
Ranked Queries over Sources with Boolean Query
Interfaces without Ranking Support

Vagelis Hristidis #1, Yuheng Hu #2, Panagiotis G. Ipeirotis ∗3

#School of Computing and Information Sciences, Florida International University
Miami, FL, USA

1vagelis@cis.fiu.edu
2yhu002@cis.fiu.edu

∗Department of Information, Operations, and Management Sciences; New York University
New York, NY, USA

3panos@stern.nyu.edu

Abstract— Many online or local data sources provide powerful
querying mechanisms but limited ranking capabilities. For in-
stance, PubMed allows users to submit highly expressive Boolean
keyword queries, but ranks the query results by date only.
However, a user would typically prefer a ranking by relevance,
measured by an Information Retrieval (IR) ranking function.
The naive approach would be to submit a disjunctive query
with all query keywords, retrieve the returned documents, and
then re-rank them. Unfortunately, such an operation would be
very expensive due to the large number of results returned by
disjunctive queries. In this paper we present algorithms that
return the top results for a query, ranked according to an
IR-style ranking function, while operating on top of a source
with a Boolean query interface with no ranking capabilities
(or a ranking capability of no interest to the end user). The
algorithms generate a series of conjunctive queries that return
only documents that are candidates for being highly ranked
according to a relevance metric. Our approach can also be
applied to other settings where the ranking is monotonic on a set
of factors (query keywords in IR) and the source query interface
is a Boolean expression of these factors. Our comprehensive
experimental evaluation on the PubMed database shows that
we achieve order of magnitude improvement compared to the
current baseline approaches.

I. INTRODUCTION

Many online or local data sources provide powerful query-
ing mechanisms but limited ranking capabilities. For instance,
PubMed allows users to submit Boolean keyword queries
on the biomedical publications database, but ranks the query
results by publication date only. Similarly, the US Patent and
Trademark Office (USPTO) allows Boolean keyword queries
or searching patents but only ranks by patent date. Further-
more, job search databases, like the job search of LinkedIn,
allow users to sort job listings by date or title (alphabetically),
but not by IR relevance of the job posting to the submitted
query. As a more recent example, the micro-blogging service
Twitter offers a highly expressive Boolean search interface but
ranks the results by date only. In most cases, these sources do
not allow downloading and indexing of data or the size of the
underlying database makes any comprehensive download [11],
[12] an expensive operation.

Often, the user prefers a ranking other than the default
(e.g., by date) provided by the source. For instance, a user

of the PubMed or USPTO Web sites may sometimes prefer a
ranking by relevance, measured by an Information Retrieval
(IR) ranking function. Given that traditional IR ranking func-
tions [14] like Okapi [15] and BM25 [13] implicitly assume
disjunctive (OR) semantics, the naive approach would be to
submit a disjunctive query with all query keywords, retrieve all
the returned documents, and then rank them according to the
relevance metric of choice. However, this would be very expen-
sive due to the large number of results returned by disjunctive
queries. For example, consider the query “immunodeficiency
virus structure”, an example query used to teach information
specialists how to search the PubMed database [5]. Executing
the corresponding disjunctive query “immunodeficiency OR
virus OR structure” on PubMed returns 1,451,446 publication
results. Downloading and ranking them is infeasible for an
interactive query system, even if the source is on the local
network. The problem becomes even more critical if we use
the public web services provided by PubMed for programmatic
(API) access over the web. Given the large overhead incurred
when retrieving publications, PubMed imposes quotas on
the amount of data an application can retrieve per minute,
rendering infeasible any attempt to download large number
of documents.

To overcome such problems, in this paper we present
algorithms to compute the top results for an IR ranked query,
over a source with a Boolean query interface but without
any ranking capabilities (or with a ranking function that is
generally uncorrelated to the user’s ranking e.g., by date).
A key idea behind our technique is to use a probabilistic
modeling approach, and estimate the distribution of document
scores that are expected to be returned by the database. Hence,
we can estimate what are the minimum cutoff scores for
including a document in the list of highly ranked documents.
To achieve this result over a database that allows only query-
based access of documents, we generate a querying strategy
that submits a minimal sequence of conjunctive queries to the
source. (Note that conjunctive queries are cheaper since they
return significantly fewer results than disjunctive ones.) After
every submitted conjunctive query we update the estimated
probability distributions of the query keywords in the database



and decide whether the algorithm should terminate given
the user’s results confidence requirement or whether further
querying is necessary; in the latter case, our algorithm also
decides which is the best query to submit next. For instance,
for the above query “immunodeficiency virus structure”, the
algorithm may first execute “immunodeficiency AND virus
AND structure”, then “immunodeficiency AND structure” and
then terminate, after estimating that the returned documents
contain all the documents that would be highly ranked under
an IR-style ranking mechanism. As we will see, our work
fits into the “exploration vs. exploitation” paradigm [2], [9],
[10], since we iteratively explore the source by submitting
conjunctive queries to learn the probability distributions of
the keywords, and at the same time we exploit the returned
“document samples” to retrieve results for the user query. Our
approach can also be extended and applied to other settings
where the ranking is monotonic on a set of factors (query
keywords in IR) and the source query interface is a Boolean
expression of these factors.

II. RELATED WORK

Top-k queries Theobald et al. [16] describe a framework
for generating an approximate top-k answer, with some prob-
abilistic guarantees. In our work, we use the same idea; the
main difference is that we only have “random access” to the
underlying database (i.e., through querying), and no “sorted
access.” Ilyas et al. [7] provide a survey of the research on
top-k queries on relational databases.

Exploration vs. exploitation The idea of the exploita-
tion/exploration tradeoff [2], [9], [10] (also called the “multi-
armed bandit problem”) is to determine a strategy of sequential
execution of actions, each of which has a stochastic payoff.
While executing an action we get back some (uncertain) payoff,
and at the same time we get some information that allows us
to decrease the uncertainty of the payoff of future actions.

Deep Web Our work bears some similarities to the problem
of extracting data from the Deep Web [1] databases. For
example, Ntoulas et al. [12] attempt to download the contents
of a Deep Web database by issuing queries through a web form
interface. [3], [8] characterize databases by extracting a small
sample of documents that is then used to describe the contents
of the database. In the experimental section, we compare
against this “static sampling” alternative and demonstrate
the superiority of the dynamic sampling technique, which
dynamically generates estimates tailored to the query at hand.

III. PROBLEM DEFINITION

Query Model Consider a text database D with documents
d, . . . , dm. The user submits a keyword query Q = {t1...tn}
containing the terms t1...tn. The answer to the query is a list
of the top k documents; the documents are ranked according to
a relevance score score(Q, d), which estimates the relevance
of a document d to the query Q.

The score of a document can be computed using any of
the the well studied tf.idf scoring functions like BM25 and

Okapi [13], [14], [15]. The key arguments of a tf.idf function
are the term frequency (tf), the document frequency (df) and
the document length (dl). The term frequency tf (t, d) is the
number of times that the word t appears in document d. The
document frequency df (t,D) is the number of documents in
D that contain t. Hence, score(Q, d) = F (tf, df, dl). At its
basic form, the tf.idf ranking function is:

score(Q, d) =
∑

t∈Q,d

tf (t, d) · ln |D|+ 1
df (t,D)

(1)

where |D| = m is the size of the database D. In our
experiments, we use the Okapi scoring function, although any
other tf.idf function could be used. For simplicity though we
use the basic tf.idf scoring function as the running example.

Data Source Model We assume that database D is only
accessible through a Boolean query interface and we do not
have direct access to the underlying documents. The query
interface evaluates the Boolean query Q and returns the
documents ranked using a non-desirable ranking function, e.g.,
by date (as is the case for PubMed and USPTO).

For instance, if the user query is Q=[anemia, diabetes,
sclerosis], then we can submit to the data source queries q1 =
[anemia AND diabetes AND sclerosis], q2 = [anemia AND
diabetes AND NOT sclerosis], q3 = [diabetes OR sclerosis],
and so on. The returned results are guaranteed to match the
Boolean conditions but the documents are not expected to be
ranked in any useful manner.

Objective We want to devise a scheme for retrieving from D
the top-k documents, ranked according to F (tf, df, dl). The
trivial solution is to send an extremely broad disjunctive query,
returning all documents that have a non-zero F (tf, df, dl)
score. Then, we can retrieve the documents, examine their
contents, and rerank them locally before presenting the results
to the user. Unfortunately, this is a very time-consuming solu-
tion. Therefore, our objective is to construct a query sequence
q1, q2, · · · , qv of Boolean queries, that can be submitted to
the database, retrieve as few documents as possible, and still
contain all the documents that would be in the top-k results.

IV. OVERVIEW OF APPROACH

As mentioned above, our approach is based on choosing
the best sequence q1, q2, · · · , qv of Boolean queries to submit
to the data source, such that we retrieve the top-k ranked
documents for Q. Of course, to select the best sequence of
queries, we need to know some statistics about the type of
documents retrieved by each query qi. To get these statistics
we need to sample the database through query-based sampling.
So, through querying we are both retrieving documents to
generate the necessary statistics and at the same time aim to
retrieve documents that are in the top-k relevant documents.
So, we can consider our approach as a case of “exploration
vs. exploitation.”

Even though we can use any Boolean query in our strategy,
we only consider conjunctive Boolean queries as candidates,



given that a disjunctive query can be split to a set of con-
junctive queries. Conjunctive queries provide a good query
granularity and simplify the analysis below. Note that in
practice we add negation conditions to the issued conjunctive
queries in order to avoid retrieving the same results multiple
times. For instance, if Q = {a, b}, after submitting q1 =
a AND b, we submit q2 = a AND NOT b instead of q2 = a.

So, what are the goals of our querying strategy? Following
Equation 1, we need to know the tf and df values for the
terms in the database, to estimate the similarity score of a
query to a document. Using these values, we can then estimate
the overall similarity score distribution for all the documents
in the database. Given the score distribution, we can compute
how many documents in the database have score higher than
the documents that we have seen so far.

The relatively easy part is the estimation of the df values.
We can estimate these values in two ways: (a) We can send
n queries to the database, one for each query term ti, and
compute the df value for each term. Note that the PubMed
eUtils, which we use in our experiments, have a method to
directly return the number of results (df ) for a query. (b) We
can use estimates of the idf (inverse df ) values by using some
other database with similar content (for example, using the
Google Web 1T 5-gram collection1).

The more challenging part is the estimation of the tf values.
We need to estimate the value of tf for each query term
and for each document, that is, a total of n × |D| values.
This is rather unrealistic without having direct access to the
underlying database. So, we adopt a query-based probabilistic
approach and we use the fact that term frequencies (tf ) tend
to follow a Poisson distribution within the documents of a
database [16]. The more accurately we know the parameters
of the distribution, the better we can estimate the document
score distribution, and the better we can estimate how many
documents should be in the top-k results but are still not
retrieved.

Below, we describe briefly our strategies, giving the intu-
ition behind each approach. We provide the complete theo-
retical analysis and the associated algorithms in the extended
version of this paper [6].

One strategy for estimating the distribution parameter values
is to generate a static document sample from the database and
use this sample as a database summary for our estimations.
However, we found that this summary-based strategy has low
accuracy. The alternative, query-based strategy, relies on the
exploitation-exploration framework, and combines sampling
and query execution. In particular, our algorithms learn the
tf distributions of the query keywords while the sequence of
conjunctive queries are submitted. We account for the query-
bias of the retrieved samples. That is, we estimate, given the
retrieved documents for query t, how many empty documents
we would have seen if we were performing random sampling.
Now, assuming that we know the score distribution for Q
of the documents, we can estimate the benefit that each

1http://www.ldc.upenn.edu/Catalog/docs/LDC2006T13/

issued query will generate: we can estimate the distribution
of document scores (with respect to Q) for the documents
retrieved by a conjunctive query q. Therefore, we can estimate
the benefit of a query q, defined as the probability that a
randomly selected document from the answer of q will have
score higher than the k-th ranked score for Q among the
documents retrieved so far.

To achieve that, we create a priority queue with all candidate
queries q, ordered by expected benefit. We select the query at
the top of the priority queue, retrieve documents, and based on
the results we update the expected benefits of the other queries.
Then, we pick the query with the next-highest expected benefit
and so on. The algorithm terminates when the benefit (i.e.,
probability of retrieving a top-k document) drops below a
user-specified probability constant P . That is, the algorithm
terminates when every unseen result has probability less than
P to be in the top-k answer. Note that P is provided by a
domain expert to balance response time and accuracy, and
hence users do not have to worry about it in practice. In the
next sections we describe in detail our approach.

V. EXPERIMENTS

We experimentally evaluate the performance and quality of
the retrieval algorithms. We compare the Query-based prob-
ability estimation strategy to the Summary-based estimation
strategy:
• Baseline: This algorithm submits the disjunction of all

query keywords to the database, gets all results, computes
their IR score, and finally return the top-k to the user.

• Summary-based: A sequence of conjunctive queries are
submitted. The tf distributions are computed using a
query-independent static database sample, as described
in Section IV.

• Query-based: A sequence of conjunctive queries are
submitted. The tf distributions are computed using the
query-dependent, exploration and exploitation approach
overviewed in Section IV.

Configuration: All experiments were run on a PC with
a 2.5G Intel quad-core processor with 4G RAM running
Windows XP SP2. The algorithms were implemented in Java.

Datasets: We ran our algorithm on the PubMed dataset,
which can be remotely accessed through PubMed Web access
utility services (RemotePubMed).2 We only retrieve the ab-
stracts of the articles since the body of many articles is missing
from PubMed. Note that PubMed does not offer any form of
relevance-based ranking. All results are ranked by date.

Quality Measure: We measure the quality of the algorithms
as follows: we first execute the Baseline algorithm to compute
the optimal top-k results. Then, we measure the quality of
Query-based and Block-based algorithms by comparing their
top-k search results to this optimal list generated by the

2http://www.ncbi.nlm.nih.gov/entrez/query/static/eutils_
help.html



(a) number of doc. vs. P (b) number of fetch vs. P (c) time vs. P
Fig. 1. Varying P

(a) number of documents vs. k (b) number of fetch vs. k (c) time vs. k
Fig. 2. Varying k

(a) #doc vs. #keywords (b) #fetch vs.#keywords (c) time vs. #keywords
Fig. 3. Varying #keywords

(a) fr vs. k (b) fr vs. #kwd
Fig. 4. Footrule vs. k and #kwd

Baseline algorithm. We compare two top-k lists using the
normalized top-k Spearman’s Footrule metric [4].

In Figures 1, 2 and 3 we compare the three approaches
for vaying user-specified results confidence P , top-k and
#keywords respectively.

Generally, we see that the Summary-based variant is slightly
faster than the Query-based variant. On the other hand, Query-
based is more accurate since its estimation strategy is better.

VI. CONCLUSIONS

We presented a framework and efficient algorithms to build
a ranking wrapper on top of a documents data source that only
serves Boolean keyword queries. This setting is common in
various major databases today, including PubMed and USPTO.
Our algorithm submits a minimal sequence of conjunctive
queries instead of a very expensive disjunctive one. The query
score distributions of the candidate conjunctive queries are
learned as documents are retrieved from the source. Our com-
prehensive experimental evaluation on the PubMed database
shows that we achieve order of magnitude improvement com-
pared to the baseline approach.

ACKNOWLEDGMENTS

Vagelis Hristidis was partly supported by NSF grant IIS-
0811922 and DHS grant 2009-ST-062-000016. Panagiotis G.
Ipeirotis was supported by the National Science Foundation
under Grant No. IIS-0643846.

REFERENCES

[1] M. K. Bergman. The Deep Web: Surfacing hidden value. Journal of
Electronic Publishing, 7(1), Aug. 2001.

[2] D. A. Berry and B. Fristedt. Bandit Problems: Sequential Allocation of
Experiments. Springer, 1985.

[3] J. P. Callan and M. Connell. Query-based sampling of text databases.
ACM Transactions on Information Systems, 19(2):97–130, 2001.

[4] R. Fagin, R. Kumar, and D. Sivakumar. Comparing top k lists. In SODA
’03: Proceedings of the fourteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 28–36, Philadelphia, PA, USA, 2003. Society
for Industrial and Applied Mathematics.

[5] R. C. Geer, D. J. Messersmith, K. Alpi, M. Bhagwat, A. Chattopadhyay,
N. Gaedeke, J. Lyon, M. E. Minie, R. C. Morris, J. A. Ohles, D. L.
Osterbur, and M. R. Tennant. Ncbi advanced workshop for bioinfor-
matics information specialists: Sample user questions and answers. Ac-
cessible at http://www.ncbi.nlm.nih.gov/Class/NAWBIS/
index.html, 2002. Last revised on August 6th 2007.

[6] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of top-k query
processing techniques in relational database systems. ACM Comput.
Surv., 40(4):1–58, 2008.

[7] P. G. Ipeirotis and L. Gravano. Distributed search over the hidden web:
Hierarchical database sampling and selection. In Proceedings of the
28th International Conference on Very Large Databases (VLDB 2002),
pages 394–405, 2002.

[8] J. Lee, J. Lee, and H. Lee. Exploration and exploitation in the presence
of network externalities. Management Science, 49(4):553–570, Apr.
2003.

[9] W. G. Macready and D. H. Wolpert. Bandit problems and the
exploration/exploitation tradeoff. IEEE Transactions on Evolutionary
Computation, 2(1):2–22, Apr. 1998.

[10] J. Madhavan, D. Ko, L. Kot, V. Ganapathy, A. Rasmussen, and A. Y.
Halevy. Google’s deep web crawl. PVLDB, 1(2):1241–1252, 2008.

[11] A. Ntoulas, P. Zerfos, and J. Cho. Downloading textual hidden web
content by keyword queries. In Proceedings of the Fifth ACM+IEEE
Joint Conference on Digital Libraries (JCDL 2005), 2005.

[12] S. E. Robertson, S. Walker, S. Jones, M. Hancock-Beaulieu, and
M. Gatford. Okapi at trec-3. In TREC, 1994.

[13] G. Salton and M. J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[14] A. Singhal. Modern information retrieval: A brief overview. Bulletin of
the IEEE Computer Society Technical Committee on Data Engineering,
24(4):35–42, 2001.

[15] M. Theobald, G. Weikum, and R. Schenkel. Top-k query evaluation with
probabilistic guarantees. In VLDB ’04: Proceedings of the Thirtieth
international conference on Very large data bases, pages 648–659.
VLDB Endowment, 2004.


