ processors 6272 8-core 1.4GHz. While testing
with Wikipedia, TREC and Twitter data, the execution times
are 440 s, 100 s, 380 s. As expected, the execution times
decrease with CPU core number and clock frequency.

V. RELATED WORK

Simhash Documents Matching: [17] proposed a way to

improve the performance of the matching stage of simhash-

based similarity detection by using a probabilistic approach

that considers which bits in simhash are more volatile. This

allows them to improve on the time and space complexity

over [12] if a small amount of recall can be sacrificed.

However, they do not propose any optimization of the

simhash calculation stage, which is the focus of this paper.

FPGAs in Information Retrieval: [20] propose an FPGA-

based Web search query execution, where FPGAs are used

to read inverted indexes, and rank documents. In contrast,

our work focuses on the crawling phase of Web search,

where near-duplicate elimination is critical.

Vanderbauwhede et al. [18] propose an FPGA-based

approach to match documents to profiles described by

keywords and weights. They split the profiles into bins of

fixed length and use a hash signature for each bin. Then,

each document term is compared against these hash

signatures. In contrast, we map documents to simhash

fingerprints, and also all documents have a fingerprint of the

same length. These differences allow us to have a higher

speedup than [8], even though the problems addressed are

not the same. [16] proposed methods for computing the

similarities between vectors using FPGAs, to be used in data

mining applications.

FPGAs in Database Queries: [10] propose an FPGA-based

query execution approach, where FPGAs are used to find

XML projections to improve query performance. The

acceleration of XML queries on XML documents, using

FPGAs, has been proposed in several papers [13, 14, 15].

VI. SIGNIFICANCE AND CONCLUSIONS

In this paper we showed how FPGAs can be used to

dramatically speedup the process of detecting near-

duplicates in large document collections. Our experiments

show that a machine with four FPGAs can achieve a

speedup of up to 362x compared to a four core CPU.

In addition to the significance of detecting near-

duplicates (or exact duplicates which can also be handled

similarly), our work shows the great potential of using

FPGAs for various document processing applications.

Our techniques can be applied to applications that need

to read documents and for each document the computation

requires a relatively small size of intermediate storage (in

simhash we need to store the intermediate value of simhash)

and output for each document (in simhash we output the

simhash value of each document).

Other applications can benefit from this configuration.

For instance, if we have a high-throughput stream of

documents like news or social posts, and we want to

perform document filtering [2] or build a publish-subscribe

system [11]. That is, we want to match the documents of the

stream against continuous queries. A query could be a user-

specified bag of keywords of interest, or a structured query

that has a condition on the location, user, and text of a social

post (e.g., tweet).

However, not all document applications can directly

benefit from our FPGAs setting. For instance, to build an

inverted index, one has to count the frequency of each word

in a document; the number of unique words can be large and

hence an FPGA does not offer a natural solution without

relying on a large external storage.

ACKNOWLEDGMENT

Work partially supported by NSF Awards CCF-1219180,

IIS-1161997, IIS-1216032 and IIS-1216007.

REFERENCES

[1] T. Brewer. Instruction set innovations for the Convey HC-1
computer. Micro, IEEE, 30(2):70 –79, March-April 2010.

[2] J. Callan. (1996, August). Document filtering with inference
networks. In Proceedings of the 19th annual international
ACM SIGIR conference on Research and development in
information retrieval (pp. 262-269). ACM.

[3] M. S. Charikar, “Similarity Estimation Techniques from
Rounding Algorithms,” in Proc. ACM STOC, May 2002, pp.
380–388.

[4] Convey Computer. Convey Computer Reference Manual,
www.conveycomputer.com/resources/, 2013.

[5] Convey Computer. Convey Computer Programmer’s Guide,
www.conveycomputer.com/resources/, 2013.

[6] Convey Computer. Convey Computer PDK Reference
Manual, www.conveycomputer.com/resources/, 2013.

[7] K. Compton, & S. Hauck. (2002). Reconfigurable computing:
a survey of systems and software. ACM Computing Surveys
(csuR), 34(2), 171-210.

[8] R. J. Enbody and H. C. Du, "Dynamic Hashing Schemes",
ACM Computing Surveys, vol. 20, no. 2, 85-113, 1988.

[9] M. R. Henzinger, “Finding Near-Duplicate Web Pages: A
Large-Scale Evaluation of Algorithms,” in Proc. ACM SIGIR,
Aug. 2006, pp. 284–291

[10] T. Jens, W. Louis, N. Chongling, (2012). Skeleton automata
for FPGAs: Reconfiguring without reconstructing. In
SIGMOD '12 Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pp. 229-
240

[11] H. Liu, V. Ramasubramanian, and E. G. Sirer. (2005,
October). Client behavior and feed characteristics of RSS, a
publish-subscribe system for web micronews. In Proceedings
of the 5th ACM SIGCOMM conference on Internet
Measurement (pp. 3-3). USENIX Association.

[12] G. S. Manku, A. Jain, & A. Das Sarma, (2007, May).
Detecting near-duplicates for web crawling. In Proceedings of
the 16th international conference on World Wide Web (pp.
141-150). ACM.

[13] R. Moussalli, M. Salloum, W. A. Najjar and V. J. Tsotras.
Massively Parallel XML Twig Filtering Using Dynamic
Programming on FPGAs in Proc. Int. Conf. on Data
Engineering 2011 (ICDE), Hanover, Germany.

[14] R. Moussalli, M. Salloum, W. A. Najjar and V. Tsotras.
Accelerating XML Query Matching Through Custom Stack
Generation on FPGAs, Proc. Int. Conf. on High-Performance
Embedded Architectures and Compilers, January 25-27, 2010,
Pisa, Italy.

[15] R. Moussalli, M. Vieira, W. Najjar and V. Tsotras. Stream-
Mode FPGA Acceleration of Complex Pattern Trajectory
Querying, in Proceedings 13th International Symposium on
Spatial and Temporal Databases (SSTD), Munich, Germany,
August 21-23, 2013.

[16] D.G. Perera, L. Kinfun, (2008) Parallel Computation of
Similarity Measures Using an FPGA-Based Processor Array.
In Advanced Information Networking and Applications, 2008.
AINA 2008. 22nd International Conference, pp. 955-962

[17] S. Sood, & D. Loguinov. (2011, October). Probabilistic near-
duplicate detection using simhash. In Proceedings of the 20th
ACM international conference on Information and knowledge
management (pp. 1117-1126). ACM.

[18] W. Vanderbauwhede, L. Azzopardi, M. Moadeli. (2009)
FPGA-accelerated Information Retrieval: High-efficiency
document filtering. In Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference, pp.
417-422

[19] Ozan Yigit. Hash Functions. Available at
http://www.cse.yorku.ca/~oz/hash.html, Accessed 6/15/2013

[20] J. Yan, Z. Zhao, N. Xu, X. Zhang, F. Hsu: (2012, May).
Efficient query processing for web search engine with FPGA.
In 2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines (pp. 97-100).

http://www.cse.yorku.ca/~oz/hash.html

