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1. INTRODUCTION 
Given a user keyword query, current Web search engines 
return a list of pages ranked by their “goodness” with respect 
to the query. However, this technique misses results whose 
contents are distributed across multiple physical pages and 
are connected via hyperlinks and frames [3]. That is, it is 
often the case that no single page contains all query 
keywords.  Li et al. [3] make a first step towards this problem 
by returning a tree of hyperlinked pages that collectively 
contain all query keywords. The limitation of this approach is 
that it operates at the page-level granularity, which ignores 
the specific context where the keywords are found within the 
pages. More importantly, it is cumbersome for the user to 
locate the most desirable tree of pages due to the amount of 
data in each page tree and a large number of page trees. 

We propose a technique called composed pages that 
given a keyword query, generates new pages containing all 
query keywords on-the-fly. We view a web page as a set of 
interconnected text fragments. The composed pages are 
generated by stitching together appropriate fragments from 
hyperlinked Web pages, and retain links to the original Web 
pages. To rank the composed pages we consider both the 
hyperlink structure of the original pages, as well as the 
associations between the fragments within each page. In 
addition, we propose heuristic algorithms to efficiently 
generate the top composed pages. Experiments are conducted 
to empirically evaluate the effectiveness of the proposed 
algorithms. In summary, our contributions are listed as 
follows: (i) we introduce composed pages to improve the 
quality of search; composed pages are designed in a way that 
they can be viewed as a regular page but also describe the 
structure of the original pages and have links back to them, 
(ii) we rank the composed pages based on both the hyperlink 
structure of the original pages, and the associations between 
the text fragments within each page, and (iii) we propose 
efficient heuristic algorithms to compute top composed pages 
using the uniformity factor. The effectiveness of these 
algorithms is shown and evaluated experimentally. 

 

2. FRAMEWORK 
Let D={d1,d2,,…,dn} be a set of web pages d1,d2,,…,dn. Also 
let size(di) be the length of di in number of words. Term 
frequency tf(d,w) of term (word) w in a web page d is the 
number of occurrences of w in d. Inverse document 
frequency idf(w) is the inverse of the number of web pages 
containing term w in them. The web graph GW(VW,EW) of a 
set of web pages  d1,d2,,…,dn is defined as follows: A node 
vi∈VW, is created for each web page di in D. An edge 
e(vi,vj)∈EW is added  between nodes vi,vj∈VW if there is a 
hyperlink between vi and vj. Figure 1 shows a web graph. The 
hyperlinks between pages are depicted in the web graph as 
edges. The nodes in the graph represent the web pages and 
inside those nodes, the text fragments, into which that web 
page has been split up using html tag parsing, are displayed 
(see [5]).  

In contrast to previous works on web search [3,4], we 
go beyond the page granularity. To do so, we view each page 
as a set of text fragments connected through semantic 
associations. The page graph GD(VD,ED) of a web page d is 
defined as follows:  (a) d is split to a set of non-overlapping 
text fragments t(v), each corresponding to a node v∈VD.     
(b) An edge e(u,v)∈ED is added between nodes u,v∈VD if 
there is an association between t(u) and t(v) in d.  Figure 2 
shows the page graph for Page 1 of Figure 1. As denoted in 
Figure 1, page 1 is split into 7 text fragments and each one is 
represented by a node. An edge between two nodes denotes 
semantic associations. Higher weights denote greater 
association. In this work nodes and edges of the page graph 
are assigned weights using both query-dependent and 
independent factors (see [5]). The semantic association 
between the nodes is used to compute the edge weights 
(query-independent) while the relevance of a node to the 
query is used to define the node weight (query-dependent). 

A keyword query Q is a set of keywords Q={w1,…,wm}. 
A search result of a keyword query is a subtree of the web 
graph, consisting of pages d1,…,dl, where a subtree si of the 
page graph GDi of di is associated with each di. A result is 
total−all query keywords are contained in the text 
fragments−and minimal−by removing any text fragment a 
query keyword is missed. For example, Table 1 shows the 
Top-3 search results for the query “Graduate Research 
Scholarships” on the Web graph of Figure 1.  

3. RANKING SEARCH RESULTS 
Problem 1 (Find Top-k Search Results). Given a web 
graph GW, the page graphs GD for all pages in GW, and a 
keyword query Q, find the k search results R with maximum 
Score(R).  

The computation of Score(R) is based on the following 
principles. First, search results R involving fewer pages are 
ranked higher [3]. Second, the scores of the subtrees of
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Figure 1: Sample web pages from www.fiu.edu.

 

Figure 2: A page graph of Page 1 of Figure 1. 

Table 1: Top-3 search results for query “Graduate Research 
Scholarships” 

Rank Score Search Results 

1 12.50 

 

2 33.58 

 

3 101.60 

 

the page graphs of the constituting pages of R are combined using 
a monotonic aggregate function to compute the score of the search 
result. A modification of the expanding search algorithm of [1] is 
used where a heuristic value combining the Information Retrieval 
(IR) score, the PageRank score [4], and the inverse of the 
uniformity factor (uf) of a page is used to determine the next 
expansion page.   The uf is high for pages that focus on a single or 
few topics and low for pages with many topics. The uf is 
computed using the edge weights of the page graph of a page 
(high average edge weights imply high uf). The intuition behind 
expanding according to the inverse uf is that among pages with 
similar IR scores, pages with low uf are more likely to contain a 

short focused text fragment relevant to the query keywords. 
Figure 3 shows the quality of the results of our heuristic search vs. 
the quality of the results of the non-heuristic expanding search [1]    
(a random page is chosen for expansion since hyperlinks are un-
weighted) compared to the optimal exhaustive search. The 
modified Spearman’s rho metric [2] is used to compare two Top-k 
lists.    
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Figure 3:  Quality Experiments using Spearman’s rho. 
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