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ABSTRACT 
Content management tools like Microsoft’s SharePoint allow 
users of an application domain to share documents and tag them 
in an ad-hoc way. Similarly, Google Base allows users to define 
attributes for their objects or choose from predefined templates. 
This ad-hoc or predefined annotation of the shared data incurs 
problems like schema explosion or inadequate data annotation, 
which in turn lead to poor search and analysis capabilities.  

We propose CADS, a Collaborative Adaptive Data Sharing 
platform, where the information demand of the community–e.g., 
query workload–is exploited to annotate the data at insertion-time. 
A key novelty of CADS is that it learns with time the most 
important data attributes of the application, and uses this 
knowledge to guide the data insertion and querying. In this 
position paper, we present the challenges and preliminary design 
ideas for building a CADS platform. We use the application of 
CADS on the Business Continuity Information Network (BCIN) 
of South Florida as a motivating example. 

1. INTRODUCTION 
There are many application domains where a community of users 
collaborate and share domain-specific information; for instance, 
news blogs, scientific networks, social networking groups, or 
disaster management networks. Current information sharing tools, 
like content management software (e.g., Microsoft’s SharePoint), 
allow users to share documents and tag them in an ad-hoc way. 
Similarly, Google Base [14] allows users to define attributes for 
their objects or choose from predefined templates. For instance, 
when a user input a weather report on a hurricane, it would be 
nice to enter 〈Storm category, 3〉 or other such information. Even 
if the system allows users to arbitrarily annotate their data with 
such pairs, the users would probably be unwilling to do it since it 
requires considerable effort (inadequate data annotation). Further, 
the system would end up having thousands of different attribute 
names (schema explosion), where many share the same real life 
meaning, e.g., “Storm category”, “Hurricane category”, “Storm 
level”. The above limitations make the analysis and querying of 
the data cumbersome. Users are mostly limited to plain keyword 
searches, with very few extra conditions like date and owner of 
document.  

A recent line of work to the right direction is the pay-as-you-go 
querying strategy in Dataspaces, where users provide data 
integration hints at query time. However, there is no work that 
achieves integration and attribute-extraction of the data at 
insertion time, since a key assumption in previous works is that 
the data sources already exist. This assumption is generally not 
valid for collaborative data sharing platforms. 

We propose CADS, a Collaborative Adaptive Data Sharing 
platform, which facilitates data annotation at insertion-time and 
leverages these annotations at query-time. CADS learns with time 
the information demand (query workload), which is then used 
create adaptive insertion and query forms.  

Some of the collaborative data sharing applications that will 
benefit from a successful CADS platform are disaster 
management, corporate context management, news portals, social 
networking, and scientific collaboration.  

Motivating scenario: Our motivating scenario is a disaster 
management situation, which was inspired by the experiences of 
the authors in building a Business Continuity Information 
Network [30] for disaster situations in South Florida. In this 
particular domain we have many users and organizations 
publishing and consuming information. For example, in a 
hurricane situation, local government agencies report shelters 
locations, damages in structures or structural warnings. 
Meteorological Agencies report the status of the hurricane, its 
position and particular warnings. Volunteers may share their 
activities and look for critical needs. Business owners may 
describe the status and needs of their stores and personnel. 

The information produced and consumed in this domain is 
dynamic and unpredictable, and agencies have their own protocols 
and formats of sharing data, e.g., the Miami-Dade County 
Emergency Office publishes hourly document reports. Further, 
learning the schema from previous disasters is hard given that new 
needs, requirements and situations arise. 

In Figure 1(a) we show a report extracted from the National 
Hurricane Center repository, which describes the status of a 
hurricane event in 2008, that is, the current storm location, wind 
speed, warnings, category, advisory identifier number and the date 
it was disclosed. Even though this is a text document, many 
〈attribute name, attribute value〉 pairs, e.g., “Storm Category = 3” 
can be extracted, which could then improve the quality of 
searching through the database. For instance, Figure 1(b) shows 
three sample queries for which the report of Figure 1(a) is a good 
answer. 

The goal of CADS is to allow the effortless sharing of documents 
like the one in Figure 1(a), while at the same time serving semi-
structured queries like the ones in Figure 1(b). 
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The structure of the paper is as follows: In Section 2 we discuss 
the relationship of CADS to other research efforts. Section 3 
presents the preliminary design of CADS. The research challenges 
of CADS are presented in Section 4 and we conclude in Section 5.  

2. RELATED WORK 
Dataspaces and Pay-as-you-go Integration: The integration 
model of CADS is similar to that of dataspaces [13], where a 
loosely integration model is proposed for heterogeneous sources. 
However, the semi-automatic annotation of data with metadata at 
insertion time is new to CADS. In CADS, the integration then 
occurs on this metadata. Another related data model is that of 
Google Base [14], where users can specify their own 
attribute/value pairs, in addition to the ones proposed by the 
system. However, the proposed attributes in Google Base are 
hard-coded for each item category (e.g., real estate property). In 
CADS, the goal is to “learn” what attribute/values to suggest. Pay-
as-you go integration techniques like PayGo [25] and [22] are 
useful to suggest candidate matchings at query time. However, no 
previous work considers this problem at insertion time, as in 
CADS. The work on Peer Data Management Systems [16] is a 
precursor of the above projects. 

ZCZC MIATCPAT2 ALL 
TTAA00 KNHC DDHHMM 
BULLETIN 
HURRICANE GUSTAV INTERMEDIATE ADVISORY NUMBER 31A 
NWS TPC/NATIONAL HURRICANE CENTER MIAMI FL   AL0720 08 
600 AM CDT MON SEP 01 2008 
 
EYE OF GUSTAV NEARING THE LOUISIANA COAST...HURRICA NE FORCE WINDS 
OVER PORTIONS OF SOUTHEASTERN LOUISIANA... 
A HURRICANE WARNING REMAINS IN EFFECT FROM JUST EAST OF HIGH 
ISLAND TEXAS EASTWARD TO THE MISSISSIPPI-ALABAMA 
BORDER...INCLUDING THE CITY OF NEW ORLEANS AND LAKE  PONTCHARTRAIN. 
PREPARATIONS TO PROTECT LIFE AND PROPERTY SHOULD HAVE BEEN 
COMPLETED. 
A TROPICAL STORM WARNING REMAINS IN EFFECT FROM EAST OF THE 
MISSISSIPPI-ALABAMA BORDER TO THE OCHLOCKONEE RIVER. 
GUSTAV IS MOVING TOWARD THE NORTHWEST NEAR 16 MPH...26 KM/HR...AND 
THIS MOTION IS EXPECTED TO CONTINUE FOR THE NEXT DA Y OR SO WITH 
SOME DECREASE IN FORWARD SPEED AND A GRADUAL TURN TOWARD THE WEST- 
NORTHWEST ON TUESDAY.  ON THE FORECAST TRACK...THE CENTER WILL 
CROSS THE LOUISIANA COAST BY MIDDAY TODAY. 
MAXIMUM SUSTAINED WINDS ARE NEAR 115 MPH...185 M/HR ...WITH HIGHER 
GUSTS.  GUSTAV IS A CATEGORY THREE HURRICANE ON THE  SAFFIR-SIMPSON 
SCALE.  

(a)   Sample Document 

Q1: Storm Name = ‘Gustav’ AND Warnings CONTAIN ‘flo od’ 

Q2: Storm Name = ‘Gustav’ AND Storm Category > 2 

Q3: Document Type = ‘advisory’ AND Location = ‘Loui siana’ 
     AND Date FROM 08/31/2008 TO 09/30/2008 

 (b)   Sample Queries 

Figure 1: Sample Document and Queries 

Content Management products:  Microsoft Sharepoint [26] and 
SAP NetWeaver [29] allow users to share documents, annotate 
them and perform simple keyword queries. Hard-coded attributes 
can be added to specialized insertion forms. CADS improves 
these platforms by learning the user information demand and 
adjusting the insertion and query forms accordingly. 

Indexing, Provenance and Disagreement handling in data 
sharing environments:  Data Ring [1] allows multiple peers to 
share content by declaratively defining the schema and 
capabilities in XML and leaving to the system the indexing and 
replication of the data.  Orchestra [18] is also based on peer to 
peer schema integration and assumes the existence relational 
schemas. CADS maintains a centralized repository and hence 
these works cannot be directly applied. 

Information Extraction (IE): We have witnessed considerable 
progress in IE, which has been recently partitioned to Closed and 
Open IE. [8] provides a recent overview of the IE area. 

Closed IE requires the user to define the schema of the extracted 
tables along with rules to achieve the extraction. This is too much 
work for a user who inserts a document. The most relevant work 
in this area is the recent work of Jain et al. [21], which shows how 
IE systems can be combined to efficiently answer SQL queries on 
documents. However, they still assume that someone has created 
these IE systems for specific schemas.  

Open IE [11] is closer to the needs of CADS. In particular, Open 
IE generates RDF-like triplets, e.g., (Gustav, is category, 3) with 
no input from the user. Next, we describe why Open IE is not 
appropriate for our needs, even though we plan to adapt some of 
their ideas. Open IE leads to a huge number of triplets, which 
prevent the successful execution of 〈attribute name, attribute 
value〉 structured queries and the suggestion of appropriate 
attributes to the users at insertion and query time in CADS.  

The CIMPLE project [10, 6] uses IE techniques to create and 
manage data-rich online communities, like the DBLife 
community. In contrast to CIMPLE, where data is extracted from 
existing sources and a domain expert must create a domain 
schema, CADS is a data sharing environment where users 
explicitly insert the data and the schema automatically evolves 
with time. Nevertheless, the IE and mass collaboration techniques 
of CIMPLE can help in creating adaptive insertion forms in 
CADS.  

Schema Evolution: Note that the adaptive annotation in CADS 
can be viewed as semi-automatic schema evolution. Previous 
work on schema evolution [3] did not address the problem of 
what attribute to add to the schema, but how to support querying 
and other database operations when the schema changes. 

Query Forms: Existing work on query forms can be leveraged in 
creating the CADS adaptive query forms. [19] proposes an 
algorithm to extract a query form that represents most of the 
queries in the database using the "querability" of the columns. 
[20] extends this work discussing forms customization. [27] uses 
the schema information to auto-complete attribute or value names 
in query forms. A limitation of the above forms is that they do not 
consider the information demand or the entity matching 
uncertainties. In [6] keyword queries are used to select the most 
appropriate query forms. 

3. CADS PRELIMINARY DESIGN 
The CADS system has two types of actors: producers and 
consumers. Producers upload data in the CADS system using 
interactive insertion forms and consumers search for relevant 
information using adaptive query forms. In the rest of the paper 
the term data usually refers to a document; other types of data are 
also possible, but we focus on documents for simplicity. Figure 2 
presents a typical CADS workflow. Figure 3 shows the possible 
components of the two major CADS modules, the Insertion and 
Query modules. 

Insertion phase: The insertion phase begins with the submission 
of a new document to be included in the repository. After the user 
uploads the document, CADS analyzes the text and creates an 
adaptive insertion form with the set of the most probable 〈attribute 



name, attribute value〉 pairs to annotate the new document. The 
user fills this form with the required information and submits it. 
The final stage consists of the storage of the associated document 
and metadata in the CADS repository. 

Going back to our disaster management motivating scenario, 
Figure 4 presents the adaptive insertion form for the hurricane 
advisory document of Figure 1. After the user submits the 
document, the system analyzes the content, and finds that the 
following attributes are relevant:  “Storm Name”, “Storm 
Category”, “Warnings”. These attributes are added to a set of 
default attributes like: “Document Type”, “Date” and “Location”, 
which are basic metadata that a domain expert has provided for an 
application. The “Description” attribute is used to input the whole 
text of the document.  
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Figure 2: CADS Workflow. 

 Figure 3: Architecture of Insertion and Query Modules. 

In addition to extracting attribute names, the adaptive insertion 
form also extracts the attribute values by employing IE 
algorithms.  A confidence threshold for the IE must be set. A 
lower threshold may bias the user and lead to errors in the data, 
whereas a high threshold may lead to many empty textboxes, 
which may frustrate the user. Ideally, the erroneous values are 
corrected and the missing attribute values are manually inserted 
by the user.  This means that the quality of the data depends on 
the reliability of the users. User trust and anti-spam techniques 
must be considered for large-scale deployments of CADS.  

As shown in Figure 4, attribute names and attribute values are 
presented as text boxes. If the user wants to associate more than 
one value to an attribute − e.g., multi-valued attributes like 
“Warnings”− then she can use the plus icon at the right to add 
attribute values. Each textbox has auto-completion capabilities, 
which exploit similar entries inserted before in the same attribute. 

It is also important, to notice that a user can add new attributes, 
which are not suggested by the adaptive form. The form provides 
the option to do this task, in the spirit of the Google Base [14]. 
When the user specifies a new attribute, CADS will try to match it 
to existing attributes and show to the user a few matching options. 
The user can reject these suggestions and go ahead adding the 

new attribute. In this way, advanced users can collaborate for the 
schema construction. 

 

Figure 4: Adaptive Insertion Form. 

 

Query phase: In the query phase, the user is presented with an 
adaptive query form (Figure 5), which supports 〈attribute name, 
attribute value〉 conditions. Initially, before CADS has began 
learning the information demand through processing the query 
workload, the query form only specifies the default attributes 
(e.g., “Document type”, “Date”, “Location”). The user can specify 
additional 〈attribute name, attribute value〉 conditions. There is 
also a generic “Description” attribute where the user types 
keywords when she does not know how to put them in 〈attribute 
name, attribute value〉 conditions. The system discourages the user 
from just using the “Description” attribute, because this does not 
allow the system to learn the user information demand in a 
structured way, which in turn facilitates evolving the schema and 
performing schema mappings. 

In some cases the conditions may trigger additional attributes 
recommendation, which CADS believes could be helpful for the 
user to further refine the query. For instance, if the user specifies 
the attribute “Storm Category” and previous users who specified 
“Storm Category” also specified “Wind Speed”, then the adaptive 
query form will suggest to the user the attribute “Wind Speed”. 
Further, if the attribute specified by a user is similar to another 
existing attribute, CADS will suggest a mapping between the two 
attributes, in the spirit of pay-as-you-go integration. Also, the 
system may suggest replacing the text in the generic “Description” 
attribute value with some 〈attribute name, attribute value〉 
conditions. 

When the user decides that her query form is complete, she 
submits the query. In this last phase CADS will find the most 
important pieces of data (e.g., document) for the query. The 
querying strategy must combine keyword search with uncertain 
structured query principles. The system returns a ranked list of the 
results, where the ranking is personalized. In order to personalize, 
CADS may assume that users generally look for similar items 
every time they search. A user profile may also be used. Also, 
note that CADS will typically return whole documents in the 
result. However, if the schema of the repository is mature and the 
query is selective, it is possible to return specific attribute values, 
in a way similar to the NAGA system [23]. The latter query result 
type is a possible future direction for CADS. 



      
Figure 5: Adaptive Query Form. 

 

In Figure 5 we show the progression of an adaptive query form in 
the disaster domain. In the left window we show the initial status 
of the query form. The generic form starts with some default 
attributes: “Document Type”, “Location”, “Description”. The user 
is encouraged to specify other attributes, which do not only refine 
the query, but also help CADS learn the user information demand. 
For instance, in Figure 5 the user adds an attribute called “Storm 
Category” using the auxiliary window. Then, the form suggests to 
the user to also include the attributes “Storm Name” and “Wind 
Speed”, which are correlated with “Storm Category” in the query 
workload. After that, the system tries to auto-compete the attribute 
value for “Storm Name” again using the past query workload. 
Finally, the system asks a pay-as-you-go schema mapping 
question: if “Warnings” is equivalent to “Watch”, where the 
former is part of the existing schema (see Figure 4) and the latter 
is a user specified-attribute. 

 

Figure 6: Query Results. 

Figure 6 shows the results of the query. The document inserted in 
Figure 4 is the top result. Note that each result in the list may 
partially or fully satisfy the query, and is owned by a user. The 
trust degree of the owner for the querying user may be used as one 
of the ranking factors, in addition to factors like relevance and 
importance. 

4. CHALLENGES AND RESEARCH 
DIRECTIONS 
As mentioned in Section 2, the CADS platform can reuse much 
previous research on collaboration systems. However, many 
research pieces are missing, mainly regarding the algorithms 
behind adaptive insertion and query forms. We enumerate these 
challenges and preliminary ideas on how to address them. 

Discover best 〈〈〈〈attribute name, attribute value〉〉〉〉 candidates for 
a newly inserted document: This line of research will decide 

what attributes the adaptive insertion form will suggest to the 
publisher (inserter). The following factors must be considered: 

a) The information value, as specified by the past query workload 
W, which is related to the Value of Perfect Information in [22]. 
For instance, if the attribute “Storm Category” is used in many 
queries, then we may want to suggest it to a user that insert a 
document that contains the word “category”. We will assign an 
information value IA(Ai, W) denoting how useful attribute Ai is, 
given W. A simple way to compute IA(Ai, W) is to count the 
number of queries in W that specify Ai. If the user has already 
specified some conditions in the adaptive query form, our 
algorithm will use their correlation to Ai in W. We will create a 
probabilistic model based on the Probabilistic Information 
Retrieval (PIR) ideas of our previous work [7]. The estimation 
of IA(Ai, W) should also exploit the associations in the CADS 
Graph (Figure 7), which connect groups, users, and data. In 
particular, we assume that the data d submitted by a user u is of 
more interest to users x who are closely associated to u on G, 
e.g., through common groups. We can weigh the queries in the 
workload according to their relevance to u. 

b) The confidence that an attribute Ai is relevant for a to-be-
inserted document d. The rationale of this factor is that we do 
not want to suggest to the user an attribute just because it is 
popular in the query workload, if this attribute does not have a 
good chance to be relevant to d. Ai may be relevant to d if we 
discover (e.g., through IE algorithms) that Ai appears in d, or if 
another attribute Aj appears in d, which is highly correlated to 
Ai. The correlation will be computed based on W. Hence, the 
attribute confidence CA(Ai,d,W) depends on all Ai,d,W. We need 
to adapt Information Extraction (IE) algorithms to compute 
CA(Ai,d,W) for document data, which are the main focus of 
CADS. In particular, we should leverage the work on Open IE 
[11] to extract triplets of extracted data, and then apply 
thesaurus and ontological knowledge (e.g., WordNet), as [12]. 
Further, producers have an inclination to publish all their 
documentation with a similar structure, which the system could 
learn. This observation came from our interaction with the 
Miami-Dade County Emergency Office, where the published 
reports typically have a common header and structure. 

Matching of attribute names and attribute values across 
queries and inserted documents:  Given that CADS is an open 
system, it is possible that different users use different names or 
structures to represent the same concept. We should consider 
matchings between attribute names or between attribute values. 
The matching between different schemas is a well known problem 
[28, 33, 24, 34] with various proposed solutions based on analysis 
of the data content or the schema properties. A main principle in 
CADS is that integration will occur in a semi-automatic way at 
both insertion and query time. In order to minimize the user 
involvement, previous schema matching and entity 
disambiguation [ 35] methods must be adapted in order to create a 
good ranking of the candidate matchings at insertion and query 
time, and present the user with a very small set of disambiguation 
questions. The work on pay-as-you-go integration [22] is an 
excellent starting point. 

As in the case of attributes suggestion described above, candidate 
matchings M(r,s) are ranked based on two factors:  The 
Information Value IM(M,W) and the confidence CM(M,d,W).  The 
IM(M,W) measure is based on the following intuition: If a user 



submits attribute r, and s has a high information value in W, then 
the matching between r and s will also have high IM(M,W). The 
queries in W may be weighted based on their relevance to user u 
who submits d, as described above. 

The CM(M,d,W) consider not only the workload W but also the 
inserted data d. Our problem is different from previous pay-as-
you-go integration projects [25,22], because the integration 
occurs at insertion time and not only at query time. Hence, the 
confidence of a confirmed matching is much more credible than in 
the case of query-time integration, because the publisher confirms 
matchings of her own data, and not of possibly other sources. 
Further, the candidate matchings are ranked based on a 
combination of the data annotations and the raw data content 
(e.g., text of document). We could employ a learning algorithm, 
similar to the edge weight learning algorithm in [5], to weigh 
these factors based on the past user selections.  

Another difference is that  CADS can leverage the community 
links and data associations, represented at the CADS Graph 
(Figure 7) to guide the matching process. A matching algorithm 
can be created by expanding the similarity flooding idea [24] to 
operate on the more complex CADS Graph. In [24], the two 
candidate schemas were represented by a set of table schemas. In 
contrast, the CADS Graph also contains data instances, users and 
groups. Recent work [15, 32, 9] performed relevance ranking of 
the nodes for query answering purposes. We must adapt these 
works to do similarity ranking – e.g., combine FolkRank [15] with 
Similarity Flooding [24]. 

Storage of annotation data: It is challenging to efficiently store 
the documents and their metadata (extracted data), in a way that 
CADS will scale to thousands of users and millions of shared 
data. As different documents will have different attributes, this 
information could be very sparse, so a relational model could be 
very inefficient to implement. Further, attributes are dynamically 
added to the system. A more promising alternative is a triplet 
model, which represents (d,e,v) facts where d is a document id, e 
is the attribute name or predicate and v is the value of the 
attribute. The storage of triples is well studied in RDF systems 
[31]. It has also been studied in clinical management systems [9].  

Discover best conditions to suggest in adaptive query forms: 
We need to exploit past query workload, historic data and user 
interactions, to create the best adaptive query form for a user. A 
good adaptive query form will allow the user, who is not aware of 
the structure of the data in the repository, to better express her 
query. 

There has been significant work on user-friendly query interfaces 
(query forms) to express database queries, as discussed in Section 
2.  These works assume a well-defined schema (relational or 
XML) and a valid instance. In contrast, in our problem we have a 
set of data pieces, submitted by different users, with imprecise 
annotation schemata. Further, the content (e.g., text) of the data 
and the user associations must be considered. 

For every candidate attribute Ai (or value) in the workload W, we 
will assign a relevance score R(Ai,u,W,Q), given the user u and the 
current state of the adaptive query form Q, i.e. the already 
specified attributes and values.  Then, the top-k ranked attributes 
will be suggested to the user, where k is a small number 
depending on the size of the screen real estate of the adaptive 
query form. The relevance has the following components: 

a) The user affinity, that is, the relevance degree of user u to the 
attribute Ai. For that, we will create the query workload graph 
GW, where the attributes of the past queries of each user will be 
connected to the user, and the users will be connected to each 
other through common group nodes, as in Figure 7. That is, GW 
will have user, attribute and group nodes. We can use the idea of 
SimRank proposed in [2]. 

b) The correlation between Ai and the selected conditions Q. We 
can employ the ideas from our work on ranking SQL query 
results [7], where association rule mining is used to compute the 
attribute correlations. These techniques must be modified to 
account for the user associations. In particular, we will weigh 
the queries in W according to the relevance of the user who 
submitted each query to u. 

datatype

datatype

 
Figure 7: CADS graph  

Ranking query results: After the user submits the query to the 
system, CADS must use a strategy to rank the data d in the 
repository D. Recent work [15, 32, 4] on querying tagged Web 
pages is an excellent starting point on how tags and users can be 
leveraged to query Web pages. They generally model users, pages 
and tags as a tripartite graph and propose adaptations of the 
PageRank algorithm. However, these works view the queries and 
the annotations (tags) as lists of keywords, that is, they do not 
consider any structure on the query or the annotations. Further, 
they only use the tags of the pages and not the page content. 
Instead, our ranking algorithms will exploit both the annotation 
structure and the raw content of the data. 

A unique characteristic, which has not been studied before, is that 
a data piece d may be relevant to a query q either based on its 
annotations or based on its raw content. This introduces semantic 
and performance challenges. How should the annotations be 
weighed vs. the content to achieve a relevance score for d? How 
can we create efficient hybrid algorithms that avoid querying both 
the annotations and the content of d? 

In terms of ranking semantics, if the query contains both 
structured conditions (“city”=“Miami”) and plain keywords 



(“flood”), a possible strategy is to use the structured query as filter 
and use the keyword query for ranking. This strategy is simple to 
implement, but assumes that the structure part of the database is 
complete and correct. As some documents are not appropriately 
annotated, the system needs a more intelligent strategy that takes 
into account the probabilistic nature of the annotations, that is, we 
are not sure if an annotation is missing because it is not 
appropriate for d, or because the publisher did not spend the time 
to add. Nevertheless, annotations should generally be viewed as 
more important than the raw text, because they can provide a 
Boolean match to the query. In contrast the text only provides a 
fuzzy matching. Hence, a query strategy may primarily rank the 
results d by how much the annotations of d match the query 
conditions, and secondarily on the IR-style relevance of the query 
to the text of d. Learning algorithms must be created to balance 
these factors based on the user feedback, i.e., results click-thru. 

To address the problem of the probabilistic nature of the 
annotations, previous work on ranking under uncertainty [17] 
must be adapted for the hybrid filter/ranking model of CADS 
querying. This incurs efficiency and scalability issues, which 
require smart execution algorithms to achieve real-time responses.  

5. CONCLUSIONS  
We proposed CADS, a Collaborative Adaptive Data Sharing 
platform, which is a next-generation data sharing platform where 
the annotation and integration occur at both the data insertion 
(production) and querying (consumption) actions. A key goal of 
CADS is to leverage the information demand to create adaptive 
insertion and query forms. We believe that CADS has a great 
potential to improve many collaboration environments, and hence 
it is worthwhile to pursue research directions that will allow the 
realization of CADS. 
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