
CADS: A Collaborative Adaptive Data Sharing Platform1
Vagelis Hristidis Eduardo Ruiz

School of Computing and Information Sciences
Florida International University
{vagelis,eruiz011}@cis.fiu.edu

ABSTRACT
Content management tools like Microsoft’s SharePoint allow
users of an application domain to share documents and tag them
in an ad-hoc way. Similarly, Google Base allows users to define
attributes for their objects or choose from predefined templates.
This ad-hoc or predefined annotation of the shared data incurs
problems like schema explosion or inadequate data annotation,
which in turn lead to poor search and analysis capabilities.

We propose CADS, a Collaborative Adaptive Data Sharing
platform, where the information demand of the community–e.g.,
query workload–is exploited to annotate the data at insertion-time.
A key novelty of CADS is that it learns with time the most
important data attributes of the application, and uses this
knowledge to guide the data insertion and querying. In this
position paper, we present the challenges and preliminary design
ideas for building a CADS platform. We use the application of
CADS on the Business Continuity Information Network (BCIN)
of South Florida as a motivating example.

1. INTRODUCTION
There are many application domains where a community of users
collaborate and share domain-specific information; for instance,
news blogs, scientific networks, social networking groups, or
disaster management networks. Current information sharing tools,
like content management software (e.g., Microsoft’s SharePoint),
allow users to share documents and tag them in an ad-hoc way.
Similarly, Google Base [14] allows users to define attributes for
their objects or choose from predefined templates. For instance,
when a user input a weather report on a hurricane, it would be
nice to enter 〈Storm category, 3〉 or other such information. Even
if the system allows users to arbitrarily annotate their data with
such pairs, the users would probably be unwilling to do it since it
requires considerable effort (inadequate data annotation). Further,
the system would end up having thousands of different attribute
names (schema explosion), where many share the same real life
meaning, e.g., “Storm category”, “Hurricane category”, “Storm
level”. The above limitations make the analysis and querying of
the data cumbersome. Users are mostly limited to plain keyword
searches, with very few extra conditions like date and owner of
document.

A recent line of work to the right direction is the pay-as-you-go
querying strategy in Dataspaces, where users provide data
integration hints at query time. However, there is no work that
achieves integration and attribute-extraction of the data at
insertion time, since a key assumption in previous works is that
the data sources already exist. This assumption is generally not
valid for collaborative data sharing platforms.

We propose CADS, a Collaborative Adaptive Data Sharing
platform, which facilitates data annotation at insertion-time and
leverages these annotations at query-time. CADS learns with time
the information demand (query workload), which is then used
create adaptive insertion and query forms.

Some of the collaborative data sharing applications that will
benefit from a successful CADS platform are disaster
management, corporate context management, news portals, social
networking, and scientific collaboration.

Motivating scenario: Our motivating scenario is a disaster
management situation, which was inspired by the experiences of
the authors in building a Business Continuity Information
Network [30] for disaster situations in South Florida. In this
particular domain we have many users and organizations
publishing and consuming information. For example, in a
hurricane situation, local government agencies report shelters
locations, damages in structures or structural warnings.
Meteorological Agencies report the status of the hurricane, its
position and particular warnings. Volunteers may share their
activities and look for critical needs. Business owners may
describe the status and needs of their stores and personnel.

The information produced and consumed in this domain is
dynamic and unpredictable, and agencies have their own protocols
and formats of sharing data, e.g., the Miami-Dade County
Emergency Office publishes hourly document reports. Further,
learning the schema from previous disasters is hard given that new
needs, requirements and situations arise.

In Figure 1(a) we show a report extracted from the National
Hurricane Center repository, which describes the status of a
hurricane event in 2008, that is, the current storm location, wind
speed, warnings, category, advisory identifier number and the date
it was disclosed. Even though this is a text document, many
〈attribute name, attribute value〉 pairs, e.g., “Storm Category = 3”
can be extracted, which could then improve the quality of
searching through the database. For instance, Figure 1(b) shows
three sample queries for which the report of Figure 1(a) is a good
answer.

The goal of CADS is to allow the effortless sharing of documents
like the one in Figure 1(a), while at the same time serving semi-
structured queries like the ones in Figure 1(b).

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Database Endowment. To copy otherwise, or to republish, to post on
servers or to redistribute to lists, requires a fee and/or special permissions
from the publisher, ACM.
VLDB ’09, August 24-28, 2009, Lyon, France.
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

1Partly supported by NSF grant IIS-0811922 and DHS grant
2009-ST-062-000016.

The structure of the paper is as follows: In Section 2 we discuss
the relationship of CADS to other research efforts. Section 3
presents the preliminary design of CADS. The research challenges
of CADS are presented in Section 4 and we conclude in Section 5.

2. RELATED WORK
Dataspaces and Pay-as-you-go Integration: The integration
model of CADS is similar to that of dataspaces [13], where a
loosely integration model is proposed for heterogeneous sources.
However, the semi-automatic annotation of data with metadata at
insertion time is new to CADS. In CADS, the integration then
occurs on this metadata. Another related data model is that of
Google Base [14], where users can specify their own
attribute/value pairs, in addition to the ones proposed by the
system. However, the proposed attributes in Google Base are
hard-coded for each item category (e.g., real estate property). In
CADS, the goal is to “learn” what attribute/values to suggest. Pay-
as-you go integration techniques like PayGo [25] and [22] are
useful to suggest candidate matchings at query time. However, no
previous work considers this problem at insertion time, as in
CADS. The work on Peer Data Management Systems [16] is a
precursor of the above projects.

ZCZC MIATCPAT2 ALL
TTAA00 KNHC DDHHMM
BULLETIN
HURRICANE GUSTAV INTERMEDIATE ADVISORY NUMBER 31A
NWS TPC/NATIONAL HURRICANE CENTER MIAMI FL AL0720 08
600 AM CDT MON SEP 01 2008

EYE OF GUSTAV NEARING THE LOUISIANA COAST...HURRICA NE FORCE WINDS
OVER PORTIONS OF SOUTHEASTERN LOUISIANA...
A HURRICANE WARNING REMAINS IN EFFECT FROM JUST EAST OF HIGH
ISLAND TEXAS EASTWARD TO THE MISSISSIPPI-ALABAMA
BORDER...INCLUDING THE CITY OF NEW ORLEANS AND LAKE PONTCHARTRAIN.
PREPARATIONS TO PROTECT LIFE AND PROPERTY SHOULD HAVE BEEN
COMPLETED.
A TROPICAL STORM WARNING REMAINS IN EFFECT FROM EAST OF THE
MISSISSIPPI-ALABAMA BORDER TO THE OCHLOCKONEE RIVER.
GUSTAV IS MOVING TOWARD THE NORTHWEST NEAR 16 MPH...26 KM/HR...AND
THIS MOTION IS EXPECTED TO CONTINUE FOR THE NEXT DA Y OR SO WITH
SOME DECREASE IN FORWARD SPEED AND A GRADUAL TURN TOWARD THE WEST-
NORTHWEST ON TUESDAY. ON THE FORECAST TRACK...THE CENTER WILL
CROSS THE LOUISIANA COAST BY MIDDAY TODAY.
MAXIMUM SUSTAINED WINDS ARE NEAR 115 MPH...185 M/HR ...WITH HIGHER
GUSTS. GUSTAV IS A CATEGORY THREE HURRICANE ON THE SAFFIR-SIMPSON
SCALE.

(a) Sample Document

Q1: Storm Name = ‘Gustav’ AND Warnings CONTAIN ‘flo od’

Q2: Storm Name = ‘Gustav’ AND Storm Category > 2

Q3: Document Type = ‘advisory’ AND Location = ‘Loui siana’
 AND Date FROM 08/31/2008 TO 09/30/2008

 (b) Sample Queries

Figure 1: Sample Document and Queries

Content Management products: Microsoft Sharepoint [26] and
SAP NetWeaver [29] allow users to share documents, annotate
them and perform simple keyword queries. Hard-coded attributes
can be added to specialized insertion forms. CADS improves
these platforms by learning the user information demand and
adjusting the insertion and query forms accordingly.

Indexing, Provenance and Disagreement handling in data
sharing environments: Data Ring [1] allows multiple peers to
share content by declaratively defining the schema and
capabilities in XML and leaving to the system the indexing and
replication of the data. Orchestra [18] is also based on peer to
peer schema integration and assumes the existence relational
schemas. CADS maintains a centralized repository and hence
these works cannot be directly applied.

Information Extraction (IE): We have witnessed considerable
progress in IE, which has been recently partitioned to Closed and
Open IE. [8] provides a recent overview of the IE area.

Closed IE requires the user to define the schema of the extracted
tables along with rules to achieve the extraction. This is too much
work for a user who inserts a document. The most relevant work
in this area is the recent work of Jain et al. [21], which shows how
IE systems can be combined to efficiently answer SQL queries on
documents. However, they still assume that someone has created
these IE systems for specific schemas.

Open IE [11] is closer to the needs of CADS. In particular, Open
IE generates RDF-like triplets, e.g., (Gustav, is category, 3) with
no input from the user. Next, we describe why Open IE is not
appropriate for our needs, even though we plan to adapt some of
their ideas. Open IE leads to a huge number of triplets, which
prevent the successful execution of 〈attribute name, attribute
value〉 structured queries and the suggestion of appropriate
attributes to the users at insertion and query time in CADS.

The CIMPLE project [10, 6] uses IE techniques to create and
manage data-rich online communities, like the DBLife
community. In contrast to CIMPLE, where data is extracted from
existing sources and a domain expert must create a domain
schema, CADS is a data sharing environment where users
explicitly insert the data and the schema automatically evolves
with time. Nevertheless, the IE and mass collaboration techniques
of CIMPLE can help in creating adaptive insertion forms in
CADS.

Schema Evolution: Note that the adaptive annotation in CADS
can be viewed as semi-automatic schema evolution. Previous
work on schema evolution [3] did not address the problem of
what attribute to add to the schema, but how to support querying
and other database operations when the schema changes.

Query Forms: Existing work on query forms can be leveraged in
creating the CADS adaptive query forms. [19] proposes an
algorithm to extract a query form that represents most of the
queries in the database using the "querability" of the columns.
[20] extends this work discussing forms customization. [27] uses
the schema information to auto-complete attribute or value names
in query forms. A limitation of the above forms is that they do not
consider the information demand or the entity matching
uncertainties. In [6] keyword queries are used to select the most
appropriate query forms.

3. CADS PRELIMINARY DESIGN
The CADS system has two types of actors: producers and
consumers. Producers upload data in the CADS system using
interactive insertion forms and consumers search for relevant
information using adaptive query forms. In the rest of the paper
the term data usually refers to a document; other types of data are
also possible, but we focus on documents for simplicity. Figure 2
presents a typical CADS workflow. Figure 3 shows the possible
components of the two major CADS modules, the Insertion and
Query modules.

Insertion phase: The insertion phase begins with the submission
of a new document to be included in the repository. After the user
uploads the document, CADS analyzes the text and creates an
adaptive insertion form with the set of the most probable 〈attribute

name, attribute value〉 pairs to annotate the new document. The
user fills this form with the required information and submits it.
The final stage consists of the storage of the associated document
and metadata in the CADS repository.

Going back to our disaster management motivating scenario,
Figure 4 presents the adaptive insertion form for the hurricane
advisory document of Figure 1. After the user submits the
document, the system analyzes the content, and finds that the
following attributes are relevant: “Storm Name”, “Storm
Category”, “Warnings”. These attributes are added to a set of
default attributes like: “Document Type”, “Date” and “Location”,
which are basic metadata that a domain expert has provided for an
application. The “Description” attribute is used to input the whole
text of the document.

Query Log

Metadata and

text statistics

Data Producer

CADS SYSTEM

QUERY

MODULE

INSERTION

MODULE

Adaptive

Insertion

Form

New

Data
Filled

Insertion

Form

Miami

FIU

Ranked

Results

Adaptive

Query

Form

Miami

FIU

Data Consumer

CADS Store

Figure 2: CADS Workflow.

 Figure 3: Architecture of Insertion and Query Modules.

In addition to extracting attribute names, the adaptive insertion
form also extracts the attribute values by employing IE
algorithms. A confidence threshold for the IE must be set. A
lower threshold may bias the user and lead to errors in the data,
whereas a high threshold may lead to many empty textboxes,
which may frustrate the user. Ideally, the erroneous values are
corrected and the missing attribute values are manually inserted
by the user. This means that the quality of the data depends on
the reliability of the users. User trust and anti-spam techniques
must be considered for large-scale deployments of CADS.

As shown in Figure 4, attribute names and attribute values are
presented as text boxes. If the user wants to associate more than
one value to an attribute − e.g., multi-valued attributes like
“Warnings”− then she can use the plus icon at the right to add
attribute values. Each textbox has auto-completion capabilities,
which exploit similar entries inserted before in the same attribute.

It is also important, to notice that a user can add new attributes,
which are not suggested by the adaptive form. The form provides
the option to do this task, in the spirit of the Google Base [14].
When the user specifies a new attribute, CADS will try to match it
to existing attributes and show to the user a few matching options.
The user can reject these suggestions and go ahead adding the

new attribute. In this way, advanced users can collaborate for the
schema construction.

Figure 4: Adaptive Insertion Form.

Query phase: In the query phase, the user is presented with an
adaptive query form (Figure 5), which supports 〈attribute name,
attribute value〉 conditions. Initially, before CADS has began
learning the information demand through processing the query
workload, the query form only specifies the default attributes
(e.g., “Document type”, “Date”, “Location”). The user can specify
additional 〈attribute name, attribute value〉 conditions. There is
also a generic “Description” attribute where the user types
keywords when she does not know how to put them in 〈attribute
name, attribute value〉 conditions. The system discourages the user
from just using the “Description” attribute, because this does not
allow the system to learn the user information demand in a
structured way, which in turn facilitates evolving the schema and
performing schema mappings.

In some cases the conditions may trigger additional attributes
recommendation, which CADS believes could be helpful for the
user to further refine the query. For instance, if the user specifies
the attribute “Storm Category” and previous users who specified
“Storm Category” also specified “Wind Speed”, then the adaptive
query form will suggest to the user the attribute “Wind Speed”.
Further, if the attribute specified by a user is similar to another
existing attribute, CADS will suggest a mapping between the two
attributes, in the spirit of pay-as-you-go integration. Also, the
system may suggest replacing the text in the generic “Description”
attribute value with some 〈attribute name, attribute value〉
conditions.

When the user decides that her query form is complete, she
submits the query. In this last phase CADS will find the most
important pieces of data (e.g., document) for the query. The
querying strategy must combine keyword search with uncertain
structured query principles. The system returns a ranked list of the
results, where the ranking is personalized. In order to personalize,
CADS may assume that users generally look for similar items
every time they search. A user profile may also be used. Also,
note that CADS will typically return whole documents in the
result. However, if the schema of the repository is mature and the
query is selective, it is possible to return specific attribute values,
in a way similar to the NAGA system [23]. The latter query result
type is a possible future direction for CADS.

Figure 5: Adaptive Query Form.

In Figure 5 we show the progression of an adaptive query form in
the disaster domain. In the left window we show the initial status
of the query form. The generic form starts with some default
attributes: “Document Type”, “Location”, “Description”. The user
is encouraged to specify other attributes, which do not only refine
the query, but also help CADS learn the user information demand.
For instance, in Figure 5 the user adds an attribute called “Storm
Category” using the auxiliary window. Then, the form suggests to
the user to also include the attributes “Storm Name” and “Wind
Speed”, which are correlated with “Storm Category” in the query
workload. After that, the system tries to auto-compete the attribute
value for “Storm Name” again using the past query workload.
Finally, the system asks a pay-as-you-go schema mapping
question: if “Warnings” is equivalent to “Watch”, where the
former is part of the existing schema (see Figure 4) and the latter
is a user specified-attribute.

Figure 6: Query Results.

Figure 6 shows the results of the query. The document inserted in
Figure 4 is the top result. Note that each result in the list may
partially or fully satisfy the query, and is owned by a user. The
trust degree of the owner for the querying user may be used as one
of the ranking factors, in addition to factors like relevance and
importance.

4. CHALLENGES AND RESEARCH
DIRECTIONS
As mentioned in Section 2, the CADS platform can reuse much
previous research on collaboration systems. However, many
research pieces are missing, mainly regarding the algorithms
behind adaptive insertion and query forms. We enumerate these
challenges and preliminary ideas on how to address them.

Discover best 〈〈〈〈attribute name, attribute value〉〉〉〉 candidates for
a newly inserted document: This line of research will decide

what attributes the adaptive insertion form will suggest to the
publisher (inserter). The following factors must be considered:

a) The information value, as specified by the past query workload
W, which is related to the Value of Perfect Information in [22].
For instance, if the attribute “Storm Category” is used in many
queries, then we may want to suggest it to a user that insert a
document that contains the word “category”. We will assign an
information value IA(Ai, W) denoting how useful attribute Ai is,
given W. A simple way to compute IA(Ai, W) is to count the
number of queries in W that specify Ai. If the user has already
specified some conditions in the adaptive query form, our
algorithm will use their correlation to Ai in W. We will create a
probabilistic model based on the Probabilistic Information
Retrieval (PIR) ideas of our previous work [7]. The estimation
of IA(Ai, W) should also exploit the associations in the CADS
Graph (Figure 7), which connect groups, users, and data. In
particular, we assume that the data d submitted by a user u is of
more interest to users x who are closely associated to u on G,
e.g., through common groups. We can weigh the queries in the
workload according to their relevance to u.

b) The confidence that an attribute Ai is relevant for a to-be-
inserted document d. The rationale of this factor is that we do
not want to suggest to the user an attribute just because it is
popular in the query workload, if this attribute does not have a
good chance to be relevant to d. Ai may be relevant to d if we
discover (e.g., through IE algorithms) that Ai appears in d, or if
another attribute Aj appears in d, which is highly correlated to
Ai. The correlation will be computed based on W. Hence, the
attribute confidence CA(Ai,d,W) depends on all Ai,d,W. We need
to adapt Information Extraction (IE) algorithms to compute
CA(Ai,d,W) for document data, which are the main focus of
CADS. In particular, we should leverage the work on Open IE
[11] to extract triplets of extracted data, and then apply
thesaurus and ontological knowledge (e.g., WordNet), as [12].
Further, producers have an inclination to publish all their
documentation with a similar structure, which the system could
learn. This observation came from our interaction with the
Miami-Dade County Emergency Office, where the published
reports typically have a common header and structure.

Matching of attribute names and attribute values across
queries and inserted documents: Given that CADS is an open
system, it is possible that different users use different names or
structures to represent the same concept. We should consider
matchings between attribute names or between attribute values.
The matching between different schemas is a well known problem
[28, 33, 24, 34] with various proposed solutions based on analysis
of the data content or the schema properties. A main principle in
CADS is that integration will occur in a semi-automatic way at
both insertion and query time. In order to minimize the user
involvement, previous schema matching and entity
disambiguation [35] methods must be adapted in order to create a
good ranking of the candidate matchings at insertion and query
time, and present the user with a very small set of disambiguation
questions. The work on pay-as-you-go integration [22] is an
excellent starting point.

As in the case of attributes suggestion described above, candidate
matchings M(r,s) are ranked based on two factors: The
Information Value IM(M,W) and the confidence CM(M,d,W). The
IM(M,W) measure is based on the following intuition: If a user

submits attribute r, and s has a high information value in W, then
the matching between r and s will also have high IM(M,W). The
queries in W may be weighted based on their relevance to user u
who submits d, as described above.

The CM(M,d,W) consider not only the workload W but also the
inserted data d. Our problem is different from previous pay-as-
you-go integration projects [25,22], because the integration
occurs at insertion time and not only at query time. Hence, the
confidence of a confirmed matching is much more credible than in
the case of query-time integration, because the publisher confirms
matchings of her own data, and not of possibly other sources.
Further, the candidate matchings are ranked based on a
combination of the data annotations and the raw data content
(e.g., text of document). We could employ a learning algorithm,
similar to the edge weight learning algorithm in [5], to weigh
these factors based on the past user selections.

Another difference is that CADS can leverage the community
links and data associations, represented at the CADS Graph
(Figure 7) to guide the matching process. A matching algorithm
can be created by expanding the similarity flooding idea [24] to
operate on the more complex CADS Graph. In [24], the two
candidate schemas were represented by a set of table schemas. In
contrast, the CADS Graph also contains data instances, users and
groups. Recent work [15, 32, 9] performed relevance ranking of
the nodes for query answering purposes. We must adapt these
works to do similarity ranking – e.g., combine FolkRank [15] with
Similarity Flooding [24].

Storage of annotation data: It is challenging to efficiently store
the documents and their metadata (extracted data), in a way that
CADS will scale to thousands of users and millions of shared
data. As different documents will have different attributes, this
information could be very sparse, so a relational model could be
very inefficient to implement. Further, attributes are dynamically
added to the system. A more promising alternative is a triplet
model, which represents (d,e,v) facts where d is a document id, e
is the attribute name or predicate and v is the value of the
attribute. The storage of triples is well studied in RDF systems
[31]. It has also been studied in clinical management systems [9].

Discover best conditions to suggest in adaptive query forms:
We need to exploit past query workload, historic data and user
interactions, to create the best adaptive query form for a user. A
good adaptive query form will allow the user, who is not aware of
the structure of the data in the repository, to better express her
query.

There has been significant work on user-friendly query interfaces
(query forms) to express database queries, as discussed in Section
2. These works assume a well-defined schema (relational or
XML) and a valid instance. In contrast, in our problem we have a
set of data pieces, submitted by different users, with imprecise
annotation schemata. Further, the content (e.g., text) of the data
and the user associations must be considered.

For every candidate attribute Ai (or value) in the workload W, we
will assign a relevance score R(Ai,u,W,Q), given the user u and the
current state of the adaptive query form Q, i.e. the already
specified attributes and values. Then, the top-k ranked attributes
will be suggested to the user, where k is a small number
depending on the size of the screen real estate of the adaptive
query form. The relevance has the following components:

a) The user affinity, that is, the relevance degree of user u to the
attribute Ai. For that, we will create the query workload graph
GW, where the attributes of the past queries of each user will be
connected to the user, and the users will be connected to each
other through common group nodes, as in Figure 7. That is, GW
will have user, attribute and group nodes. We can use the idea of
SimRank proposed in [2].

b) The correlation between Ai and the selected conditions Q. We
can employ the ideas from our work on ranking SQL query
results [7], where association rule mining is used to compute the
attribute correlations. These techniques must be modified to
account for the user associations. In particular, we will weigh
the queries in W according to the relevance of the user who
submitted each query to u.

datatype

datatype

Figure 7: CADS graph

Ranking query results: After the user submits the query to the
system, CADS must use a strategy to rank the data d in the
repository D. Recent work [15, 32, 4] on querying tagged Web
pages is an excellent starting point on how tags and users can be
leveraged to query Web pages. They generally model users, pages
and tags as a tripartite graph and propose adaptations of the
PageRank algorithm. However, these works view the queries and
the annotations (tags) as lists of keywords, that is, they do not
consider any structure on the query or the annotations. Further,
they only use the tags of the pages and not the page content.
Instead, our ranking algorithms will exploit both the annotation
structure and the raw content of the data.

A unique characteristic, which has not been studied before, is that
a data piece d may be relevant to a query q either based on its
annotations or based on its raw content. This introduces semantic
and performance challenges. How should the annotations be
weighed vs. the content to achieve a relevance score for d? How
can we create efficient hybrid algorithms that avoid querying both
the annotations and the content of d?

In terms of ranking semantics, if the query contains both
structured conditions (“city”=“Miami”) and plain keywords

(“flood”), a possible strategy is to use the structured query as filter
and use the keyword query for ranking. This strategy is simple to
implement, but assumes that the structure part of the database is
complete and correct. As some documents are not appropriately
annotated, the system needs a more intelligent strategy that takes
into account the probabilistic nature of the annotations, that is, we
are not sure if an annotation is missing because it is not
appropriate for d, or because the publisher did not spend the time
to add. Nevertheless, annotations should generally be viewed as
more important than the raw text, because they can provide a
Boolean match to the query. In contrast the text only provides a
fuzzy matching. Hence, a query strategy may primarily rank the
results d by how much the annotations of d match the query
conditions, and secondarily on the IR-style relevance of the query
to the text of d. Learning algorithms must be created to balance
these factors based on the user feedback, i.e., results click-thru.

To address the problem of the probabilistic nature of the
annotations, previous work on ranking under uncertainty [17]
must be adapted for the hybrid filter/ranking model of CADS
querying. This incurs efficiency and scalability issues, which
require smart execution algorithms to achieve real-time responses.

5. CONCLUSIONS
We proposed CADS, a Collaborative Adaptive Data Sharing
platform, which is a next-generation data sharing platform where
the annotation and integration occur at both the data insertion
(production) and querying (consumption) actions. A key goal of
CADS is to leverage the information demand to create adaptive
insertion and query forms. We believe that CADS has a great
potential to improve many collaboration environments, and hence
it is worthwhile to pursue research directions that will allow the
realization of CADS.

6. REFERENCES
[1] Serge Abiteboul, Neoklis Polyzotis, The Data Ring: Community

Content Sharing, In CIDR, pages 154-163, 2007
[2] G. Jeh, and J. Widom. SimRank: a measure of structural-context

similarity. ACM SIGKDD international Conference on Knowledge
Discovery and Data Mining. KDD 2002

[3] J. Banerjee, W. Kim, H. Kim, and H. F. Korth. 1987. Semantics and
implementation of schema evolution in object-oriented databases.
SIGMOD Rec. 16, 3 (Dec. 1987), 311-322.

[4] Heymann, P., Koutrika, G., and Garcia-Molina, H. Can social
bookmarking improve web search?. International Conference on
Web Search and Web Data Mining. WSDM '08.

[5] Ramakrishna Varadarajan, Vagelis Hristidis, Louiqa Raschid.
Explaining and Reformulating Authority Flow Queries. IEEE ICDE
2008

[6] E. Chu, A. Baid, X. Chai, A. Doan, J. Naughton. Combining
Keyword Search and Forms for Ad Hoc Querying of Databases,
SIGMOD-09.

[7] S. Chaudhuri, G. Das, V. Hristidis, G. Weikum: Probabilistic
Information Retrieval Approach for Ranking of Database Query
Results. ACM Trans. Database Syst (TODS) 31, 3 (Sep. 2006)

[8] Michael J. Cafarella, Jayant Madhavan, Alon Y. Halevy: Web-scale
extraction of structured data. SIGMOD Record 37(4): 55-61 (2008)

[9] R. S. Chen, P. Nadkarni, L. Marenco, F. Levin, J. Erdos, and P. L.
Miller. Exploring Performance Issues for a Clinical Database
Organized Using an Entity-Attribute-Value Representation. J. Am.
Med. Inform. Assoc. 7: 475-487, 2000.

[10] A. Doan et al. Community Information Management, IEEE Data Eng.
Bulletin, Probabilistic Databases, 29(1), 2006.

[11] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld. Open
information extraction from the web. Commun. ACM 51, 12 (Dec.
2008), 68-74.

[12] Fernando Farfán, Vagelis Hristidis, Anand Ranganathan, and
Michael Weiner. XOntoRank: Ontology-Aware Search of Electronic
Medical Records. ICDE 2009

[13] Michael J. Franklin, Alon Y. Halevy, David Maier: From databases
to dataspaces: a new abstraction for information management.
SIGMOD Record 34(4): 27-33 (2005)

[14] Google Base. http://www.google.com/base, 2009
[15] Andreas Hotho and Robert Jäschke and Christoph Schmitz and Gerd

Stumme. Information Retrieval in Folksonomies: Search and
Ranking. ESWC 2006, (4011):411-426, 2006

[16] A. Y. Halevy, Z. Ives, D. Suciu, I. Tatarinov, Schema mediation in
peer data management systems, ICDE 2003

[17] M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries on uncertain
data: a probabilistic threshold approach. ACM SIGMOD 2008.

[18] Zachary G. Ives et al. The ORCHESTRA Collaborative Data Sharing
System. SIGMOD Record 37(3): 26-32 (2008)

[19] Magesh Jayapandian and H. V. Jagadish. Automated Creation of a
Forms-based Database Query Interface. In VLDB, 2008.

[20] Magesh Jayapandian and H. V. Jagadish. Expressive Query
Specification through Form Customization. In EDBT, 2008.

[21] Alpa Jain, AnHai Doan, Luis Gravano: SQL Queries Over
Unstructured Text Databases. ICDE 2007: 1255-1257

[22] Shawn R. Jeffery, Michael J. Franklin, Alon Y. Halevy: Pay-as-you-
go user feedback for dataspace systems. SIGMOD Conference 2008:
847-860

[23] Gjergji Kasneci, Fabian M. Suchanek, Georgiana Ifrim, Maya
Ramanath, Gerhard Weikum: NAGA: Searching and Ranking
Knowledge. ICDE 2008: 953-962

[24] Sergey Melnik, Hector Garcia-Molina, Erhard Rahm: Similarity
Flooding: A Versatile Graph Matching Algorithm and Its Application
to Schema Matching. ICDE 2002: 117-128

[25] J. Madhavan, S. R. Jeffery, S. Cohen, X. Dong, D. Ko, C. Yu, A.
Halevy: Web-scale Data Integration: You can only afford to Pay As
You Go. CIDR 2007. Asilomar, California, 2007

[26] Microsoft Sharepoint. http://www.microsoft.com/Sharepoint/ 2009
[27] A Nandi, HV Jagadish. Assisted querying using instant-response

interfaces. Demo. Proceedings of the 2007 ACM SIGMOD
[28] E. Rahm, and P. Bernstein. A survey of approaches to automatic

schema matching. The VLDB Journal 10, 4 (Dec. 2001), 334-350.
[29] SAP NetWeaver Capabilities - Content Management

https://www.sdn.sap.com/irj/sdn/nw-cm ,2009
[30] K. Saleem, S. Luis, Y. Deng, S-C. Chen, V. Hristidis, T. Li. Towards

a Business Continuity Information Network for Rapid Disaster
Recovery. 9th Annual International Conference on Digital
Government Research 2008

[31] Kevin Wilkinson , Craig Sayers , Harumi Kuno, Dave Reynolds.
Efficient RDF Storage and Retrieval in Jena2 In Proc. of SWDB’03,
VLDB 2003

[32] M. Bender et al. Exploiting social relations for query expansion and
result ranking. In Data Engineering for Blogs, Social Media, and
Web 2.0, ICDE 2008 Workshop

[33] AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling
schemas of disparate data sources: a machine-learning approach.
SIGMOD 2001

[34] Wensheng Wu, Clement Yu, AnHai Doan, and Weiyi Meng. An
interactive clustering-based approach to integrating source query
interfaces on the deep web. SIGMOD 2004.

[35] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using
active learning. In SIGKDD, 2002

