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Abstract

Assume that each object in a database has m grades, or scores, one for each of m attributes. For example,
an object can have a color grade, that tells how red it is, and a shape grade, that tells how round it is. For
each attribute, there is a sorted list, which lists each object and its grade under that attribute, sorted by
grade (highest grade first). Each object is assigned an overall grade, that is obtained by combining the
attribute grades using a fixed monotone aggregation function, or combining rule, such as min or average. To
determine the top k objects, that is, k objects with the highest overall grades, the naive algorithm must
access every object in the database, to find its grade under each attribute. Fagin has given an algorithm
(‘‘Fagin’s Algorithm’’, or FA) that is much more efficient. For some monotone aggregation functions, FA
is optimal with high probability in the worst case. We analyze an elegant and remarkably simple algorithm
(‘‘the threshold algorithm’’, or TA) that is optimal in a much stronger sense than FA. We show that TA is
essentially optimal, not just for some monotone aggregation functions, but for all of them, and not just in a
high-probability worst-case sense, but over every database. Unlike FA, which requires large buffers (whose
size may grow unboundedly as the database size grows), TA requires only a small, constant-size buffer. TA
allows early stopping, which yields, in a precise sense, an approximate version of the top k answers. We
distinguish two types of access: sorted access (where the middleware system obtains the grade of an object
in some sorted list by proceeding through the list sequentially from the top), and random access (where
the middleware system requests the grade of object in a list, and obtains it in one step). We consider
the scenarios where random access is either impossible, or expensive relative to sorted access, and provide
algorithms that are essentially optimal for these cases as well.
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1. Introduction

Early database systems were required to store only small character strings, such as the entries in
a tuple in a traditional relational database. Thus, the data were quite homogeneous. Today, we
wish for our database systems to be able to deal not only with character strings (both small and
large), but also with a heterogeneous variety of multimedia data (such as images, video, and
audio). Furthermore, the data that we wish to access and combine may reside in a variety of data
repositories, and we may want our database system to serve as middleware that can access such
data.
One fundamental difference between small character strings and multimedia data is that

multimedia data may have attributes that are inherently fuzzy. For example, we do not say that a
given image is simply either ‘‘red’’ or ‘‘not red’’. Instead, there is a degree of redness, which ranges
between 0 (not at all red) and 1 (totally red).
One approach [Fag99] to deal with such fuzzy data is to make use of an aggregation function t:

If x1;y;xm (each in the interval ½0; 1�) are the grades of object R under the m attributes, then
tðx1;y; xmÞ is the (overall) grade of object R:We shall often abuse notation and write tðRÞ for the
grade tðx1;y; xmÞ of R: As we shall discuss, such aggregation functions are useful in other
contexts as well. There is a large literature on choices for the aggregation function (see
Zimmermann’s textbook [Zim96] and the discussion in [Fag99]).
One popular choice for the aggregation function is min: In fact, under the standard rules of

fuzzy logic [Zad69], if object R has grade x1 under attribute A1 and x2 under attribute A2; then the
grade under the fuzzy conjunction A14A2 is minðx1; x2Þ: Another popular aggregation function is
the average (or the sum, in contexts where we do not care if the resulting overall grade no longer
lies in the interval ½0; 1�).
We say that an aggregation function t is monotone if tðx1;y; xmÞptðx0

1;y;x0
mÞ whenever

xipx0
i for every i: Certainly monotonicity is a reasonable property to demand of an aggregation

function: if for every attribute, the grade of object R0 is at least as high as that of object R; then we
would expect the overall grade of R0 to be at least as high as that of R:
The notion of a query is different in a multimedia database system than in a traditional

database system. Given a query in a traditional database system (such as a relational database
system), there is an unordered set of answers.2 By contrast, in a multimedia database system, the
answer to a query is a ‘‘graded’’ (or ‘‘fuzzy’’) set [Zad69]. A graded set is a set of pairs ðx; gÞ; where
x is an object, and g (the grade) is a real number in the interval ½0; 1�: Graded sets are usually
presented in sorted order, sorted by grade. As in [Fag99], we shall identify a query with a choice of
the aggregation function t: The user is typically interested in finding the top k answers, where k is a
given parameter (such as k ¼ 1; 10, or 100). This means that we want to obtain k objects (which
we may refer to as the ‘‘top k objects’’) with the highest grades on this query, each along with its
grade (ties are broken arbitrarily). For convenience, throughout this paper we will think of k as a
constant value, and we will consider algorithms for obtaining the top k answers in databases that
contain at least k objects.

2Of course, in a relational database, the result to a query may be sorted in some way for convenience in presentation,

such as sorting department members by salary, but logically speaking, the result is still simply a set, with a crisply

defined collection of members.
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Other applications: There are other applications besides multimedia databases where we make
use of an aggregation function to combine grades, and where we want to find the top k answers.
One important example is information retrieval [Sal89], where the objects R of interest are
documents, the m attributes are search terms s1;y; sm; and the grade xi measures the relevance of
document R for search term si; for 1pipm: It is common to take the aggregation function t to be
the sum. That is, the total relevance score of document R when the query consists of the search
terms s1;y; sm is taken to be tðx1;y; xmÞ ¼ x1 þ?þ xm:
Another application arises in a paper by Aksoy and Franklin [AF99] on scheduling large-scale

on-demand data broadcast. In this case each object is a page, and there are two fields. The first
field represents the amount of time waited by the earliest user requesting a page, and the second
field represents the number of users requesting a page. They make use of the product function t
with tðx1;x2Þ ¼ x1x2; and they wish to broadcast next the page with the top score.

The model: We assume that each database consists of a finite set of objects. We shall typically
take N to represent the number of objects. Associated with each object R are m fields x1;y;xm;
where xiA½0; 1� for each i:We may refer to xi as the ith field of R: The database can be thought of
as consisting of a single relation, where one column corresponds to the object id, and the other
columns correspond to m attributes of the object. Alternatively, the way we shall think of a
database in this paper is as consisting of m sorted lists L1;y;Lm; each of length N (there is one
entry in each list for each of the N objects). We may refer to Li as list i. Each entry of Li is of the
form ðR;xiÞ; where xi is the ith field of R: Each list Li is sorted in descending order by the xi value.
We take this simple view of a database, since this view is all that is relevant, as far as our
algorithms are concerned. We are taking into account only access costs, and ignoring internal
computation costs. Thus, in practice it might well be expensive to compute the field values, but we
ignore this issue here, and take the field values as being given.
We consider two modes of access to data. The first mode of access is sorted (or sequential)

access. Here the middleware system obtains the grade of an object in one of the sorted lists by
proceeding through the list sequentially from the top. Thus, if object R has the cth highest grade
in the ith list, then c sorted accesses to the ith list are required to see this grade under sorted
access. The second mode of access is random access. Here, the middleware system requests the
grade of object R in the ith list, and obtains it in one random access. If there are s sorted accesses
and r random accesses, then the sorted access cost is scS; the random access cost is rcR; and the
middleware cost is scS þ rcR (the sum of the sorted access cost and the random access cost), for
some positive constants cS and cR:

Algorithms: There is an obvious naive algorithm for obtaining the top k answers. Under sorted
access, it looks at every entry in each of the m sorted lists, computes (using t) the overall grade of
every object, and returns the top k answers. The naive algorithm has linear middleware cost
(linear in the database size), and thus is not efficient for a large database.
Fagin [Fag99] introduced an algorithm (‘‘Fagin’s Algorithm’’, or FA), which often does much

better than the naive algorithm. In the case where the orderings in the sorted lists are
probabilistically independent, FA finds the top k answers, over a database with N objects, with

middleware cost OðNðm	1Þ=mk1=mÞ; with arbitrarily high probability.3 Fagin also proved that under

3We shall not discuss the probability model here, including the notion of ‘‘independence’’, since it is off track. For

details, see [Fag99].
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this independence assumption, along with an assumption on the aggregation function, every
correct algorithm must, with high probability, incur a similar middleware cost in the worst case.
We shall present the ‘‘threshold algorithm’’, or TA. This algorithm was discovered

independently by (at least) three groups, including Nepal and Ramakrishna [NR99] (who were
the first to publish), Güntzer et al. [GBK00], and ourselves.4 For more information and
comparison, see Section 10 on related work.
We shall show that TA is optimal in a much stronger sense than FA. We now define this notion

of optimality, which we consider to be interesting in its own right.
Instance optimality: Let A be a class of algorithms, let D be a class of databases, and let

costðA;DÞ be the middleware cost incurred by running algorithm A over database D: We say
that an algorithm B is instance optimal over A and D if BAA and if for every AAA and every
DAD we have

costðB;DÞ ¼ OðcostðA;DÞÞ: ð1Þ

Eq. (1) means that there are constants c and c0 such that costðB;DÞpc 
 costðA;DÞ þ c0 for every
choice of AAA and DAD: We refer to c as the optimality ratio. Intuitively, instance optimality
corresponds to optimality in every instance, as opposed to just the worst case or the average case.
FA is optimal in a high-probability worst-case sense under certain assumptions. TA is optimal in a
much stronger sense, and without any underlying probabilistic model or probabilistic
assumptions: it is instance optimal, for several natural choices of A and D: In particular, instance
optimality holds when A is taken to be the class of algorithms that would normally be
implemented in practice (since the only algorithms that are excluded are those that make very
lucky guesses), and when D is taken to be the class of all databases. Instance optimality of TA
holds in this case for all monotone aggregation functions. By contrast, high-probability worst-case
optimality of FA holds only under the assumption of ‘‘strictness’’ (we shall define strictness later;
intuitively, it means that the aggregation function is representing some notion of conjunction).

Approximation and early stopping: There are times when the user may be satisfied with an
approximate top k list. Assume y41: Define a y-approximation to the top k answers for the
aggregation function t to be a collection of k objects (each along with its grade) such that for each
y among these k objects and each z not among these k objects, ytðyÞXtðzÞ: Note that the
same definition with y ¼ 1 gives the top k answers. We show how to modify TA to give such
a y-approximation (and prove the instance optimality of this modified algorithm under certain
assumptions). In fact, we can easily modify TA into an interactive process where at all times the
system can show the user its current view of the top k list along with a guarantee about the degree
y of approximation to the correct answer. At any time, the user can decide, based on this
guarantee, whether he would like to stop the process.

Restricting random access: As we shall discuss in Section 2, there are some systems where
random access is impossible. To deal with such situations, we show in Section 8.1 how to modify
TA to obtain an algorithm NRA (‘‘no random accesses’’) that does no random accesses. We prove
that NRA is instance optimal over all algorithms that do not make random accesses and over all
databases.

4Our second author first defined TA, and did extensive simulations comparing it to FA, as a project in a database

course taught by Michael Franklin at the University of Maryland-College Park, in the Fall of 1997.
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What about situations where random access is not impossible, but simply expensive? Wimmers
et al. [WHRB99] discuss a number of systems issues that can cause random access to be
expensive. Although TA is instance optimal, the optimality ratio depends on the ratio cR=cS
of the cost of a single random access to the cost of a single sorted access. We define another
algorithm that is a combination of TA and NRA, and call it CA (‘‘combined algorithm’’).
The definition of the algorithm depends on cR=cS: The motivation is to obtain an algorithm that is
not only instance optimal, but whose optimality ratio is independent of cR=cS: Our original
hope was that CA would be instance optimal (with optimality ratio independent of cR=cS) in
those scenarios where TA is instance optimal. Not only does this hope fail, but interestingly
enough, we prove that there does not exist any deterministic algorithm, or even probabilistic
algorithm that does not make a mistake, with optimality ratio independent of cR=cS in these
scenarios! However, we find a new natural scenario where CA is instance optimal, with optimality
ratio independent of cR=cS:

Outline of paper: In Section 2, we discuss modes of access (sorted and random) to data.
In Section 3, we present FA (Fagin’s Algorithm) and its properties. In Section 4, we present
TA (the Threshold Algorithm). In Section 5, we define instance optimality, and compare it
with related notions, such as competitiveness. In Section 6, we show that TA is instance optimal
in several natural scenarios. In the most important scenario, we show that the optimality ratio
of TA is best possible. In Section 6.1, we discuss the dependence of the optimality ratio on
various parameters. In Section 6.2, we show how to turn TA into an approximation algorithm,
and prove instance optimality among approximation algorithms. We also show how the
user can prematurely halt TA and in a precise sense, treat its current view of the top k answers
as an approximate answer. In Section 7, we consider situations (suggested by Bruno et al.
[BGM02]) where sorted access is impossible for certain of the sorted lists. In Section 8, we focus
on situations where random accesses are either impossible or expensive. In Section 8.1 we
present NRA (No Random Access algorithm), and show its instance optimality among
algorithms that make no random accesses. Further, we show that the optimality ratio of NRA
is best possible. In Section 8.2 we present CA (Combined Algorithm), which is a result of
combining TA and NRA in order to obtain an algorithm that, intuitively, minimizes random
accesses. In Section 8.3, we show instance optimality of CA, with an optimality ratio independent
of cR=cS; in a natural scenario. In Section 8.4, we show that the careful choice made by CA of
which random accesses to make is necessary for instance optimality with an optimality ratio
independent of cR=cS: We also compare and contrast CA versus TA. In Section 9, we prove
various lower bounds on the optimality ratio, both for deterministic algorithms and for
probabilistic algorithms that never make a mistake. We summarize our upper and lower bounds
in Section 9.1. In Section 10 we discuss related work. In Section 11, we give our conclusions, and
state some open problems.

2. Modes of access to data

Issues of efficient query evaluation in a middleware system are very different from those in a
traditional database system. This is because the middleware system receives answers to queries
from various subsystems, which can be accessed only in limited ways. What do we assume about
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the interface between a middleware system and a subsystem? Let us consider QBIC5 [NBE+93]
(‘‘Query By Image Content’’) as a subsystem. QBIC can search for images by various visual
characteristics such as color and texture (and an experimental version can search also by shape).
In response to a query, such as Color=‘‘red’’, the subsystem will output the graded set consisting
of all objects, one by one, each along with its grade under the query, in sorted order based on
grade, until the middleware system tells the subsystem to halt. Then the middleware system could
later tell the subsystem to resume outputting the graded set where it left off. Alternatively, the
middleware system could ask the subsystem for, say, the top 10 objects in sorted order, each along
with its grade; then request the next 10, etc. In both cases, this corresponds to what we have
referred to as ‘‘sorted access’’.
There is another way that we might expect the middleware system to interact with the

subsystem. Specifically, the middleware system might ask the subsystem for the grade (with
respect to a query) of any given object. This corresponds to what we have referred to as ‘‘random
access’’. In fact, QBIC allows both sorted and random access.
There are some situations where the middleware system is not allowed random access to some

subsystem. An example might occur when the middleware system is a text retrieval system, and
the subsystems are search engines. Thus, there does not seem to be a way to ask a major search
engine on the web for its internal score on some document of our choice under a query.
Our measure of cost corresponds intuitively to the cost incurred by the middleware system in

processing information passed to it from a subsystem such as QBIC. As before, if there are s
sorted accesses and r random accesses, then the middleware cost is taken to be scS þ rcR; for some
positive constants cS and cR: The fact that cS and cR may be different reflects the fact that the cost
to a middleware system of a sorted access and of a random access may be different.

3. Fagin’s algorithm

In this section, we discuss FA (Fagin’s Algorithm) [Fag99]. This algorithm is implemented in
Garlic [CHS+95], an experimental IBM middleware system; see [WHRB99] for interesting details
about the implementation and performance in practice. Chaudhuri and Gravano [CG96] consider
ways to simulate FA by using ‘‘filter conditions’’, which might say, for example, that the color
score is at least 0.2.6 FA works as follows.

1. Do sorted access in parallel to each of the m sorted lists Li: (By ‘‘in parallel’’, we mean that we
access the top member of each of the lists under sorted access, then we access the second
member of each of the lists, and so on.)7 Wait until there are at least k ‘‘matches’’, that is, wait

5QBIC is a trademark of IBM Corporation.
6Chaudhuri and Gravano originally saw an early version of the conference paper (in the 1996 ACM Symposium on

Principles of Database Systems) that expanded into the journal version [Fag99].
7 It is not actually important that the lists be accessed ‘‘in lockstep’’. In practice, it may be convenient to allow the

sorted lists to be accessed at different rates, in batches, etc. Each of the algorithms in this paper where there is ‘‘sorted

access in parallel’’ remain correct even when sorted access is not in lockstep. Furthermore, all of our instance optimality

results continue to hold even when sorted access is not in lockstep, as long as the rates of sorted access of the lists are

within constant multiples of each other.
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until there is a set of at least k objects such that each of these objects has been seen in each of
the m lists.

2. For each object R that has been seen, do random access as needed to each of the lists Li to find
the ith field xi of R:

3. Compute the grade tðRÞ ¼ tðx1;y;xmÞ for each object R that has been seen. Let Y be a set
containing the k objects that have been seen with the highest grades (ties are broken
arbitrarily). The output is then the graded set fðR; tðRÞÞ j RAYg:

It is fairly easy to show [Fag99] that this algorithm is correct for monotone aggregation
functions t (that is, that the algorithm successfully finds the top k answers). If there are N objects
in the database, and if the orderings in the sorted lists are probabilistically independent, then the

middleware cost of FA is OðNðm	1Þ=mk1=mÞ; with arbitrarily high probability [Fag99].
An aggregation function t is strict [Fag99] if tðx1;y; xmÞ ¼ 1 holds precisely when xi ¼ 1 for

every i: Thus, an aggregation function is strict if it takes on the maximal value of 1 precisely when
each argument takes on this maximal value. We would certainly expect an aggregation function
representing the conjunction to be strict (see the discussion in [Fag99]). In fact, it is reasonable to
think of strictness as being a key characterizing feature of the conjunction.
Fagin shows that his algorithm is optimal with high probability in the worst case if the

aggregation function is strict (so that, intuitively, we are dealing with a notion of conjunction),
and if the orderings in the sorted lists are probabilistically independent. In fact, the access pattern
of FA is oblivious to the choice of aggregation function, and so for each fixed database, the
middleware cost of FA is exactly the same no matter what the aggregation function is. This is true
even for a constant aggregation function; in this case, of course, there is a trivial algorithm that
gives us the top k answers (any k objects will do) with Oð1Þmiddleware cost. So FA is not optimal
in any sense for some monotone aggregation functions t: As a more interesting example, when the
aggregation function is max (which is not strict), it is shown in [Fag99] that there is a simple
algorithm that makes at most mk sorted accesses and no random accesses that finds the top k
answers. By contrast, as we shall see, the algorithm TA is instance optimal for every monotone
aggregation function, under very weak assumptions.
Even in the cases where FA is optimal, this optimality holds only in the worst case, with high

probability. This leaves open the possibility that there are some algorithms that have much better
middleware cost than FA over certain databases. The algorithm TA, which we now discuss, is
such an algorithm.

4. The threshold algorithm

We now present the threshold algorithm (TA).

1. Do sorted access in parallel to each of the m sorted lists Li: As an object R is seen under sorted
access in some list, do random access to the other lists to find the grade xi of object R in every
list Li:

8 Then compute the grade tðRÞ ¼ tðx1;y;xmÞ of object R: If this grade is one of the k

8 It may seem wasteful to do random access to find a grade that was already determined earlier. As we discuss later,

this is done in order to avoid unbounded buffers.
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highest we have seen, then remember object R and its grade tðRÞ (ties are broken arbitrarily, so
that only k objects and their grades need to be remembered at any time).

2. For each list Li; let
%
xi be the grade of the last object seen under sorted access. Define the

threshold value t to be tð
%
x1;y;

%
xmÞ: As soon as at least k objects have been seen whose grade is

at least equal to t; then halt.
3. Let Y be a set containing the k objects that have been seen with the highest grades. The output
is then the graded set fðR; tðRÞÞ j RAYg:

We now show that TA is correct for each monotone aggregation function t:

Theorem 4.1. If the aggregation function t is monotone, then TA correctly finds the top k answers.

Proof. Let Y be as in Step 3 of TA. We need only show that every member of Y has at least as
high a grade as every object z not in Y : By definition of Y ; this is the case for each object z that
has been seen in running TA. So assume that z was not seen. Assume that the fields of z are
x1;y; xm: Therefore, xip

%
xi; for every i: Hence, tðzÞ ¼ tðx1;y;xmÞptð

%
x1;y;

%
xmÞ ¼ t; where the

inequality follows by monotonicity of t: But by definition of Y ; for every y in Y we have tðyÞXt:
Therefore, for every y in Y we have tðyÞXtXtðzÞ; as desired. &

We now show that the stopping rule for TA always occurs at least as early as the stopping rule
for FA (that is, with no more sorted accesses than FA). In FA, if R is an object that has appeared
under sorted access in every list, then by monotonicity, the grade of R is at least equal to the
threshold value. Therefore, when there are at least k objects, each of which has appeared under
sorted access in every list (the stopping rule for FA), there are at least k objects whose grade is at
least equal to the threshold value (the stopping rule for TA).
This implies that for every database, the sorted access cost for TA is at most that of FA. This

does not imply that the middleware cost for TA is always at most that of FA, since TA may do
more random accesses than FA. However, since the middleware cost of TA is at most the sorted
access cost times a constant (independent of the database size), it does follow that the middleware
cost of TA is at most a constant times that of FA. In fact, we shall show that TA is instance
optimal, under natural assumptions.
We now consider the intuition behind TA. For simplicity, we discuss first the case where k ¼ 1;

that is, where the user is trying to determine the top answer. Assume that we are at a stage in the
algorithm where we have not yet seen any object whose (overall) grade is at least as big as the
threshold value t: The intuition is that at this point, we do not know the top answer, since the next
object we see under sorted access could have overall grade t; and hence bigger than the grade of
any object seen so far. Furthermore, once we do see an object whose grade is at least t; then it is
safe to halt, as we see from the proof of Theorem 4.1. Thus, intuitively, the stopping rule of TA
says: ‘‘Halt as soon as you know you have seen the top answer.’’ Similarly, for general k; the
stopping rule of TA says, intuitively, ‘‘Halt as soon as you know you have seen the top k

answers.’’ So we could consider TA as being an implementation of the following ‘‘program’’:

Do sorted access (and the corresponding random access) until you know you have seen the top
k answers.
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This very high-level ‘‘program’’ is a knowledge-based program [FHMV97]. In fact, TA was
designed by thinking in terms of this knowledge-based program. The fact that TA corresponds to
this knowledge-based program is what is behind instance optimality of TA.
Later, we shall give other scenarios (situations where random accesses are either impossible or

expensive) where we implement the following more general knowledge-based program:

Gather what information you need to allow you to know the top k answers, and then halt.

In each of our scenarios, the implementation of this second knowledge-based program is
different. When we consider the scenario where random accesses are expensive relative to sorted
accesses, but are not impossible, we need an additional design principle to decide how to gather
the information, in order to design an instance optimal algorithm.
The next theorem, which follows immediately from the definition of TA, gives a simple but

important property of TA that further distinguishes TA from FA.

Theorem 4.2. TA requires only bounded buffers, whose size is independent of the size of the
database.

Proof. Other than a little bit of bookkeeping, all that TA must remember is the current top k
objects and their grades, and (pointers to) the last objects seen in sorted order in each list. &

By contrast, FA requires buffers that grow arbitrarily large as the database grows, since FA
must remember every object it has seen in sorted order in every list, in order to check for matching
objects in the various lists.
There is a price to pay for the bounded buffers. Thus, for every time an object is found under

sorted access, TA may do m 	 1 random accesses (where m is the number of lists), to find the
grade of the object in the other lists. This is in spite of the fact that this object may have already
been seen in these other lists.

5. Instance optimality

In order to compare instance optimality with other notions from the literature, we generalize
slightly the definition from that given in the introduction. Let A be a class of algorithms, and let D
be a class of legal inputs to the algorithms. We assume that we are considering a particular
nonnegative performance cost measure costðA;DÞ; which represents the amount of a resource
consumed by running the algorithm AAA on input DAD: This cost could be the running time of
algorithm A on input D; or in this paper, the middleware cost incurred by running algorithm A
over database D:
We say that an algorithm B is instance optimal over A and D if BAA and if for everyAAA and

every DAD we have

costðB;DÞ ¼ OðcostðA;DÞÞ: ð2Þ

Eq. (2) means that there are constants c and c0 such that costðB;DÞpc 
 costðA;DÞ þ c0 for every
choice of AAA and DAD: We refer to c as the optimality ratio. It is similar to the competitive
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ratio in competitive analysis (we shall discuss competitive analysis shortly). We use the word
‘‘optimal’’ to reflect the fact that B is essentially the best algorithm in A:
Intuitively, instance optimality corresponds to optimality in every instance, as opposed to just

the worst case or the average case. There are many algorithms that are optimal in a worst-case
sense, but are not instance optimal. An example is binary search: in the worst case, binary search
is guaranteed to require no more than logN probes, for N data items. However, for each instance,
a positive answer can be obtained in one probe, and a negative answer in two probes.
We consider a nondeterministic algorithm correct if on no branch does it make a mistake. We

take the middleware cost of a nondeterministic algorithm to be the minimal cost over all branches
where it halts with the top k answers. We take the middleware cost of a probabilistic algorithm to
be the expected cost (over all probabilistic choices by the algorithm). When we say that a
deterministic algorithm B is instance optimal over A and D; then we are really comparing B
against the best nondeterministic algorithm, even if A contains only deterministic algorithms. This
is because for eachDAD; there is always a deterministic algorithm that makes the same choices on
D as the nondeterministic algorithm. We can view the cost of the best nondeterministic algorithm
that produces the top k answers over a given database as the cost of the shortest proof for that
database that these are really the top k answers. So instance optimality is quite strong: the cost of
an instance optimal algorithm is essentially the cost of the shortest proof. Similarly, we can view A

as if it contains also probabilistic algorithms that never make a mistake. For convenience, in our
proofs we shall always assume that A contains only deterministic algorithms, since the results
carry over automatically to nondeterministic algorithms and to probabilistic algorithms that
never make a mistake.
The definition we have given for instance optimality is formally the same definition as is used in

competitive analysis [BEY98,ST85], except that in competitive analysis, (1) we do not assume that
BAA; and (2) costðA;DÞ does not typically represent a performance cost. In competitive analysis,
typically (a) D is a class of instances of a particular problem, (b) A is the class of offline algorithms
that give a solution to the instances in D; (c) costðA;DÞ is a number that represents the goodness
of the solution (where bigger numbers correspond to a worse solution), and (d) B is a particular
online algorithm. In this case, the online algorithmB is said to be competitive. The intuition is that
a competitive online algorithm may perform poorly in some instances, but only on instances
where every offline algorithm would also perform poorly.
Another example where the framework of instance optimality appears, but again without the

assumption that BAA; and again where costðA;DÞ does not represent a performance cost, is in
the context of approximation algorithms [Hoc97]. In this case, (a) D is a class of instances of a
particular problem, (b) A is a class of algorithms that solve the instances in D exactly (in cases of
interest, these algorithms are not polynomial-time algorithms), (c) costðA;DÞ is the value of the
resulting answer when algorithm A is applied to input D; and (d) B is a particular polynomial-
time algorithm.
Dagum et al. [DKLR00] give an interesting example of what we would call an instance optimal

algorithm. They consider the problem of determining the mean of an unknown random variable
by Monte Carlo estimation. In their case, (a) D is the class of random variables distributed in the
interval ½0; 1�; (b) A is the class of algorithms that, by repeatedly doing independent evaluations of
a random variable and then averaging the results, obtain an estimate of the mean of the random
variable to within a given precision with a given probability, (c) costðA;DÞ is the expected
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number of independent evaluations of the random variable D under algorithm A; and (d) B is
their algorithm, which they call AA for ‘‘approximation algorithm’’. Their main result says, in
our terminology, that AA is instance optimal over A and D:
Demaine et al. [DLM00] give an example of an algorithm that is close to instance optimal. They

consider the problem of finding the intersection, union, or difference of a collection of sorted sets.
In their case, (a) D is the class of instances of collections of sorted sets, (b) A is the class of
algorithms that do pairwise comparisons among elements, (c) costðA;DÞ is the running time
(number of comparisons) in running algorithmA on instanceD; and (d)B is their algorithm. In a
certain sense, their algorithm is close to what we would call instance optimal (to explain the details
would take us too far astray).

6. Instance optimality of the threshold algorithm

In this section, we investigate the instance optimality of TA. We begin with an intuitive
argument that TA is instance optimal. If A is an algorithm that stops sooner than TA on some
database, before A finds k objects whose grade is at least equal to the threshold value t; then A
must make a mistake on some database, since the next object in each list might have grade

%
xi in

each list i; and hence have grade tð
%
x1;y;

%
xmÞ ¼ t: This new object, which A has not even seen,

has a higher grade than some object in the top k list that was output by A; and so A erred by
stopping too soon. We would like to convert this intuitive argument into a proof that for every
monotone aggregation function, TA is instance optimal over all algorithms that correctly find the
top k answers, over the class of all databases. However, as we shall see, the situation is actually
somewhat delicate. We first make a distinction between algorithms that ‘‘make wild guesses’’ (that
is, perform random access on objects not previously encountered by sorted access) and those that
do not. (Neither FA nor TA make wild guesses, nor does any ‘‘natural’’ algorithm in our context.)
Our first theorem (Theorem 6.1) says that for every monotone aggregation function, TA is
instance optimal over all algorithms that correctly find the top k answers and that do not make wild

guesses, over the class of all databases. We then show that this distinction (wild guesses vs. no wild
guesses) is essential: if algorithms that make wild guesses are allowed in the class A of algorithms
that an instance optimal algorithm must compete against, then no algorithm is instance optimal
(Example 6.3 and Theorem 6.4). The heart of this example (and the corresponding theorem) is the
fact that there may be multiple objects with the same grade in some list. Indeed, once we restrict
our attention to databases where no two objects have the same value in the same list, and make a
slight, natural additional restriction on the aggregation function beyond monotonicity, then TA is
instance optimal over all algorithms that correctly find the top k answers (Theorem 6.5).
In Section 6.2 we consider instance optimality in the situation where we relax the problem of

finding the top k objects into finding approximately the top k:
We now give our first positive result on instance optimality of TA. We say that an algorithm

makes wild guesses if it does random access to find the grade of some object R in some list before
the algorithm has seen R under sorted access. That is, an algorithm makes wild guesses if the first
grade that it obtains for some object R is under random access. We would not normally
implement algorithms that make wild guesses. In fact, there are some contexts where it would not
even be possible to make wild guesses (such as a database context where the algorithm could not
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know the name of an object it has not already seen). However, making a lucky wild guess can
help, as we show later (Example 6.3).
We now show instance optimality of TA among algorithms that do not make wild guesses. In

this theorem, when we take D to be the class of all databases, we really mean that D is the class of
all databases that involve sorted lists corresponding to the arguments of the aggregation function
t:We are taking k (where we are trying to find the top k answers) and the aggregation function t to
be fixed. Since we are taking t to be fixed, we are thereby taking the number m of arguments of t
(that is, the number of sorted lists) to be fixed. In Section 6.1, we discuss the assumptions that k

and m are fixed (that is, constant).

Theorem 6.1. Assume that the aggregation function t is monotone. Let D be the class of all
databases. Let A be the class of all algorithms that correctly find the top k answers for t for every
database and that do not make wild guesses. Then TA is instance optimal over A and D:

Proof. Assume thatAAA; and that algorithmA is run over databaseD: Assume that algorithmA
halts at depth d (that is, if di is the number of objects seen under sorted access to list i; for 1pipm;
then d ¼ maxi di). Assume that A sees a distinct objects (some possibly multiple times). In
particular, aXd: Since A makes no wild guesses, and sees a distinct objects, it must make at least a
sorted accesses, and so its middleware cost is at least acS:We shall show that TA halts onD by depth
a þ k: Hence, the middleware cost of TA is at most ða þ kÞmcS þ ða þ kÞmðm 	 1ÞcR; which is
amcS þ amðm 	 1ÞcR plus an additive constant of kmcS þ kmðm 	 1ÞcR: So the optimality ratio of

TA is at most
amcSþamðm	1ÞcR

acS
¼ m þ mðm 	 1ÞcR=cS: (Later, we shall show that if the aggregation

function is strict, then this is precisely the optimality ratio of TA, and this is best possible.)
Note that for each choice of d 0; the algorithm TA sees at least d 0 objects by depth d 0 (this is

because by depth d 0 it has made md 0 sorted accesses, and each object is accessed at most m times
under sorted access). Let Y be the output set of A (consisting of the top k objects). If there are at
most k objects thatA does not see, then TA halts by depth a þ k (after having seen every object),
and we are done. So assume that there are at least k þ 1 objects thatA does not see. Since Y is of
size k; there is some object V that A does not see and that is not in Y :
Let tA be the threshold value when algorithm A halts. This means that if

%
xi is the grade of the

last object seen under sorted access to list i for algorithmA; for 1pipm; then tA ¼ tð
%
x1;y;

%
xmÞ:

(If list i is not accessed under sorted access, we take
%
xi ¼ 1:) Let us call an object R big if tðRÞXtA;

and otherwise call object R small.

We now show that every member R of Y is big. Define a databaseD0 to be just likeD; except that
object V has grade

%
xi in the ith list, for 1pipm: Put V in list i below all other objects with grade

%
xi

in list i (for 1pipm). Algorithm A performs exactly the same, and in particular gives the same

output, for databasesD andD0: Therefore, algorithmA has R; but not V ; in its output for database
D0: Since the grade of V in D0 is tA; it follows by correctness of A that R is big, as desired.
There are now two cases, depending on whether or not algorithm A sees every member of its

output set Y :9

9For the sake of generality, we are allowing the possibility that algorithmA can output an object that it has not seen.

We discuss this issue more in Section 6.1.
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Case 1: Algorithm A sees every member of Y : Then by depth d; TA will see every member of
Y : Since, as we showed, each member of Y is big, it follows that TA halts by depth dpaoa þ k;
as desired.

Case 2: AlgorithmA does not see some member R of Y :We now show that every object R0 that
is not seen by A must be big. Define a database D0 that is just like D on every object seen by A:
Let the grade of V in list i be

%
xi; and put V in list i below all other objects with grade

%
xi in list i (for

1pipm). Therefore, the grade of V in database D0 is tA: Since A cannot distinguish between D

and D0; it has the same output on D and D0: SinceA does not see R and does not see R0; it has no
information to distinguish between R and R0: Therefore, it must have been able to give R0 in its
output without making a mistake. But if R0 is in the output and not V ; then by correctness ofA; it
follows that R0 is big. So R0 is big, as desired.
SinceA sees a objects, and since TA sees at least a þ k objects by depth a þ k; it follows that by

depth a þ k; TA sees at least k objects not seen byA:We have shown that every object that is not
seen by A is big. Therefore, by depth a þ k; TA sees at least k big objects. So TA halts by depth
a þ k; as desired. &

The next result is a corollary of the proof of Theorem 6.1 and of a lower bound in Section 9 (all
of our results on lower bounds appear in Section 9). Specifically, in the proof of Theorem 6.1, we
showed that under the assumptions of Theorem 6.1 (no wild guesses), the optimality ratio of TA is
at most m þ mðm 	 1ÞcR=cS: The next result says that if the aggregation function is strict, then the
optimality ratio is precisely this value, and this is best possible. Recall that an aggregation
function t is strict if tðx1;y; xmÞ ¼ 1 holds precisely when xi ¼ 1 for every i: Intuitively, strictness
means that the aggregation function is representing some notion of conjunction.

Corollary 6.2. Let t be an arbitrary monotone, strict aggregation function with m arguments. Let D
be the class of all databases. Let A be the class of all algorithms that correctly find the top k answers

for t for every database and that do not make wild guesses. Then TA is instance optimal over A and
D; with optimality ratio m þ mðm 	 1ÞcR=cS: No deterministic algorithm has a lower optimality

ratio.

Proof. In the proof of Theorem 6.1, it is shown that TA has an optimality ratio of at most
m þ mðm 	 1ÞcR=cS for an arbitrary monotone aggregation function. The lower bound follows
from Theorem 9.1. &

We cannot drop the assumption of strictness in Corollary 6.2. For example, let the aggregation
function be max (which is not strict). It is easy to see that TA halts after k rounds of sorted access,
and its optimality ratio is m (which, we might add, is best possible for max).10

10Note that the instance optimality of TA, as given by Theorem 6.1, holds whether or not the aggregation function is

strict. For example, the instance optimality of TA as given by Theorem 6.1 holds even when the aggregation function is

max. This is in contrast to the situation with FA, where high-probability worst-case optimality fails when the

aggregation function is max. Corollary 6.2 makes use of the assumption of strictness only in order to show that the

optimality ratio of TA is then precisely m þ mðm 	 1ÞcR=cS; and that this is best possible.
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What if we were to consider only the sorted access cost? This corresponds to taking cR ¼ 0:
Then we see from Corollary 6.2 that the optimality ratio of TA is m: Furthermore, it follows easily
from the proof of Theorem 9.1 that if the aggregation function is strict, and if cR ¼ 0; then this is
best possible: no deterministic algorithm has a lower optimality ratio than m:11

What if we were to consider only the random access cost? This corresponds to taking cS ¼ 0: In
this case, TA is far from instance optimal. The naive algorithm, which does sorted access to every
object in every list, does no random accesses, and so has a sorted access cost of 0.
We now show that making a lucky wild guess can help.

Example 6.3. Assume that there are 2n þ 1 objects, which we will call simply 1; 2;y; 2n þ 1; and
there are two lists L1 and L2 (see Fig. 1). Assume that in list L1; the objects are in the order
1; 2;y; 2n þ 1; where the top n þ 1 objects 1; 2;y; n þ 1 all have grade 1, and the remaining n

objects n þ 2; n þ 3;y; 2n þ 1 all have grade 0. Assume that in list L2; the objects are in the
reverse order 2n þ 1; 2n;y; 1; where the bottom n objects 1;y; n all have grade 0, and the
remaining n þ 1 objects n þ 1; n þ 2;y; 2n þ 1 all have grade 1. Assume that the aggregation
function is min, and that we are interested in finding the top answer (i.e., k ¼ 1). It is clear that
the top answer is object n þ 1 with overall grade 1 (every object except object n þ 1 has overall
grade 0).
An algorithm that makes a wild guess and asks for the grade of object n þ 1 in both lists would

determine the correct answer and be able to halt safely after two random accesses and no sorted
accesses.12 However, let A be any algorithm (such as TA) that does not make wild guesses. Since
the winning object n þ 1 is in the middle of both sorted lists, it follows that at least n þ 1 sorted
accesses would be required before algorithm A would even see the winning object. &

Fig. 1. Database for Example 6.3.

11We are assuming in this paper that cR and cS are both strictly positive. However, Corollary 6.2 and the proof of

Theorem 9.1 would still hold if we were to allow cR to be 0.
12The algorithm could halt safely, since it ‘‘knows’’ that it has found an object with the maximal possible grade of 1

(this grade is maximal, since we are assuming that all grades lie between 0 and 1). Even if we did not assume that all

grades lie between 0 and 1, one sorted access to either list would provide the information that each overall grade in the

database is at most 1.
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What if we were to enlarge the class A of algorithms to allow queries of the form ‘‘Which object
has the ith largest grade in list j; and what is its grade in list j?’’ We then see from Example 6.3,
where we replace the wild guess by the query that asks for the object with the ðn þ 1Þst largest
grade in each list, that TA is not instance optimal. Effectively, these new queries are ‘‘just as bad’’
as wild guesses.
Example 6.3 shows that TA is not instance optimal over the class A of all algorithms that find

the top answer for min (with two arguments) and the class D of all databases. The next theorem
says that under these circumstances, not only is TA not instance optimal, but neither is any
algorithm.

Theorem 6.4. Let D be the class of all databases. Let A be the class of all algorithms that correctly
find the top answer for min (with two arguments) for every database. There is no deterministic
algorithm (or even probabilistic algorithm that never makes a mistake) that is instance optimal over

A and D:

Proof. Let us modify Example 6.3 to obtain a family of databases, each with two sorted lists. The
first list has the objects 1; 2;y; 2n þ 1 in some order, with the top n þ 1 objects having grade 1,
and the remaining n objects having grade 0. The second list has the objects in the reverse order,
again with the top n þ 1 objects having grade 1, and the remaining n objects having grade 0. As
before, there is a unique object with overall grade 1 (namely, the object in the middle of both
orderings), and every remaining object has overall grade 0.
Let A be an arbitrary deterministic algorithm in A: Consider the following distribution

on databases: each member is as above, and the ordering of the first list is chosen uniformly
at random (with the ordering of the second list the reverse of the ordering of the first list).
It is easy to see that the expected number of accesses (sorted and random together) of
algorithm A under this distribution in order to even see the winning object is at least n þ 1:
Since there must be some database where the number of accesses is at least equal to the
expected number of accesses, the number of accesses on this database is at least n þ 1: However,
as in Example 6.3, there is an algorithm that makes only 2 random accesses and no sorted
accesses. Therefore, the optimality ratio can be arbitrarily large. The theorem follows (in the
deterministic case).
For probabilistic algorithms that never make a mistake, we appeal to Yao’s Minimax Principle

[Yao77] (see also [MR95, Section 2.2], and see [FMRW85, Lemma 4] for a simple proof), which
says that the expected cost of the optimal deterministic algorithm for an arbitrary input
distribution is a lower bound on the expected cost of the optimal probabilistic algorithm that
never makes a mistake. &

Although, as we noted earlier, algorithms that make wild guesses would not normally be
implemented in practice, it is still interesting to consider them. This is because of our
interpretation of instance optimality of an algorithm A as saying that its cost is essentially the
same as the cost of the shortest proof for that database that these are really the top k answers. If
we consider algorithms that allow wild guesses, then we are allowing a larger class of proofs.
Thus, in Example 6.3, the fact that object n þ 1 has (overall) grade 1 is a proof that it is the top
answer.
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We say that an aggregation function t is strictly monotone13 if tðx1;y;xmÞotðx0
1;y;x0

mÞ
whenever xiox0

i for every i: Although average and min are strictly monotone, there are

aggregation functions suggested in the literature for representing conjunction and disjunction that
are monotone but not strictly monotone (see [Fag99,Zim96] for examples). We say that a database
D satisfies the distinctness property if for each i; no two objects in D have the same grade in list Li;
that is, if the grades in list Li are distinct. We now show that these conditions guarantee optimality
of TA even among algorithms that make wild guesses.

Theorem 6.5. Assume that the aggregation function t is strictly monotone. Let D be the class

of all databases that satisfy the distinctness property. Let A be the class of all algorithms
that correctly find the top k answers for t for every database in D: Then TA is instance optimal

over A and D:

Proof. Assume thatAAA; and that algorithmA is run over database DAD: Assume thatA sees
a distinct objects (some possibly multiple times). We shall show that TA halts on D by depth

a þ k: Hence, TA makes at most m2ða þ kÞ accesses, which is m2a plus an additive constant of

m2k: It follows easily that the optimality ratio of TA is at most cm2; where c ¼
maxfcR=cS; cS=cRg:
If there are at most k objects that A does not see, then TA halts by depth a þ k (after having

seen every object), and we are done. So assume that there are at least k þ 1 objects that A does
not see. Since Y is of size k; there is some object V that A does not see and that is not in Y : We
shall show that TA halts on D by depth a þ 1:
Let t be the threshold value of TA at depth a þ 1: Thus, if

%
xi is the grade of the ða þ 1Þth

highest object in list i; then t ¼ tð
%
x1;y;

%
xmÞ: Let us call an object R big if tðRÞXt; and otherwise

call object R small. (Note that these definitions of ‘‘big’’ and ‘‘small’’ are different from those in
the proof of Theorem 6.1.)
We now show that every member R of Y is big. Let x0

i be some grade in the top a þ 1 grades in

list i that is not the grade in list i of any object seen byA: There is such a grade, since all grades in
list i are distinct, and A sees at most a objects. Let D0 agree with D on all objects seen by A; and
let object V have grade x0

i in the ith list of D0; for 1pipm: Hence, the grade of V in D0 is

tðx0
1;y; x0

mÞXt: Since V was unseen, and since V is assigned grades in each list in D0 below the

level that A reached by sorted access, it follows that algorithm A performs exactly the same, and

in particular gives the same output, for databases D and D0: Therefore, algorithm A has R; but
not V ; in its output for database D0: By correctness of A; it follows that R is big, as desired.
We claim that every member R of Y is one of the top a þ 1 members of some list i (and so is

seen by TA by depth a þ 1). Assume by way of contradiction that R is not one of the top a þ 1
members of list i; for 1pipm: By our assumptions that the aggregation function t is strictly
monotone. and that D satisfies the distinctness property, it follows easily that R is small. We
already showed that every member of Y is big. This contradiction proves the claim. It follows that
TA halts by depth a þ 1; as desired. &

13This should not be confused with the aggregation function being both strict and monotone. We apologize for the

clash in terminology, which exists for historical reasons.

R. Fagin et al. / Journal of Computer and System Sciences 66 (2003) 614–656 629



In the proof of Theorem 6.5, we showed that under the assumptions of Theorem 6.5 (strict

monotonicity and the distinctness property) the optimality ratio of TA is at most cm2; where
c ¼ maxfcR=cS; cS=cRg: In Theorem 9.2, we give an aggregation function that is strictly monotone

such that no deterministic algorithm can have an optimality ratio of less than m	2
2

cR
cS
: So in our case

of greatest interest, where cRXcS; there is a gap of around a factor of 2m in the upper and lower
bounds.
The proofs of Theorems 6.1 and 6.5 have several nice properties:

* The proofs would still go through if we were in a scenario where, whenever a random access of
object R in list i takes place, we learn not only the grade of R in list i; but also the relative rank.
Thus, TA is instance optimal even when we allow A to include also algorithms that learn and
make use of such relative rank information.

* As we shall see, we can prove the instance optimality among approximation algorithms of an
approximation version of TA, under the assumptions of Theorem 6.1, with only a small
change to the proof (as we shall see, such a theorem does not hold under the assumptions of
Theorem 6.5).

6.1. Treating k and m as constants

In Theorems 6.1 and 6.5 about the instance optimality of TA, we are treating k (where we are
trying to find the top k answers) and m (the number of sorted lists) as constants. We now discuss
these assumptions.
We begin first with the assumption that k is constant. As in the proofs of Theorems 6.1 and 6.5,

let a be the number of accesses by an algorithmAAA: If aXk; then there is no need to treat k as a
constant. Thus, if we were to restrict the class A of algorithms to contain only algorithms that
make at least k accesses to find the top k answers, then there would be no need to assume that k is
constant. How can it arise that an algorithmA can find the top k answers without making at least
k accesses, and in particular without accessing at least k objects? It must then happen that either
there are at most k objects in the database, or else every object R thatA has not seen has the same
overall grade tðRÞ: The latter will occur, for example, if t is a constant function. Even under these
circumstances, it is still not reasonable in some contexts (such as certain database contexts) to
allow an algorithm A to output an object as a member of the top k objects without ever having
seen it: how would the algorithm even know the name of the object? This is similar to an issue we
raised earlier about wild guesses.
What about the assumption that m is constant? As we noted earlier, this is certainly a

reasonable assumption, since m is the number of arguments of the aggregation function, which
we are of course taking to be fixed. In the case of the assumptions of Theorem 6.1
(no wild guesses), Corollary 6.2 tells us that at least for strict aggregation functions,
this dependence of the optimality ratio on m is inevitable. Similarly, in the case of the
assumptions of Theorem 6.5 (strict monotonicity and the distinctness property), Theorem 9.2
tells us that at least for certain aggregation functions, this dependence of the optimality ratio on m

is inevitable.
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6.2. Turning TA into an approximation algorithm, and allowing early stopping

TA can easily be modified to be an approximation algorithm. It can then be used in situations
where we care only about the approximately top k answers. Thus, let y41 be given. Define a
y-approximation to the top k answers (for t over database D) to be a collection of k objects (and
their grades) such that for each y among these k objects and each z not among these k objects,
ytðyÞXtðzÞ: We can modify TA to find a y-approximation to the top k answers by modifying the
stopping rule in Step 2 to say ‘‘As soon as at least k objects have been seen whose grade is at least
equal to t=y; then halt.’’ Let us call this approximation algorithm TAy:

Theorem 6.6. Assume that y41 and that the aggregation function t is monotone. Then TAy

correctly finds a y-approximation to the top k answers for t:

Proof. This follows from a straightforward modification of the proof of Theorem 4.1. &

The next theorem says that when we restrict attention to algorithms that do not make wild
guesses, then TAy is instance optimal.

Theorem 6.7. Assume that y41 and that the aggregation function t is monotone. Let D be the class of
all databases. Let A be the class of all algorithms that find a y-approximation to the top k answers for t
for every database and that do not make wild guesses. Then TAy is instance optimal over A and D:

Proof. The proof of Theorem 6.1 carries over verbatim provided we modify the definition of an
object R being ‘‘big’’ to be that ytðRÞXtA: &

Theorem 6.7 shows that the analog of Theorem 6.1 holds for TAy: The next example, which is a
modification of Example 6.3, shows that the analog of Theorem 6.5 does not hold for TAy: One
interpretation of these results is that Theorem 6.1 is sufficiently robust that it can survive the
perturbation of allowing approximations, whereas Theorem 6.5 is not.

Example 6.8. Assume that y41; that there are 2n þ 1 objects, which we will call simply
1; 2;y; 2n þ 1; and that there are two lists L1 and L2 (see Fig. 2).

14 Assume that in list L1; the
grades are assigned so that all grades are different, the ordering of the objects by grade is

1; 2;y; 2n þ 1; object n þ 1 has the grade 1=y; and object n þ 2 has the grade 1=ð2y2Þ: Assume
that in list L2; the grades are assigned so that all grades are different, the ordering of the objects by
grade is 2n þ 1; 2n;y; 1 (the reverse of the ordering in L1), object n þ 1 has the grade 1=y; and
object n has the grade 1=ð2y2Þ: Assume that the aggregation function is min, and that k ¼ 1 (so
that we are interested in finding a y-approximation to the top answer). The (overall) grade of each
object other than object n þ 1 is at most a ¼ 1=ð2y2Þ: Since ya ¼ 1=ð2yÞ; which is less than the
grade 1=y of object n þ 1; it follows that the unique object that can be returned by an algorithm
such as TAy that correctly finds a y-approximation to the top answer is the object n þ 1:

14 In this and later figures, each centered dot represents a value that it is not important to give explicitly.
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An algorithm that makes a wild guess and asks for the grade of object n þ 1 in both lists would
determine the correct answer and be able to halt safely after two random accesses and no sorted
accesses. The algorithm could halt safely, since it ‘‘knows’’ that it has found an object R such that
ytðRÞ ¼ 1; and so ytðRÞ is at least as big as every possible grade. However, under sorted access for
list L1; the algorithm TAy would see the objects in the order 1; 2;y; 2n þ 1; and under sorted
access for list L2; the algorithm TAy would see the objects in the reverse order. Since the winning
object n þ 1 is in the middle of both sorted lists, it follows that at least n þ 1 sorted accesses would
be required before TAy would even see the winning object. &

Just as we converted Example 6.3 into Theorem 6.4, we can convert Example 6.8 into the
following theorem.

Theorem 6.9. Assume that y41: Let D be the class of all databases that satisfy the distinctness
property. Let A be the class of all algorithms that find a y-approximation to the top answer for min
for every database in D: There is no deterministic algorithm (or even probabilistic algorithm that
never makes a mistake) that is instance optimal over A and D:

Early stopping of TA: It is straightforward to modify TAy into an interactive process where at
all times the system can show the user the current top k list along with a guarantee about the
degree of approximation to the correct answer. At any time, the user can decide, based on this
guarantee, whether he would like to stop the process. Thus, let b be the grade of the kth (bottom)
object in the current top k list, let t be the current threshold value, and let y ¼ t=b: If the
algorithm is stopped early, we have y41: It is easy to see that similar to the situation of Theorem
6.6, the current top k list is then a y-approximation to the top k answers. Thus, the user can
be shown the current top k list and the number y; with a guarantee that he is being shown a
y-approximation to the top k answers.

7. Restricting sorted access

Bruno et al. [BGM02] discuss a scenario where it is not possible to access certain of the lists
under sorted access. They give a nice example where the user wants to get information about

Fig. 2. Database for Example 6.8.
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restaurants. The user has an aggregation function that gives a score to each restaurant based on
how good it is, how inexpensive it is, and how close it is. In this example, the Zagat-Review web
site gives ratings of restaurants, the NYT-Review web site gives prices, and the MapQuest web site
gives distances. Only the Zagat-Review web site can be accessed under sorted access (with the best
restaurants at the top of the list).
Let Z be the set of indices i of those lists Li that can be accessed under sorted access. We assume

that Z is nonempty, that is, that at least one of the lists can be accessed under sorted access. We
take m0 to be the cardinality jZj of Z (and as before, take m to be the total number of sorted lists).
Define TAZ to be the following natural modification of TA, that deals with the restriction on
sorted access.

1. Do sorted access in parallel to each of the m0 sorted lists Li with iAZ: As an object R is seen
under sorted access in some list, do random access as needed to the other lists to find the grade
xi of object R in every list Li: Then compute the grade tðRÞ ¼ tðx1;y; xmÞ of object R: If this
grade is one of the k highest we have seen, then remember object R and its grade tðRÞ (ties are
broken arbitrarily, so that only k objects and their grades need to be remembered at any time).

2. For each list Li with iAZ; let
%
xi be the grade of the last object seen under sorted access. For

each list Li with ieZ; let
%
xi ¼ 1: Define the threshold value t to be tð

%
x1;y;

%
xmÞ: As soon as at

least k objects have been seen whose grade is at least equal to t; then halt.15

3. Let Y be a set containing the k objects that have been seen with the highest grades. The output
is then the graded set fðR; tðRÞÞ j RAYg:

In the case where jZj ¼ 1; algorithm TAZ is essentially the same as the algorithm TA-Adapt in
[BGM02].
In footnote 7, we noted that each of the algorithms in this paper where there is ‘‘sorted access in

parallel’’ remain correct even when sorted access is not in lockstep. Algorithm TAZ provides an
extreme example, where only some of the sorted lists are accessed under sorted access, and the
remaining sorted lists are accessed under random access only.
We now show that Theorem 6.1, which says that TA is instance optimal when we restrict attention

to algorithms that do not make wild guesses, and Corollary 6.2, which says that the optimality ratio
of TA is best possible when we restrict attention to algorithms that do not make wild guesses, both
generalize to hold for TAZ: What about our other theorem about instance optimality of TA
(Theorem 6.5), which says that TA is instance optimal when the aggregation function t is strictly
monotone and the class of legal databases satisfies the distinctness property? Interestingly enough,
we shall show (Example 7.3) that this latter theorem does not generalize to TAZ:

Theorem 7.1. Assume that the aggregation function t is monotone. Let D be the class of all
databases. Let A be the class of all algorithms that correctly find the top k answers for t for every

database and that do not make wild guesses, where the only lists that may be accessed under sorted
access are those lists Li with iAZ: Then TAZ is instance optimal over A and D:

15As we shall see in Example 7.3, even though there are at least k objects, it is possible that after seeing the grade of

every object in every list, and thus having done sorted access to every object in every list Li with iAZ; there are not at
least k objects with a grade that is at least equal to the final threshold value t: In this situation, we say that TAZ halts

after it has seen the grade of every object in every list. This situation cannot happen with TA.
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Proof. The proof is essentially the same as the proof of Theorem 6.1, except for the bookkeeping.
Assume thatAAA; and that algorithmA is run over databaseD: Assume that algorithmA halts
at depth d (that is, if di is the number of objects seen under sorted access to list i; for 1pipm; then
d ¼ maxi di). Assume thatA sees a distinct objects (some possibly multiple times). SinceAmakes
no wild guesses, and sees a distinct objects, it must make at least a sorted accesses, and so its
middleware cost is at least acS: By the same proof as that of Theorem 6.1, it follows that TAZ halts
on D by depth a þ k: Hence, the middleware cost of TAZ is at most ða þ kÞm0cS þ ða þ kÞm0

ðm 	 1ÞcR; which is am0cS þ am0ðm 	 1ÞcR plus an additive constant of km0cS þ km0ðm 	 1ÞcR: So
the optimality ratio of TAZ is at most am0cSþam0ðm	1ÞcR

acS
¼ m0 þ m0ðm 	 1ÞcR=cS: &

The next result, which is analogous to Corollary 6.2, is a corollary of the proof of Theorem 7.1
and of a lower bound in Section 9.

Corollary 7.2. Let t be an arbitrary monotone, strict aggregation function with m arguments.
Assume that jZj ¼ m0: Let D be the class of all databases. Let A be the class of all algorithms that

correctly find the top k answers for t for every database, and that do not make wild guesses, where the
only lists that may be accessed under sorted access are those lists Li with iAZ: Then TAZ is instance

optimal over A and D; with optimality ratio m0 þ m0ðm 	 1ÞcR=cS: No deterministic algorithm has a
lower optimality ratio.

Proof. In the proof of Theorem 7.1, it is shown that TAZ has an optimality ratio of at most
m0 þ m0ðm 	 1ÞcR=cS for an arbitrary monotone aggregation function. The lower bound follows
from a minor variation of the proof of Theorem 9.1, where we take c ¼ ðdm0 	 1ÞcS þ ðdm0 	
1Þðm 	 1ÞcR: The simple details are left to the reader. &

Theorem 6.5 says that if the aggregation function t is strictly monotone, and if the class of legal
databases satisfies the distinctness property, then TA is instance optimal. We now show by
example that the analogous result fails for TAZ: In fact, we shall show that TAZ need not be
instance optimal even if we assume not only that aggregation function t is strictly monotone, and
that the class of legal databases satisfies the distinctness property, but in addition we assume that
the aggregation function t is strict, and that no wild guesses are allowed.

Example 7.3. Assume that the database satisfies the distinctness property, that there are only
three sorted lists L1; L2; and L3 (see Fig. 3), and that Z ¼ f1g (so that only L1 may be accessed
under sorted access). Let t be the aggregation function where tðx; y; zÞ ¼ minfx; yg if z ¼ 1; and

Fig. 3. Database for Example 7.3.
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tðx; y; zÞ ¼ ðminfx; y; zgÞ=2 if za1: It is easy to see that t is strictly monotone and strict. Assume
that we are interested in finding the top answer (i.e., k ¼ 1).
Assume that object R has grade 1 in lists L1 and L3; and grade 0.6 in list L2: Hence tðRÞ ¼ 0:6:

Note that for each object R0 other than R; necessarily the grade of R0 in L3 is not 1 (by the
distinctness property), and so tðR0Þp0:5: Therefore, R is the unique top object.
Assume that the minimum grade in list L1 is 0.7. It follows that the threshold value is never less

than 0.7. Therefore, TAZ does not halt until it has seen the grade of every object in every list.
However, let A be an algorithm that does sorted access to the top object R in list L1 and random
access to R in lists L2 and L3; and then halts and announces that R is the top object. AlgorithmA
does only one sorted access and two random accesses on this database. It is safe for algorithm A
to halt, since it ‘‘knows’’ that object R has grade 0.6 and that no other object can have grade
bigger than 0.5. Since there can be an arbitrarily large number of objects, it follows that TAZ is
not instance optimal. Hence, the analogue of Theorem 6.5 fails for TAZ:
It is instructive to understand ‘‘what goes wrong’’ in this example and why this same

problem does not also cause Theorems 6.5 or 7.1 to fail. Intuitively, what goes wrong in
this example is that the threshold value is too conservative an estimate as an upper bound on
the grade of unseen objects. By contrast, in the case of Theorem 7.1, some unseen object may have
an overall grade equal to the threshold value (since the distinctness property may fail), so
the threshold value is not too conservative an estimate. In the case of Theorem 6.5, an analysis of
the proof shows that we consider the threshold value at depth a þ 1 rather than depth a:
Intuitively, although the threshold value may be too conservative an estimate, the threshold value
one extra level down is not.

8. Minimizing random access

Thus far in this paper, we have not been especially concerned about the number of random
accesses. For every sorted access in TA, up to m 	 1 random accesses take place. Recall that if s is
the number of sorted accesses, and r is the number of random accesses, then the middleware cost
is scS þ rcR; for some positive constants cS and cR: Our notion of instance optimality ignores
constant factors like m and cR (they are simply multiplicative factors in the optimality ratio).
Hence, there has been no motivation so far to concern ourself with the number of random
accesses.
There are, however, some scenarios where we must pay attention to the number of random

accesses. The first scenario is where random accesses are impossible (which corresponds to
cR ¼ N). As we discussed in Section 2, an example of this first scenario arises when the
middleware system is a text retrieval system, and the sorted lists correspond to the results of
search engines. Another scenario is where random accesses are not impossible, but simply
expensive relative to sorted access. An example of this second scenario arises when the costs
correspond to disk access (sequential versus random). Then we would like the optimality ratio to
be independent of cR=cS: That is, if we allow cR and cS to vary, instead of treating them as
constants, we would still like the optimality ratio to be bounded.
In this section we describe algorithms that do not use random access frivolously. We give two

algorithms. One uses no random accesses at all, and hence is called NRA (‘‘No Random Access’’).
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The second algorithm takes into account the cost of a random access. It is a combination of NRA
and TA, and so we call it CA (‘‘Combined Algorithm’’).
Both algorithms access the information in a natural way, and, in the spirit of the knowledge-

based programs of Section 4, halt when they know that no improvement can take place. In
general, at each point in an execution of these algorithms where a number of sorted and random
accesses have taken place, for each object R there is a subset SðRÞ ¼ fi1; i2;y; icgDf1;y;mg of
the fields of R where the algorithm has determined the values xi1 ;xi2 ;y;xic of these fields. Given
this information, we define functions of this information that are lower and upper bounds on the
value tðRÞ can obtain. The algorithm proceeds until there are no more candidates whose current
upper bound is better than the current kth largest lower bound.

Lower bound: Given an object R and subset SðRÞ ¼ fi1; i2;y; icgDf1;y;mg of known fields of
R; with values xi1 ;xi2 ;y; xic for these known fields, we define WSðRÞ (or W(R) if the subset
S ¼ SðRÞ is understood from the context) as the minimum (or worst) value the aggregation
function t can attain for object R: When t is monotone, this minimum value is obtained by
substituting for each missing field iAf1;y;mg\S the value 0, and applying t to the result. For
example, if S ¼ f1;y; cg; then WSðRÞ ¼ tðx1; x2;y; xc; 0;y; 0Þ: The following property is
immediate from the definition:

Proposition 8.1. If S is the set of known fields of object R; then tðRÞXWSðRÞ:

In other words, WðRÞ represents a lower bound on tðRÞ: Is it the best possible? Yes, unless we
have additional information, such as that the value 0 does not appear in the lists. In general, as an
algorithm progresses and we learn more fields of an object R; its W value becomes larger (or at
least not smaller). For some aggregation functions t the value WðRÞ yields no knowledge until S
includes all fields: for instance if t is min; then WðRÞ is 0 until all values are discovered. For other
functions it is more meaningful. For instance, when t is the median of three fields, then as soon as
two of them are known WðRÞ is at least the smaller of the two.

Upper bound: The best value an object can attain depends on other information we have. We
will use only the bottom values in each field, defined as in TA:

%
xi is the last (smallest) value

obtained via sorted access in list Li: Given an object R and subset SðRÞ ¼
fi1; i2;y; icgDf1;y;mg of known fields of R; with values xi1 ; xi2 ;y; xic for these known fields,
we define BSðRÞ (or B(R) if the subset S is understood from the context) as the maximum (or best)
value the aggregation function t can attain for object R:When t is monotone, this maximum value
is obtained by substituting for each missing field iAf1;y;mg\S the value

%
xi; and applying t to the

result. For example, if S ¼ f1;y; cg; then BSðRÞ ¼ tðx1;x2;y;xc;
%
xcþ1;y;

%
xmÞ: The following

property is immediate from the definition:

Proposition 8.2. If S is the set of known fields of object R; then tðRÞpBSðRÞ:

In other words, BðRÞ represents an upper bound on the value tðRÞ (or the best value tðRÞ can
be), given the information we have so far. Is it the best upper bound? If the lists may each contain
equal values (which in general we assume they can), then given the information we have it is
possible that tðRÞ ¼ BðRÞ: If the distinctness property holds (equalities are not allowed in a list),
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then for continuous aggregation functions t it is the case that BðRÞ is the best upper bound on the
value t can have on R: In general, as an algorithm progresses and we learn more fields of an object
R and the bottom values

%
xi decrease, BðRÞ can only decrease (or remain the same).

An important special case is an object R that has not been encountered at all. In this case
BðRÞ ¼ tð

%
x1;

%
x2;y;

%
xmÞ: Note that this is the same as the threshold value in TA.

8.1. No Random Access Algorithm—NRA

As we have discussed, there are situations where random accesses are impossible. We now
consider algorithms that make no random accesses. Since random accesses are impossible, in this
section we change our criterion for the desired output. In earlier sections, we demanded that the
output be the ‘‘top k answers’’, which consists of the top k objects, along with their (overall)
grades. In this section, we make the weaker requirement that the output consist of the top k

objects, without their grades. The reason is that, since random access is impossible, it may be
much cheaper (that is, require many fewer accesses) to find the top k objects without their grades.
This is because, as we now show by example, we can sometimes obtain enough partial information
about grades to know that an object is in the top k objects without knowing its exact grade.

Example 8.3. Consider the following scenario, where the aggregation function is the average, and
where k ¼ 1 (so that we are interested only in the top object). There are only two sorted lists L1

and L2 (see Fig. 4), and the grade of every object in both L1 and L2 is 1=3; except that object R has
grade 1 in L1 and grade 0 in L2: After two sorted accesses to L1 and one sorted access to L2; there
is enough information to know that object R is the top object (its average grade is at least 1=2; and
every other object has average grade at most 1/3). If we wished to find the grade of object R; we
would need to do sorted access to all of L2:

Note that we are requiring only that the output consist of the top k objects, with no information
being given about the sorted order (sorted by grade). If we wish to know the sorted order, this can
easily be determined by finding the top object, the top 2 objects, etc. Let Ci be the cost of finding
the top i objects. It is interesting to note that there is no necessary relationship between Ci and Cj

for ioj: For example, in Example 8.3, we have C1oC2: If we were to modify Example 8.3 so that
there are two objects R and R0 with grade 1 in L1; where the grade of R in L2 is 0, and the grade of
R0 in L2 is 1=4 (and so that, as before, all remaining grades of all objects in both lists is 1=3), then
C2oC1:
The cost of finding the top k objects in sorted order is at most k maxi Ci: Since we are treating k

as a constant, it follows easily that we can convert our instance optimal algorithm (which we shall

Fig. 4. Database for Example 8.3.
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give shortly) for finding the top k objects into an instance optimal algorithm for finding the top k

objects in sorted order. In practice, it is usually good enough to know the top k objects in sorted
order, without knowing the grades. In fact, the major search engines on the web no longer give
grades (possibly to prevent reverse engineering).
The algorithm NRA is as follows.

1. Do sorted access in parallel to each of the m sorted lists Li: At each depth d (when d objects
have been accessed under sorted access in each list):
� Maintain the bottom values

%
x
ðdÞ
1 ;

%
x
ðdÞ
2 ;y;

%
x
ðdÞ
m encountered in the lists.

� For every object R with discovered fields S ¼ SðdÞðRÞDf1;y;mg; compute the values

W ðdÞðRÞ ¼ WSðRÞ and BðdÞðRÞ ¼ BSðRÞ: (For objects R that have not been seen, these

values are virtually computed as W ðdÞðRÞ ¼ tð0;y; 0Þ; and BðdÞðRÞ ¼ tð
%
x1;

%
x2;y;

%
xmÞ;

which is the threshold value.)
� Let T

ðdÞ
k ; the current top k list, contain the k objects with the largest W ðdÞ values seen so far

(and their grades); if two objects have the same W ðdÞ value, then ties are broken using the

BðdÞ values, such that the object with the highest BðdÞ value wins (and arbitrarily among

objects that tie for the highest BðdÞ value). Let M
ðdÞ
k be the kth largest W ðdÞ value

in T
ðdÞ
k :

2. Call an object R viable if BðdÞðRÞ4M
ðdÞ
k : Halt when (a) at least k distinct objects have been

seen (so that in particular T
ðdÞ
k contains k objects) and (b) there are no viable objects left

outside T
ðdÞ
k ; that is, when BðdÞðRÞpM

ðdÞ
k for all ReT

ðdÞ
k : Return the objects in T

ðdÞ
k :

We now show that NRA is correct for each monotone aggregation function t:

Theorem 8.4. If the aggregation function t is monotone, then NRA correctly finds the top k objects.

Proof. Assume that NRA halts after d sorted accesses to each list, and that T
ðdÞ
k ¼

fR1;R2;y;Rkg: Thus, the objects output by NRA are R1;R2;y;Rk: Let R be an object not
among R1;R2;y;Rk: We must show that tðRÞptðRiÞ for each i:
Since the algorithm halts at depth d; we know that R is nonviable at depth d; that is,

BðdÞðRÞpM
ðdÞ
k : Now tðRÞpBðdÞðRÞ (Proposition 8.2). Also for each of the k objects Ri we have

M
ðdÞ
k pW ðdÞðRiÞptðRiÞ (from Proposition 8.1 and the definition of M

ðdÞ
k ). Combining the

inequalities we have shown, we have

tðRÞpBðdÞðRÞpM
ðdÞ
k pW ðdÞðRiÞptðRiÞ

for each i; as desired. &

Note that the tie-breaking mechanism was not needed for correctness (but will be used for
instance optimality). We now show instance optimality of NRA over all algorithms that do not
use random access:
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Theorem 8.5. Assume that the aggregation function t is monotone. Let D be the class of all
databases. Let A be the class of all algorithms that correctly find the top k objects for t for every

database and that do not make random accesses. Then NRA is instance optimal over A and D:

Proof. AssumeAAA: If algorithm NRA halts at depth d; and NRA saw at least k distinct objects

for the first time by depth d; then NRA makes only a constant number of accesses (at most km2)
on that database. So suppose that on some databaseD; algorithm NRA halts at depth d; and that
NRA saw at least k distinct objects by depth d 	 1: We claim that A must get to depth d in at
least one of the lists. It then follows that the optimality ratio of NRA is at most m; and the
theorem follows. Suppose the claim fails; then from the fact that algorithm NRA did not halt

at depth d 	 1 there is an object ReT
ðd	1Þ
k such that Bðd	1ÞðRÞ4M

ðd	1Þ
k : We know that

W ðd	1ÞðRÞpM
ðd	1Þ
k ; since ReT

ðd	1Þ
k : Further, we know from the tie-breaking mechanism that if

W ðd	1ÞðRÞ ¼ M
ðd	1Þ
k ; then for each RiAT

ðd	1Þ
k such that W ðdÞðRiÞ ¼ M

ðdÞ
k necessarily

Bðd	1ÞðRiÞXBðd	1ÞðRÞ:
There are now two cases, depending on whether or not algorithmA outputs R as one of the top

k objects. In either case, we construct a database on which A errs.

Case 1: Algorithm A outputs R as one of the top k objects. We construct a database D0 where
A errs as follows. Database D0 is identical to D up to depth d 	 1 (that is, for each i the top d 	 1

objects and their grades are the same in list Li for D
0 as for D). For each Ri and for each missing

field jAf1;y;mg\Sðd	1ÞðRiÞ assign value
%
x
ðd	1Þ
j : For the object R assign all of the missing fields in

f1;y;mg\Sðd	1ÞðRÞ the value 0. We now show that tðRÞotðRjÞ for each j with 1pjpk: Hence, R

is not one of the top k objects, and so algorithm A erred. First, we have

tðRÞ ¼ W ðd	1ÞðRÞpM
ðd	1Þ
k : ð3Þ

Also, for all i with 1pipk we have

M
ðd	1Þ
k pW ðd	1ÞðRiÞpBðd	1ÞðRiÞ ¼ tðRiÞ: ð4Þ

If W ðd	1ÞðRÞoM
ðd	1Þ
k ; then we have from (3) and (4) that tðRÞotðRiÞ for each i; as desired. So

assume that W ðd	1ÞðRÞ ¼ M
ðd	1Þ
k : Again, we wish to show that tðRÞotðRiÞ for each i:We consider

separately in two subcases those i where M
ðd	1Þ
k ¼ W ðd	1ÞðRiÞ and those where

M
ðd	1Þ
k aW ðd	1ÞðRiÞ:
Subcase 1: M

ðd	1Þ
k ¼ W ðd	1ÞðRiÞ: Then tðRÞpM

ðd	1Þ
k oBðd	1ÞðRÞpBðd	1ÞðRiÞ ¼ tðRiÞ; as

desired, where the last inequality follows from the tie-breaking mechanism.

Subcase 2: M
ðd	1Þ
k aW ðd	1ÞðRiÞ; and so M

ðd	1Þ
k oW ðd	1ÞðRiÞ: From the inequalities in (4), we

see that M
ðd	1Þ
k otðRiÞ: So by (3), we have tðRÞotðRiÞ; as desired.

Case 2: AlgorithmA does not output R as one of the top k objects. We construct a databaseD00

whereA errs as follows. Database D00 is identical to D up to depth d 	 1: At depth d it gives each

missing field iAf1;y;mg\Sðd	1ÞðRÞ of R the value
%
x
ðd	1Þ
i : For all remaining missing fields,

including missing fields of R1;y;Rk; assign the value 0. Now tðRÞ ¼ Bðd	1ÞðRÞ4M
ðd	1Þ
k ; whereas
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(a) for at least one Ri (namely, that Ri where W ðdÞðRiÞ ¼ M
ðdÞ
k ) we have tðRiÞ ¼ M

ðd	1Þ
k ; and (b)

for each object R0 not among R1;R2;y;Rk or R we have that tðR0ÞpM
ðd	1Þ
k :Hence, algorithmA

erred in not outputting R as one of the top k objects. &

Note that the issue of ‘‘wild guesses’’ is not relevant here, since we are restricting our attention
to algorithms that make no random accesses (and hence no wild guesses).
The next result, which is analogous to Corollaries 6.2 and 7.2, is a corollary of the proof

of Theorem 8.4 and of a lower bound in Section 9. Specifically, in the proof of Theorem 8.4,
we showed that the optimality ratio of NRA is at most m: The next result says that
if the aggregation function is strict, then the optimality ratio is precisely m; and this is best
possible.

Corollary 8.6. Let t be an arbitrary monotone, strict aggregation function with m arguments. Let D
be the class of all databases. Let A be the class of all algorithms that correctly find the top k objects

for t for every database and that do not make random accesses. Then NRA is instance optimal over A
and D; with optimality ratio m: No deterministic algorithm has a lower optimality ratio.

Proof. In the proof of Theorem 8.4, it is shown that NRA has an optimality ratio of at most m for
an arbitrary monotone aggregation function. The lower bound follows from Theorem 9.5. &

Remark 8.7. Unfortunately, the execution of NRA may require a lot of bookkeeping at each step,

since when NRA does sorted access at depth c (for 1pcpd), the value of BðcÞðRÞ must be
updated for every object R seen so far. This may be up to cm updates for each depth c; which
yields a total of Oðd2mÞ updates by depth d: Furthermore, unlike TA, it no longer suffices to
have bounded buffers. However, for a specific function like min it is possible that by using
appropriate data structures the computation can be greatly simplified. This is an issue for further
investigation.

8.2. Taking into account the random access cost

We now present the combined algorithm CA that does use random accesses, but takes their cost
(relative to sorted access) into account. As before, let cS be the cost of a sorted access and cR be
the cost of a random access. The middleware cost of an algorithm that makes s sorted accesses and
r random ones is scS þ rcR:We know that TA is instance optimal; however, the optimality ratio is
a function of the relative cost of a random access to a sorted access, that is cR=cS: Our goal in this
section is to find an algorithm that is instance optimal and where the optimality ratio is
independent of cR=cS: One can view CA as a merge between TA and NRA. Let h ¼ IcR=cSm: We
assume in this section that cRXcS; so that hX1: The idea of CA is to run NRA, but every h steps
to run a random access phase and update the information (the upper and lower bounds B and W )
accordingly. As in Section 8.1, in this section we require only that the output consist of the top k
objects, without their grades. If we wish to obtain the grades, this requires only a constant number
of additional random accesses, and so has no effect on instance optimality.
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The algorithm CA is as follows.

1. Do sorted access in parallel to each of the m sorted lists Li: At each depth d (when d objects
have been accessed under sorted access in each list):
� Maintain the bottom values

%
x
ðdÞ
1 ;

%
x
ðdÞ
2 ;y;

%
x
ðdÞ
m encountered in the lists.

� For every object R with discovered fields S ¼ SðdÞðRÞDf1;y;mg; compute the values

W ðdÞðRÞ ¼ WSðRÞ and BðdÞðRÞ ¼ BSðRÞ: (For objects R that have not been seen, these

values are virtually computed as W ðdÞðRÞ ¼ tð0;y; 0Þ; and BðdÞðRÞ ¼ tð
%
x1;

%
x2;y;

%
xmÞ;

which is the threshold value.)
� Let T

ðdÞ
k ; the current top k list, contain the k objects with the largest W ðdÞ values seen so far

(and their grades); if two objects have the same W ðdÞ value, then ties are broken using the

BðdÞ values, such that the object with the highest BðdÞ value wins (and arbitrarily among

objects that tie for the highest BðdÞ value). Let M
ðdÞ
k be the kth largest W ðdÞ value in T

ðdÞ
k :

2. Call an object R viable if BðdÞðRÞ4M
ðdÞ
k : Every h ¼ IcR=cSm steps (that is, every time the

depth of sorted access increases by h), do the following: pick the viable object that has been

seen for which not all fields are known and whose BðdÞ value is as big as possible (ties are
broken arbitrarily). Perform random accesses for all of its (at most m 	 1) missing fields. If
there is no such object, then do not do a random access on this step.16

3. Halt when (a) at least k distinct objects have been seen (so that in particular T
ðdÞ
k contains k

objects) and (b) there are no viable objects left outside T
ðdÞ
k ; that is, when BðdÞðRÞpM

ðdÞ
k for all

ReT
ðdÞ
k : Return the objects in T

ðdÞ
k :

Note that if h is very large (say larger than the number of objects in the database), then
algorithm CA is the same as NRA, since no random access is performed. If h ¼ 1; then algorithm
CA is similar to TA, but different in intriguing ways. For each step of doing sorted access in
parallel, CA performs random accesses for all of the missing fields of some object. Instead of
performing random accesses for all of the missing fields of some object, TA performs random
accesses for all of the missing fields of every object seen in sorted access. Later (Section 8.4), we
discuss further CA versus TA.
For moderate values of h it is not the case that CA is equivalent to the intermittent algorithm

that executes h steps of NRA and then one step of TA. (That is, the intermittent algorithm does
random accesses in the same time order as TA does, but simply delays them, so that it does
random accesses every h steps.) We show later (Section 8.4) an example where the intermittent
algorithm performs much worse than CA. The difference between the algorithms is that CA picks

16The reason for this escape clause is so that CA does not make a wild guess. We now give an example where this

escape clause may be invoked. Assume that k ¼ 2 and cR ¼ cS: Assume that on the first round of sorted access in

parallel, the same object appears in all of the lists. Then on the first opportunity to do a random access, the escape

clause must be invoked, since every field is known for the only object that has been seen. In the proof of Theorem 8.9,

we show that if the escape clause is invoked after depth k (that is, after there has been at least k rounds of sorted access

in parallel), then CA halts immediately after.
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‘‘wisely’’ on which objects to perform the random access, namely, according to their BðdÞ values.
Thus, it is not enough to consider the knowledge-based program of Section 4 to design the
instance optimal algorithm CA; we need also a principle as to which objects to perform the
random access on. This was not an issue in designing TA, since in that context, random accesses
increase the cost by only a constant multiple.
Correctness of CA is essentially the same as for NRA, since the same upper and lower bounds

are maintained:

Theorem 8.8. If the aggregation function t is monotone, then CA correctly finds the top k objects.

In the next section, we consider scenarios under which CA is instance optimal, with the
optimality ratio independent of cR=cS:

8.3. Instance optimality of CA

In Section 4, we gave two scenarios under which TA is instance optimal over A and D: In the
first scenario (from Theorem 6.1), (1) the aggregation function t is monotone; (2) D is the class of
all databases; and (c) A is the class of all algorithms that correctly find the top k objects for t for
every database and that do not make wild guesses. In the second scenario (from Theorem 6.5), (1)
the aggregation function t is strictly monotone; (2) D is the class of all databases that satisfy the
distinctness property; and (3) A is the class of all algorithms that correctly find the top k objects
for t for every database in D: We might hope that under either of these two scenarios, CA is
instance optimal, with optimality ratio independent of cR=cS: Unfortunately, this hope is false, in
both scenarios. In fact, our theorems say that not only does CA fail to fulfill this hope, but so does
every algorithm. In other words, neither of these scenarios is enough to guarantee the existence of
an algorithm with optimality ratio independent of cR=cS: In the case of the first scenario, we
obtain this negative result from Theorem 9.1. In the case of the second scenario, we obtain this
negative result from Theorem 9.2.
However, we shall show that by slightly strengthening the assumption on t in the second

scenario, CA becomes instance optimal, with optimality ratio independent of cR=cS: Let us say
that the aggregation function t is strictly monotone in each argument if whenever one argument is
strictly increased and the remaining arguments are held fixed, then the value of the aggregation
function is strictly increased. That is, t is strictly monotone in each argument if xiox0

i implies that

tðx1;y; xi	1; xi;xiþ1;y; xmÞotðx1;y;xi	1;x
0
i; xiþ1;y;xmÞ:

The average (or sum) is strictly monotone in each argument, whereas min is not.
We now show (Theorem 8.9) that in the second scenario above, if we replace ‘‘The aggregation

function t is strictly monotone’’ by ‘‘The aggregation function t is strictly monotone in each
argument’’, then CA is instance optimal, with optimality ratio independent of cR=cS:We shall also
show (Theorem 8.10) that the same result holds if instead, we simply take t to be min, even though
min is not strictly monotone in each argument.

Theorem 8.9. Assume that the aggregation function t is strictly monotone in each argument. Let D

be the class of all databases that satisfy the distinctness property. Let A be the class of all algorithms
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that correctly find the top k objects for t for every database in D: Then CA is instance optimal over A

and D; with optimality ratio independent of cR=cS:

Proof. AssumeDAD: Assume that when CA runs onD; it halts after doing sorted access to depth
d: Thus, CA makes md sorted accesses and r random accesses, where rpmd=h: Note that in CA
the two components (mdcS and rcR) of the cost mdcS þ rcR are roughly equal, and their sum is at
most 2mdcS: AssumeAAA; and thatAmakes d 0 sorted accesses and r0 random accesses. The cost
that A incurs is therefore d 0cS þ r0cR:
Suppose that algorithm A announces that the objects R0

1;R0
2;y;R0

k are the top k: First, we
claim that each R0

i appears in the top d 0 þ r0 þ 1 objects of at least one list Lj: Suppose not. Then
there is an object R0

i output by A such that in each list there is a vacancy above R0
i that has not

been accessed either by sorted or random access. There is a database D0 identical to D in all
locations accessed by A but with an object R0efR0

1;R0
2;y;R0

kg whose values reside in these

vacancies. From the distinctness property, for each field the value for R0 is strictly larger than that
for R0

i; and from strict monotonicity of t we have tðR0Þ4tðR0
iÞ; making R0 a mandatory member of

the output. (Note: we used only strict monotonicity of t rather than the stronger property of being
strictly monotone in each variable.) This is a contradiction. Hence, each R0

i appears in the top

d 0 þ r0 þ 1 objects of at least one list Lj:
Let Sk ¼ minftðR0

1Þ; tðR0
2Þ;y; tðR0

kÞg: Define the set C of objects not output byA whose B value

at step d 0 þ r0 þ 1 of CA (that is, after d 0 þ r0 þ 1 parallel sorted accesses) is more than Sk; that is,

C ¼ fRefR0
1;R

0
2;y;R0

kgjBðd 0þr0þ1ÞðRÞ4Skg:

We claim that for each object RAC; algorithm A must use a random access (to determine R’s

value in some list). Suppose not. Then we show a databaseD0 on which algorithmA performs the
same as on D but where tðRÞ4Sk: This is a contradiction, since then R would have to be in the

output ofA: For each field i of R that is not accessed byA; we assign inD0 the highest value from
the top d 0 þ r0 þ 1 locations of Li that had not been accessed by A; such ‘‘free’’ locations exist by
the pigeonhole principle, since A ‘‘touched’’ at most d 0 þ r0 objects. Now each field i of R that is
accessed by A is one of the top d 0 values in Li; since by assumption R was accessed only under

sorted access by A: Also, by construction, in D0 each remaining field i of R is one of the top

d 0 þ r0 þ 1 values in Li: So in D0; every field i of R is one of the top d 0 þ r0 þ 1 values in Li: Also,
by construction, the value of every field i of R is at least as high in D0 as in D: It follows by

monotonicity of t that the value of tðRÞ in D0 is at least Bðd 0þr0þ1ÞðRÞ (we do not need the stronger
fact that t is strictly monotone in each argument). But Bðd 0þr0þ1ÞðRÞ4Sk; since RAC: Hence,
tðRÞ4Sk: This is the contradiction that was to be shown. So indeed, for each object RAC

algorithm A must use a random access. Hence, r0XjCj:
Set d 00 ¼ hðjCj þ kÞ þ d 0 þ r0 þ 1:We now show that CA halts by depth d 00: There are two cases,

depending on whether or not the escape clause in Step 2 of CA (which says ‘‘If there is no such

object, then do not do a random access on this step’’) is invoked at some depth bdd with d 0 þ r0 þ
1pbddpd 00:

Case 1: The escape clause of CA is invoked at some depth bdd with d 0 þ r0 þ 1pbddpd 00: There are
two subcases, depending on whether or not d 0 þ r0 þ 1Xk:
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Subcase 1: d 0 þ r0 þ 1Xk: Then bddXd 0 þ r0 þ 1Xk: Just as in the second paragraph of the proof

of Theorem 6.1, we know that the algorithm CA has seen at least bdd objects by depth bdd (this is

because by depth bdd it has made mbdd sorted accesses, and each object is accessed at most m times

under sorted access). If CA had seen strictly more than bdd objects by depth bdd; then the escape
clause would not be invoked. Since the escape clause was invoked, it follows that CA must

have seen exactly bdd objects by depth bdd: By depth bdd; the algorithm CA has made exactly bddm sorted

accesses. Since CA has seen exactly bdd objects by depth bdd; and since each object is accessed at

most m times under sorted access, it follows that each of the bdd objects that CA has seen has

been seen under sorted access in every one of the m lists. Since bddXk; by depth bdd there are at least k
objects that have been seen under sorted access in every one of the lists. (This situation
should sound familiar: it is the stopping rule for FA.) For every object that has been seen,
there is no uncertainty about its overall grade (since it has been seen in every list), and so no object
that has been seen and is not in the top k list is viable. Since each object that has not been seen has

BðbddÞ value at most equal to the threshold value at depth bdd; and each member of the top k list has
grade at least equal to the threshold value, it follows that no object that has not been seen is

viable. So there are no more viable objects outside of the top k list, and CA halts by depth bddpd 00;
as desired.

Subcase 2: d 0 þ r0 þ 1ok: So algorithm A sees less than k objects before it halts. If database D
contains more than k objects, then there are two objects R and R0 that algorithm A does not see
such that algorithmA outputs R but not R0 as part of the top k: But then, since algorithmA does
not have information to distinguish R and R0; it must make a mistake on some database (either
the database D or the database obtained from D by reversing the roles of R and R0). So database
D cannot contain more than k objects. Since we are assuming throughout this paper that the
number of objects in the database is at least k; it follows that D contains exactly k objects.
Therefore, at depth k of algorithm CA, all k objects have been seen under sorted access in every
list. Similarly to the proof in Subcase 1, it follows that CA halts at depth k: Since kod 00; we know
that CA halts by depth d 00; as desired.

Case 2: The escape clause of CA is not invoked at any depth bdd with d 0 þ r0 þ 1pbddpd 00:
Recall that CA performs random access on viable objects based on their B values. Until
they receive a random access after step d 0 þ r0 þ 1 of CA, the members of C have the highest B
values. Therefore, within hjCj steps after reaching depth d 0 þ r0 þ 1 (that is, by step
d 0 þ r0 þ 1þ hjCj), all members of C will be randomly accessed. We now argue that the
next objects to be accessed in CA will be the R0

i’s that are output by A (unless they have been

randomly accessed already.) Here we will appeal to the strict monotonicity in each argument
of the aggregation function t: For a function t that is strictly monotone in each argument,
at each step of CA on a database that satisfies the distinctness property and for every object R; if
SðRÞ is missing some fields, then BSðRÞ4tðRÞ: Therefore at step d 0 þ r0 þ 1þ hjCj of CA, for all
R0

i whose t value has not been determined we have Bðd 0þr0þ1þhjCjÞðR0
iÞ4tðR0

iÞXSk: Since no other

object with Bðd 0þr0þ1þhjCjÞ value larger than Sk is left, after at most hk more steps in CA, all
of fR0

1;R
0
2;y;R0

kg with missing fields will be randomly accessed and their t value will be known

to CA.
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We claim that at step d 00 of CA there are no more viable objects left: first, M
ðd 00Þ
k ¼ Sk; since all

of fR0
1;R0

2;y;R0
kg have been accessed (in every field) and each of their W ðd 00Þ values equals their t

values. Since all other objects R with Bðd 00ÞðRÞ4Sk have been accessed, there are more viable
objects left, so CA halts.
We have shown that in both cases, the algorithm CA halts by depth d 00: Recall that when

CA gets to depth d it incurs a cost of at most 2mdcS: We showed that CA halts by depth
d 00 ¼ hðjCj þ kÞ þ d 0 þ r0 þ 1phðr0 þ kÞ þ d 0 þ r0 þ 1: Hence, the cost CA incurs is at
most 2mðhðr0 þ kÞ þ d 0 þ r0 þ 1ÞcS; which is 2mðhðr0 þ kÞ þ d 0 þ rÞcS plus an additive constant
of 2mcS: Now

2mðhðr0 þ kÞ þ d 0 þ r0ÞcSp 2m
cR

cS
ðr0 þ kÞcS þ ðd 0 þ r0ÞcS

� �
¼ 2mðr0ðcR þ cSÞ þ d 0cS þ kcRÞ
p 2mðr0ð2cRÞ þ d 0cS þ kcRÞ since by assumption cRXcS

p 2mðr0ð2cRÞ þ d 0cS þ kr0cRÞ since r0X1 ðsee belowÞ
¼ 2md 0cS þ ð4m þ kÞr0cR
p ð4m þ kÞðd 0cS þ r0cRÞ:

Since d 0cS þ r0cR is the middleware cost of A; we get that the optimality ratio of CA is at most
4m þ k:
So we need only show that we may assume r0X1: Assume not. Then A makes no random

accesses. Now by Theorem 8.5, NRA is instance optimal compared with algorithms that make no
random access, and of course the optimality ratio is independent of cR=cS: Further, the cost of CA
is at most twice that of NRA. So CA is instance optimal compared with algorithms that make no
random access, such as A; with optimality ratio independent of cR=cS: &

In the proof of Theorem 8.9, we showed that under the assumptions of Theorem 8.9 (strict
monotonicity in each argument and the distinctness property), the optimality ratio of CA is at
most 4m þ k: In Theorem 9.2, we give a lower bound that is linear in m; at least for one
aggregation function that is strictly monotone in each argument.
The next theorem says that for the function min (which is not strictly monotone in each

argument), algorithm CA is instance optimal.

Theorem 8.10. Let D be the class of all databases that satisfy the distinctness property. Let A be the
class of all algorithms that correctly find the top k objects for min for every database in D: Then CA

is instance optimal over A and D; with optimality ratio independent of cR=cS:

Proof (Sketch). The proof is similar to the proof of Theorem 8.9, where the key point is that for

the function min; at every step d of CA there can be at most m different R’s with the same BðdÞðRÞ
value, since BðdÞðRÞ equals one of the fields of R and the distinctness property assures that there
are at most m different fields in all lists with the same value (this replaces the use of strict
monotonicity in each argument). Therefore at step d 0 þ r0 þ 1þ hjCj there are at most m objects
with B value that equals Sk; and there are no objects outside of fR0

1;R
0
2;y;R0

kg whose B value
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exceeds Sk: Since the B value of each member of fR0
1;R

0
2;yR0

kg is at least Sk; it follows that after
hm more steps all of fR0

1;R
0
2;y;R0

kg will be randomly accessed, so there will be no viable objects

left and CA will halt. The rest of the analysis is similar to the proof of Theorem 8.9, except that hk
is replaced by hm: The net result is an optimality ratio of at most 5m: &

In the proof of Theorem 8.10, we showed that under the assumptions of Theorem 8.10 (the
distinctness property with min as the aggregation function), the optimality ratio of CA is at most
5m: In Theorem 9.4, we give a lower bound that is linear in m:

8.4. CA versus other algorithms

In this section, we compare CA against two other algorithms. The first algorithm we compare it
against is the intermittent algorithm, which does random accesses in the same time order as TA
does, but simply delays them, so that it does random accesses every h ¼ IcR=cSm steps. The
second algorithm we compare CA against is TA.

CA versus the intermittent algorithm: We now consider the choice we made in CA of doing

random access to find the fields of the viable object R whose BðdÞ value is the maximum. We
compare its performance with the intermittent algorithm, which we just described. We show a
database (see Figure 5) where the intermittent algorithm does much worse than CA.
Consider the aggregation function t where tðx1;x2; x3Þ ¼ x1 þ x2 þ x3: Let cR=cS be a large

integer. Let D be a database where the top h 	 2 locations in L1 and L2 have grades of the form
1=2þ i=ð8hÞ; for 1piph 	 2; and where none are matched with each other. Location h 	 1 in the
two lists belong to same object R; with grade 1=2 in both of them. Location h in the two lists both

have the grade 1=8: In L3 the top h2 	 1 locations have grades of the form 1=2þ i=ð8h2Þ; for
1piph2 	 1; and in location h2; object R has grade 1=2: Note that the maximum overall grade

(which occurs for the object R) is 1 1
2
and that all objects that appear in one of the top h 	 2

locations in lists L1 and L2 have overall grades that are at most 1
3
8
(this is because each object in

the top h 	 2 locations in L1 has grade at most 5=8 in L1; grade at most 1=8 in L2; and grade at

most 5=8 in L3:) At step h in CA we have that BðhÞðRÞX1 1
2
; whereas for all other objects their BðhÞ

value is at most 1 3
8
: Therefore on this database, CA performs h sorted accesses in parallel and a

single random access on R and then halts. Its middleware cost is therefore hcS þ cR ¼ 2cR: The

Fig. 5. Database about CA versus the intermittent algorithm.
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intermittent algorithm, on the other hand, does not give priority to checking R; and will first do
two random accesses for each of the h 	 2 objects at the top of each of the three lists. Since we
take all of these objects to be distinct, this is 6ðh 	 2Þ random accesses, with a middleware cost of
6ðh 	 2ÞcR: So the ratio of the middleware cost of the intermittent algorithm to the middleware
cost of CA on this database is at least 3ðh 	 2Þ; which can be arbitrarily large.
In particular, Theorem 8.9 would be false if we were to replace CA by the intermittent

algorithm, since this example shows that the optimality ratio of the intermittent algorithm can be
arbitrarily large for h arbitrarily large.

CA versus TA: It is intriguing to consider the differences between CA and TA, even when cR=cS
is not large. Intuitively, TA beats CA in terms of sorted accesses, and CA beats TA in terms of
random accesses. More precisely, TA never makes more sorted accesses than CA, since TA
gathers as much information as it can about every object it encounters under sorted access. On the
other hand, if we focus on random accesses, then we see that TA does random access to every field
of every object that it sees under sorted access. But CA is more selective about its random
accesses. It ‘‘stores up’’ objects that it has seen under sorted access, and then does random access
only for the object in its stored-up collection with the best potential.
We now consider other advantages of CA over TA. In the database we presented in comparing

CA with the intermittent algorithm, the random access cost of TA is the same as that of the
intermittent algorithm. So for this database, the ratio of the middleware cost of TA to the
middleware cost of CA is at least 3ðh 	 2Þ: This is a manifestation of the dependence of the
optimality ratio of TA on cR=cS and the independence of the optimality ratio of CA on cR=cS:
Furthermore, the fact that at least under certain assumptions, TA has an optimality ratio that is
quadratic in m; whereas under certain assumptions, CA has an optimality ratio that is only linear
in m; is also an indicator of the possible superiority of CA over TA in certain circumstances. This
requires further investigation. As an example where it might be interesting to compare CA and
TA, let the aggregation function be min, let D be the class of all databases that satisfy the
distinctness property, and let A be the class of all algorithms that correctly find the top k objects
for min for every database in D: We know that TA and CA are both instance optimal in this
scenario (Theorems 6.5 and 8.9), and we know that the optimality ratio of CA is independent of
cR=cS (Theorem 8.9). What are the precise optimality ratios of TA and CA in this scenario? Which
has a better optimality ratio when, say, cR ¼ cS?
TA has an important advantage over CA. Namely, TA requires very little bookkeeping, whereas,

on the face of it, CA requires a great deal of bookkeeping. Thus, in CA, for every sorted access it is
necessary to update the B value (the upper bound on the overall grade) for every object where not all
of its fields are known. As we discussed in Remark 8.7 for NRA, it would be interesting to develop
data structures for CA that would lead to a reasonable amount of bookkeeping. We could then
compare CA versus TA in realistic scenarios (both by analysis and simulations).

9. Lower bounds on the optimality ratio

In this section, we prove various lower bounds on the optimality ratio, both for deterministic
algorithms and for probabilistic algorithms that never make a mistake. Each lower bound
corresponds to at least one theorem from earlier in the paper.
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The next theorem gives a matching lower bound for the upper bound on the optimality ratio of
TA given in the proof of Theorem 6.1, provided the aggregation function is strict. As we noted
earlier, this lower bound need not hold if the aggregation function is not strict (for example, for
the aggregation function max).

Theorem 9.1. Let t be an arbitrary monotone, strict aggregation function with m arguments. Let D

be the class of all databases. Let A be the class of all algorithms that correctly find the top k answers
for t for every database and that do not make wild guesses. There is no deterministic algorithm that is

instance optimal over A and D; with optimality ratio less than m þ mðm 	 1ÞcR=cS:

Proof. We assume first that k ¼ 1; later, we shall remove this assumption. We restrict our

attention to a subfamily D0 of D; by making use of positive parameters d;c; k1; k2 where

1. d; k1; and k2 are integers,
2. c ¼ ðdm 	 1ÞcS þ ðdm 	 1Þðm 	 1ÞcR;
3. k24k14maxðd;c=cSÞ:

The family D0 contains every database of the following form. In every list, the top k2 grades are 1,
and the remaining grades are 0. No object is in the top k1 of more than one list. There is only one
object T that has grade 1 in all of the lists, and it is in the top d of one list. Except for T ; each
object that is in the top k1 of any of the lists has grade 1 in all but one of the lists, and grade 0 in
the remaining list. It is easy to see that we can pick k1 and k2 big enough to satisfy our conditions,
for a sufficiently large number N of objects.
Let A be an arbitrary deterministic algorithm in A: We now show, by an adversary argument,

that the adversary can force A to have middleware cost at least c on some database in D0: The
idea is that the adversary dynamically adjusts the database as each query comes in from A; in
such a way as to evade allowing A to determine the top element until as late as possible.
Let us say that an object is high in list i if it is in the top d of list i; and high if it is high in some

list. Since no object is high in more than one list, there are dm high objects. Assume thatA sees at
most dm 	 2 high objects, and hence does not see at least two high objects S1 and S2: Then the
adversary can force the answers thatA receives to be consistent with either S1 or S2 being the top
object T : This is a contradiction, sinceA does not have enough information to halt safely, since it
does not know the identity of the top object. So A must see at least dm 	 1 high objects. Since A
does not make wild guesses, its sorted access cost is at least ðdm 	 1ÞcS: There are two cases.

Case 1: Algorithm A sees some high object under sorted access in a list j where it is not high
(and hence below position k1 in list j; since no object can be in the top k1 positions in more than
one list). Then A has sorted access cost more than k1cS4ðc=cSÞcS ¼ c; as desired.

Case 2: There is no high object thatA sees under sorted access in a list where it is not high. Let
us say that a high object h is fully randomly accessed if A does random access to h in each of the
lists where it is not high. Whenever A does random access to a high object in a list where it is not
high, then the adversary assures that the first m 	 2 such random accesses have grade 1, and only
the final such random access has grade 0 (this is possible for the adversary to continue until it has
done m 	 1 random accesses for all but one of the high objects). Assume that there are at least two
high objects P1 and P2 that are not fully randomly accessed. Then the adversary can force the
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answers that A receives to be consistent with either P1 or P2 being the top object T : This is a
contradiction, since once again, A does not have enough information to halt safely. So there is at
most one high object that is not fully randomly accessed. Since there are dm high objects, it
follows that A must make at least ðdm 	 1Þðm 	 1Þ random accesses, with a random access cost
of ðdm 	 1Þðm 	 1ÞcR: Hence, the middleware cost of A is at least ðdm 	 1ÞcS þ ðdm 	 1Þ
ðm 	 1ÞcR ¼ c; as desired.
So in either case, the middleware cost of algorithm A on the resulting database is at least c:

However, there is an algorithm in A that makes at most d sorted accesses and m 	 1 random
accesses, and so has middleware cost at most dcS þ ðm 	 1ÞcR: By choosing d sufficiently large, the

ratio
ðdm	1ÞcSþðdm	1Þðm	1ÞcR

dcSþðm	1ÞcR can be made as close as desired to m þ mðm 	 1ÞcR=cS: The theorem

follows in the case when k ¼ 1:
We now describe how to modify the proof in the case when k41: The idea is that we make

k 	 1 of the top k objects easy to find. We modify the databases given in the proof above by
creating k 	 1 new objects, each with a grade of 1 in every list, and putting them at the top of each
of the lists. The simple details are left to the reader. &

In the proof of Theorem 6.5 (which assumes strict monotonicity and the distinctness property),

we showed that the optimality ratio of TA is at most cm2; where c ¼ maxfcR=cS; cS=cRg: In the
next theorem, we give an aggregation function that is strictly monotone such that no deterministic

algorithm can have an optimality ratio of less than m	2
2

cR
cS
: So in our case of greatest interest, where

cRXcS; there is a gap of around a factor of 2m in the upper and lower bounds. The aggregation
function we use for this result is the function t given by

tðx1;x2;y;xmÞ ¼ minðx1 þ x2; x3;y; xmÞ: ð5Þ

The reason we made use of the unusual aggregation function in (5) is that in the case of min (or an
aggregation function such as average that is strictly monotone in each argument), there is an
algorithm (algorithm CA of Section 8.2) with optimality ratio independent of cR=cS when we
restrict our attention to databases that satisfy the distinctness property. Thus, the negative result
of the next theorem does not hold for min or average.

Theorem 9.2. Let the aggregation function t be given by (5) above. Let D be the class of all databases

that satisfy the distinctness property. Let A be the class of all algorithms that correctly find the top k
objects for t for every database in D: There is no deterministic algorithm that is instance optimal over

A and D; with optimality ratio less than m	2
2

cR
cS
:

Proof. As in the proof of Theorem 9.1, we can assume without loss of generality that k ¼ 1: We

restrict our attention to a subfamily D0 of D; by making use of positive parameters d; N; and c;
where

1. d and N are integers,
2. c ¼ ðd 	 1Þðm 	 2ÞcR;
3. N4maxðd; 4c=cSÞ; and N is a multiple of 4.
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The family D0 contains each database of the following form. There are N objects. The top d grades
in lists 1 and 2 are of the form i=ð2d þ 2Þ for 1pipd; and the object with grade i=ð2d þ 2Þ in list 1
is the one with the grade ðd þ 1	 iÞ=ð2d þ 2Þ in list 2. Hence, the x1 þ x2 value of these d
objects is 1=2: The grades in the other lists are of the form i=N; for 1pipN: One of the top d

objects in lists 1 and 2 has a grade in the half-closed interval ½1
2
; 3
4
Þ in each of the other lists. All the

rest of the top d objects in lists 1 and 2 have a grade in the half-closed interval ½1
2
; 3
4
Þ in all but one

of the other lists, and a grade in the open interval ð0; 1
2
Þ in the remaining list. The top object, which

we call T ; is the unique object whose overall grade is 1=2: Since T has grade less than 3/4 in
lists 3;y;m; it occurs after the first N=4 objects in each of these m 	 2 lists. Furthermore, simply
based on the grades of the top d objects in lists 1 and 2, it is clear that the top object has grade at
most 1=2:
Let A be an arbitrary deterministic algorithm in A: We now show, by an adversary argument,

that the adversary can force A to have middleware cost at least c on some database in D0: The
idea is that the adversary dynamically adjusts the database as each query comes in from A; in
such a way as to evade allowingA to determine the top element until as late as possible. There are
two cases.

Case 1: A does at least N=4 sorted accesses. Then the sorted access cost of A is at least
ðN=4ÞcS4ðc=cSÞcS ¼ c; as desired.

Case 2: A does less than N=4 sorted accesses. Let us call the top d objects in lists 1 and 2
candidates. Thus, A does not see any candidate under sorted access in any of the lists 3;y;m:
Let us call a grade that is at least 1=2 high, and a grade less than 1=2 low. Let us say
that a candidate U is fully randomly accessed if A does random access to U in each of the
lists 3;y;m: Whenever A does random access to a candidate in at least one of lists 3;y;m;
then as long as possible, the adversary assures that the first m 	 3 random accesses have a
high grade, and that only the final random access has a low grade (it is possible for the
adversary to continue like this until all but one of the candidates is fully randomly accessed).
Assume that there are at least two candidates P1 and P2 that are not fully randomly accessed.
Then the adversary can force the answers that A receives to be consistent with either
P1 or P2 being the top object T : This is a contradiction, since A does not have enough
information to halt safely. So there is at most one candidate that is not fully randomly
accessed.
Since there are at least d 	 1 candidates that are fully randomly accessed, and hence each have

at least m 	 2 random accesses, the random access cost of A is at least ðd 	 1Þðm 	 2ÞcR: Hence,
the middleware cost of A is at least ðd 	 1Þðm 	 2ÞcR ¼ c; as desired.
So in either case, the middleware cost of algorithm A on the resulting database is at least c:

However, there is an algorithm in A that accesses the top d objects in lists 1 and 2, and then makes
a random access to object T in each of lists 3;y;m: Its middleware cost is 2dcS þ ðm 	 2ÞcR: By
choosing d sufficiently large, the ratio ðd	1Þðm	2ÞcR

2dcSþðm	2ÞcR can be made as close as desired to m	2
2

cR
cS
: The

theorem follows. &

The next theorem is somewhat redundant (except for the fact that it deals with probabilistic
algorithms), because of Theorem 9.1. We give it because its proof is simple, and because we
generalize the proof in the theorem following it.
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Theorem 9.3. Let t be an arbitrary monotone, strict aggregation function with m arguments. Let D
be the class of all databases. Let A be the class of all algorithms that correctly find the top k answers

for t for every database and that do not make wild guesses. There is no deterministic algorithm (or
even probabilistic algorithm that never makes a mistake) that is instance optimal over A and D; with
optimality ratio less than m=2:

Proof. As in the proof of Theorem 9.1, we can assume without loss of generality that k ¼ 1: We
now define a family of databases, each with m sorted lists. There is a parameter d: The top dm
values in each of the lists is 1, and all remaining values are 0. There is only one object T that has a
value of 1 in more than one of the lists, and this object T has value 1 in all of the lists. Therefore T
has overall grade 1, and every other object has overall grade 0. Suppose that T has position d in
one of the lists, and position dm in all of the other lists.
Let A be an arbitrary deterministic algorithm in A: Consider the following distribution on

databases: each member is as above, and the list where T appears in position d is chosen
uniformly at random. It is easy to see that the expected number of sorted accesses under this
distribution of algorithm A is at least ðdm þ 1Þ=2: Since there must be some database where the
number of sorted accesses is at least equal to the expected number of sorted accesses, the number
of sorted accesses on this database is at least ðdm þ 1Þ=2; and so the middleware cost of A on the
resulting database is at least ðdm þ 1ÞcS=2: However, there is an algorithm in A that makes d
sorted accesses and m 	 1 random accesses, and so has middleware cost dcS þ ðm 	 1ÞcR: By
choosing d sufficiently large, the ratio

ðdmþ1ÞcS=2
dcSþðm	1ÞcR can be made as close as desired to m=2: The

theorem follows (in the deterministic case).
In the case of probabilistic algorithms that never makes a mistake, we conclude as in the

conclusion of the proof of Theorem 6.4. &

In the proof of Theorem 8.10, we showed that under the assumptions of Theorem 8.10 (the
distinctness property with min as the aggregation function), the optimality ratio of CA is at most
5m: The next theorem gives a lower bound that is linear in m:

Theorem 9.4. Let D be the class of all databases that satisfy the distinctness property. Let A be the
class of all algorithms that correctly find the top k answers for min for every database. There is no

deterministic algorithm (or even probabilistic algorithm that never makes a mistake) that is instance
optimal over A and D; with optimality ratio less than m=2:

Proof. The proof is obtained from the proof of Theorem 9.3 by modifying the construction
slightly to guarantee that we consider only databases that satisfy the distinctness property. The
simple details are left to the reader. &

The next theorem gives a matching lower bound for the upper bound on the optimality ratio of
NRA given in the proof of Theorem 8.4, provided the aggregation function is strict.

Theorem 9.5. Let t be an arbitrary monotone, strict aggregation function with m arguments. Let D
be the class of all databases. Let A be the class of all algorithms that correctly find the top k objects
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for t for every database and that do not make random accesses. There is no deterministic algorithm

that is instance optimal over A and D; with optimality ratio less than m:

Proof. As in the proof of Theorem 9.1, we can assume without loss of generality that k ¼ 1: We

restrict our attention to a subfamily D0 of D; by making use of a (large) positive integer parameter
d: The family D0 contains every database of the following form.
There are 2m special objects T1;y;Tm;T 0

1;y;T 0
m: There is only one object T in the database

with a grade of 1 in every list, and it is one of the 2m special objects. Thus, the top object T is
one of the special objects. For each i; let us refer to list i as the challenge list for the special
objects Ti and T 0

i : For each i; the top 2m 	 2 objects in list i are precisely the special objects

except for Ti and T 0
i : Thus, no special object is in the top 2m 	 2 of its challenge list, but all of

the other special objects are. The top d objects in each list have grade 1, and every remaining
object in each list has grade 0. If T ¼ Ti or T ¼ T 0

i ; then T is in position d in list i: Thus,
the unique top object is at position d in some list. Note that each special object is at or below
position d in its challenge list, and exactly one special object (the top object) is at position d in its
challenge list.
Let A be an arbitrary deterministic algorithm in A: We now show, by an adversary

argument, that the adversary can forceA to have sorted access cost at least dm on some database

in D0: The idea is that the adversary dynamically adjusts the database as each query comes in
from A; in such a way as to evade allowing A to determine the top element until as late
as possible.
The first m 	 1 times that algorithm A reaches position d in a list, the adversary forces A to

encounter some object that is not special in position d: Thus, the first time that the adversary
allows algorithm A to encounter a special object after position 2m 	 2 is at position d of the last
list i that it accesses to depth d: Only at that time does the adversary allow the algorithm to
discover which of Ti or T 0

i is the top object.

It is clear that the sorted access cost of A on this resulting database is at least dm: However,
there is an algorithm in A that makes at most d sorted accesses to one list and 2m 	 2 sorted
accesses to each of the remaining lists, for a total of at most d þ ðm 	 1Þð2m 	 2Þ sorted accesses
and so has middleware cost at most ðd þ ðm 	 1Þð2m 	 2ÞÞcS: By choosing d sufficiently large, the

ratio dmcS
ðdþðm	1Þð2m	2ÞcS can be made as close as desired to m: The theorem follows. &

9.1. Summary of upper and lower bounds

Table 1 summarizes our upper and lower bounds. The rows correspond to the different
restrictions on the set A of algorithms, and the columns to the restrictions on the set D of
databases and on the aggregation function t: Note that ‘‘SM’’ means ‘‘strictly monotone’’ and
‘‘SMV’’ means ‘‘strictly monotone in each variable.’’ ‘‘Distinctness’’ means that D is the collection
of databases that satisfy the distinctness property. Note also that c ¼ maxfcR

cS
; cS

cR
g: For each such

combination we provide our upper and lower bounds, along with the theorem where these bounds
are proven. The upper bounds are stated above the single separating lines and the lower bounds
are below them. (The upper bounds are stated explicitly after the proofs of the referenced
theorems.) The lower bounds may be deterministic or probabilistic.
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10. Related work

Nepal and Ramakrishna [NR99] define an algorithm that is equivalent to TA. Their notion of
optimality is weaker than ours. Further, they make an assumption that is essentially equivalent to
the aggregation function being the min.17

Güntzer et al. [GBK00] also define an algorithm that is equivalent to TA. They call this
algorithm ‘‘Quick-Combine (basic version)’’ to distinguish it from their algorithm of interest,
which they call ‘‘Quick-Combine’’. The difference between these two algorithms is that Quick-
Combine provides a heuristic rule that determines which sorted list Li to do the next sorted access
on. The intuitive idea is that they wish to speed up TA by taking advantage of skewed
distributions of grades.18 They make no claims of optimality. Instead, they do extensive

Table 1

Summary of upper and lower bounds

17The assumption that Nepal and Ramakrishna make is that the aggregation function t satisfies the lower bounding

property. This property says that whenever there is some i such that xipx0
j for every j; then tðx1;y; xmÞptðx0

1;y; x0
mÞ:

It is not hard to see that if an aggregation function t satisfies the lower bounding property, then tðx1;y; xmÞ ¼
f ðminfx1;y; xmgÞ; where f ðxÞ ¼ tðx;y; xÞ: Note in particular that under the natural assumption that tðx;y; xÞ ¼ x;
so that f ðxÞ ¼ x; we have tðx1;y; xmÞ ¼ minfx1;y; xmg:

18They make the claim that the optimality results proven in [Fag99] about FA do not hold for a skewed distribution

of grades, but only for a uniform distribution. This claim is incorrect: the only probabilistic assumption in [Fag99] is

that the orderings given by the sorted lists are probabilistically independent.
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simulations to compare Quick-Combine against FA (but they do not compare Quick-Combine
against TA).
We feel that it is an interesting problem to find good heuristics as to which list should be

accessed next under sorted access. Such heuristics can potentially lead to some speedup of TA (but
the number of sorted accesses can decrease by a factor of at most m; the number of lists).
Unfortunately, there are several problems with the heuristic used by Quick-Combine. The first
problem is that it involves a partial derivative, which is not defined for certain aggregation
functions (such as min). Even more seriously, it is easy to find a family of examples that shows
that as a result of using the heuristic, Quick-Combine is not instance optimal. We note that
heuristics that modify TA by deciding which list should be accessed next under sorted access can
be forced to be instance optimal simply by insuring that each list is accessed under sorted access at
least every u steps, for some constant u:
In another paper, Güntzer et al. [GBK01] consider the situation where random accesses are

impossible. Once again, they define a basic algorithm, called ‘‘Stream-Combine (basic version)’’
and a modified algorithm (‘‘Stream-Combine’’) that incorporates a heuristic rule that tells
which sorted list Li to do a sorted access on next. Neither version of Stream-Combine
is instance optimal. The reason that the basic version of Stream-Combine is not instance
optimal is that it considers only upper bounds on overall grades of objects, unlike our algorithm
NRA, which considers both upper and lower bounds. They require that the top k objects be
given with their grades (whereas as we discussed, we do not require the grades to be given in
the case where random accesses are impossible). Their algorithm cannot say that an object
is in the top k unless that object has been seen in every sorted list. Note that there are
monotone aggregation functions (such as max, or more interestingly, median) where it is
possible to determine the overall grade of an object without knowing its grade in each sorted
list.
Natsev et al. [NCS+01] note that the scenario we have been studying can be thought of as

taking joins over sorted lists where the join is over a unique record ID present in all the sorted
lists. They generalize by considering arbitrary joins.

11. Conclusions and open problems

We studied the elegant and remarkably simple algorithm TA, as well as algorithms for the
scenario where random access is impossible or expensive relative to sorted access (NRA and CA).
To study these algorithms, we introduced the instance optimality framework in the context of
aggregation algorithms, and provided both positive and negative results. This framework is
appropriate for analyzing and comparing the performance of algorithms, and provides a very
strong notion of optimality. We also considered approximation algorithms, and provided positive
and negative results about instance optimality there as well.

Open problems: Let us say that an algorithm is tightly instance optimal (over A and D) if it is
instance optimal (over A and D) and if its optimality ratio is best possible. Thus, Corollary 8.6
says that NRA is tightly instance optimal, and Corollary 6.2 says that in the case of no wild
guesses and a strict aggregation function, TA is tightly instance optimal. In the case of no wild
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guesses, for which aggregation functions is TA tightly instance optimal?19 What are the possible
optimality ratios? For the other cases where we showed instance optimality of one of our
algorithms (as shown in Table 1), is the algorithm in question in fact tightly instance optimal? For
cases where our algorithms might turn out not to be tightly instance optimal, what other
algorithms are tightly instance optimal?
There are several other interesting lines of investigation. One is to find other scenarios where

instance optimality can yield meaningful results. Another is to find other applications of our
algorithms, such as in information retrieval. We already mentioned (Remark 8.7 and Section 8.4)
the issue of finding efficient data structures for NRA and CA in cases of interest, and of
comparing CA versus TA.
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