
UNIVERSITY OF CALIFORNIA

RIVERSIDE

Structured Queries Over XML Documents with Branched Versioning

A Thesis submitted in partial satisfaction

of the requirements for the degree of

Master of Science

in

Computer Science

by

Wanxing Xu

June 2009

Thesis Committee:

Professor Vassilis J. Tsotras, Chairperson
Professor Mart Molle
Professor Eamonn Keogh

Copyright by
Wanxing Xu

2009

The Thesis of Wanxing Xu is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I thank my committee, especially the chairperson, my advisor Professor Vassilis J. Tsotras,

without whose help, I would not have been here.

iv

To my parents.

v

ABSTRACT OF THE THESIS

Structured Queries Over XML Documents with Branched Versioning

by

Wanxing Xu

Master of Science, Graduate Program in Computer Science
University of California, Riverside, June 2009

Professor Vassilis J. Tsotras, Chairperson

Over the last few years, there is an increasing use of XML documents as the stan-

dard for tree-structured data. There are several research done for querying and indexing an

XML database, especially finding all occurrences of a twig pattern. However, those research

focus on the static XML documents, but not data with multiple versions. On the other

hand, there are also a number of approaches have been proposed to support temporal data

with branched time evolution, called branched versioning database. Different from conven-

tional temporal databases, in a branched versioning database, both historic versions and

current versions are allowed to be updated. Relatively little research has been done across

the two areas. In this thesis, we discuss the design and development of some unified ap-

proaches for temporal queries over XML documents with branched versioning. Specifically,

we examine the storage and querying of the branched versioning XML documents and the

algorithm used to carry out a twig pattern query.

vi

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

2 Background 3

2.1 Labeling Schemes . 4
2.1.1 Interval-based Labeling Schemes . 5
2.1.2 ORDPATH . 7

2.2 XML Querying . 10
2.3 Management for Data of Multiple Versions 12

2.3.1 Multiversion B-Tree . 13
2.3.2 BT-Tree and BTR-Tree . 14

2.4 Querying of XML Data with Multiple Versions 19

3 Approach 20

3.1 BT-List . 20
3.2 BT-TwigStack . 27
3.3 BT-LCS . 28

4 Results 30

4.1 Experimental Settings . 30
4.1.1 Data Set . 31
4.1.2 Query Set . 31

4.2 Experimental Results . 32
4.2.1 Indexing Process . 32
4.2.2 Query Process . 35

5 Conclusion 42

Bibliography 44

vii

List of Figures

2.1 A simple XML document . 3
2.2 Tree representation of the XML document in Figure 2.1 4
2.3 Interval based labeling scheme of the XML document in Figure 2.1 5
2.4 The sample XML document data of Version 2 6
2.5 Tree representation of the sample XML document of Version 2 7
2.6 The interval-based label schemes of the sample XML document of Version 2 7
2.7 The ORDPATH label scheme of the sample XML document 8
2.8 The ORDPATH label scheme of the sample XML document of Version 2 . . 9
2.9 A sample Multiversion B-Tree . 14
2.10 The version tree for the travel plan example 16
2.11 A sample BT-Tree . 18

3.1 A sample BT-List . 22
3.2 A sample of version ranges . 23
3.3 Splits caused by the owning version of a page 24
3.4 Non-owning version splits with data copied 25
3.5 Non-owning version splits without any data copied 26

4.1 Indexing time used for different algorithms 33
4.2 Storage usage of different algorithms . 34
4.3 Execution time of Q1 across different number of version branches for D1 . . 36
4.4 Execution time of Q2 across different number of version branches for D1 . . 37
4.5 Execution time of Q3 across different number of version branches for D1 . . 38
4.6 Execution time of Q4 across different number of version branches for D1 . . 39
4.7 Execution time of Q1 across different number of version branches for D2 . . 39
4.8 Execution time of Q2 across different number of version branches for D2 . . 40
4.9 Execution time of Q3 across different number of version branches for D2 . . 40
4.10 Execution time of Q4 across different number of version branches for D2 . . 41

viii

List of Tables

2.1 The version table for the version tree in Figure 2.10 16

4.1 The twig patten queries used in the experiments 32

ix

Chapter 1

Introduction

Over the last few years, there is an increasing use of XML documents as the

standard for tree-structured data over the Internet. Moreover, the vast majority of XML

documents being disseminated undergo modifications (for example, insertions, deletions and

updates) over time. In most cases, the past versions are of historic importance so that we

need to manage every version of the XML document with the effects of the modifications

as the time progresses. As a result, many research interest has been raised to devise an

effective solution to storing multiversion XML documents.

Conventional temporal databases assume a single line of time evolution, called

data with linear versioning, which allows only the latest version to be modified, i.e. a

new version is created by modify only the latest version at that time. However, under some

circumstances, both the latest version and a historic version maybe need some modification.

A modification on a historic version may give a branch on the time evolution relationship,

because two or more versions are evolved from the same version. Version trees are used

1

to describe the evolution relationship between different versions. These kind of data with

branched versioning cannot be supported by conventional databases of linear time evolution.

Many applications require the ability to do the structured queries over XML docu-

ments with branched versioning. In general terms, the version is specified in the query with

the twig pattern as well, according to which, the querying results will provide the useful

temporal information. Though there are many research done for twig pattern matching

for single version (or static) XML documents [6] [11] [15] [13], and several approaches to

manage data with branched versioning [8] [9], there is a lack to combine these two parts

together, i.e. to support the twig pattern matching over XML documents with branched

versioning.

The remainder of this thesis will discuss the design and development of two novel

approaches for querying XML documents with branched versioning. Specifically, we examine

the storage and querying of the branched versioning XML documents and the algorithm

used to carry out a twig pattern matching at a specific time during the evolution.

2

Chapter 2

Background

Extensible Markup Language (XML) is a markup language which allows users to

define new collections of tags that can be used to structure any type of data or document

the user wishes to transmit. Tags, also called elements, are the primary building blocks of

an XML document. Figure 2.1 illustrates a simple XML document.

Figure 2.1: A simple XML document

An XML document is typically modeled as a tree made up of nodes and values.

Each node represents an element in the XML document. The parent-child relationships of

3

the nodes in the tree also represent the structural relationships of the elements in the XML

document. Figure 2.2 illustrate the tree representation of the XML document in Figure 2.1.

Figure 2.2: Tree representation of the XML document in Figure 2.1

2.1 Labeling Schemes

To quickly determine the parent-child or ancestor-descendant relationships for a

given set of tree nodes is required as a core operation of XML query matching. With only

the original XML document, this task cannot be easily done. A good labeling scheme can

make this operation more efficient. Another aspect that we need to concern is that we

are dealing with the temporal data, which intent to be changed a lot. A good labeling

scheme in this situation should has little affect to the unrelated part by modifications of

the document. In this section, we will briefly examine several labeling schemes based on

the two requirements mentioned above.

4

2.1.1 Interval-based Labeling Schemes

An interval-based labeling scheme is commonly used in several prior work [3] [6],

which represents each node by a 3-tuple (DocID, StartPos : EndPos, Level), where (i)

DocID is a unique identifier for a given document, (ii) StartPos and EndPos is the position

of the start and the end of the element (the position can be generated by counting word

numbers from the beginning of the document) and (iii) Level is the nesting depth of the

element in the document. Figure 2.3 illustrates the same XML document from Figure 2.1

using this labeling scheme.

Figure 2.3: Interval based labeling scheme of the XML document in Figure 2.1

With the 3-tuple representation, we can easily determine the parent-child and

ancestor-descendant relationships. Given two element N1(D1, S1 : E1, L1) and N2(D2, S2 :

E2, L2). N1 is an ancestor of N2 if and only if both the following two conditions hold:

(i) the two elements belong to the same document, i.e. D1 = D2; (ii) the interval of N1

includes the interval of N2, i.e. S1 < S2 < E2 < E1. In addition, that N1 is the parent of

N2 requires the same two conditions hold and also an additional condition that N1 is only

one level above N2, i.e. L1 + 1 = L2.

5

Though this interval-based labeling scheme works very well for the requirement

of determine the parent-child and ancestor-descendant relationships fast, it doesn’t do well

if there is an insertion or deletion in the XML document. Consider now we want to add

the information of the writer of the shopping list by inserting several new elements in the

middle of the XML document. The original XML document is called Version 1 and the

new XML document is called Version 2, which is illustrated in Figure 2.4. Figure 2.5 shows

the tree representation, where the modification inserts a subtree to the original tree with a

dark background of the nodes.

Figure 2.4: The sample XML document data of Version 2

Because the interval-based labeling scheme is using the position generated by

counting word numbers from the beginning of the document, an insertion or deletion will

affect all the ancestor elements (for the end positions) and all the elements appears af-

ter where the change occurs (for both the start and end positions). Figure 2.6 shows the

interval-based labels of the XML document of Version 2. A big part of the tree is affected

6

Figure 2.5: Tree representation of the sample XML document of Version 2

by the modification, so we can see that this interval-based label scheme doesn’t work well

for the XML documents of multiple versions.

Figure 2.6: The interval-based label schemes of the sample XML document of Version 2

2.1.2 ORDPATH

Now, we review another labeling scheme called ORDPATH [10], which meets both

of the two requirements: (i) fast determination of parent-child and ancestor-descendant

relationships, and (ii) little affect by modifications.

ORDPATH is a hierarchical scheme, which encodes the parent-child relationship

by extending the parent’s ORDPATH label with a component for the child. Figure 2.7

illustrates the ORDPATH labels for the original sample XML document in Figure 2.1. We

7

can easily check the ancestor-descendant relationships between two elements by checking

whether the ORDPATH label of one element is a prefix of that of the other. And for parent-

child relationships, just check one more condition for the difference of their levels (the level

is known by counting the odd numbers in the label, we will discuss this more later). For

example, the element “1.5.3” is a child of “1.5” and a descendant of “1”. And the number

itself keeps the children of the same element to be ordered (smaller numbered child appears

before the bigger ones).

Figure 2.7: The ORDPATH label scheme of the sample XML document

In the initial load of ORDPATH labeling, only positive odd integers are used, while

the negative numbers and even numbers are reserved for later insertions. If the insertion

is to the right of all its siblings, we can number it by adding two to the last ordinal of the

last sibling (the next odd number). And if the insertion is to the left of all the siblings, we

subtract two from the last ordinal of the leftmost sibling (the previous odd number, must

be negative). These two cases are still using odd numbers, bigger positive number on the

right while smaller negatives on the left.

If an insertion is between two sibling, the even number is used as a “caret”, then

following this with a new odd component, which is as the same as the initial load. We

8

can using the example of the Version 2 of the sample XML to show how ORDPATH works

for insertions. Figure 2.8 shows the ORDPATH labels of the Version 2. The new element

of “WRITER” is inserted between its two sibling elements “COUNT” which is labeled as

“1.3” and “ITEM” as “1.5”. Now we will use 4 (which is the even number between 3 and

5) as a “caret” and another odd number 1 (the first positive odd number) together as the

component for the new element. So, in total, “1.4.1” as the whole label of the new element.

Though “1.4.1” has three components, it is still a second level element (the same level as

“1.3” and “1.7”), because only odd numbers are counted as the level but not even numbers.

Even numbers are only symbols of carets and can be used to check the order of the siblings,

but don’t mean one more level. If we want to insert another element between “WRITER”

and “ITEM”, we can still use “1.4.3” as it is to the right of “1.4.1”, who is the only child

of the pseudo node “1.4”.

Figure 2.8: The ORDPATH label scheme of the sample XML document of Version 2

9

2.2 XML Querying

In the recent years, a lot of research interests have been paid on the XML query

matching, which requires to find all occurrences of the query pattern in the XML documents.

As the XML documents are in the tree structures, the query patterns can also be in the

tree structures. At the early time of the research in this area, only one pair of ancestor-

descendant or parent-child can be found in the XML documents at one time, then the huge

intermediate results for each pair are joined together to get the final results for the whole

query pattern [3]. This method requires multiple passes to match one twig pattern because

it has to break a twig pattern into several nodes pairs, and a lot space is needed to hold the

huge intermediate results to later be joined together. After that, PathStack [6] can match

one whole path in the query pattern at one time with the help of stacks. It works better

then the former one, though the query still has to be first split into several paths, processed

separately and joins need to be done among the big intermediate results.

Recent work has focused on holistic processing techniques, implying a global

matching of the whole query pattern without cut the twig into pieces. There are two general

catalogs of the methods doing the holistic query processing: the first catalog includes the

algorithms based on streams of the elements, where a stream is a list of all the occurrences

of one particular element and these streams are sequentially scanned to determine the struc-

tural relationships; the other algorithms first convert the tree-structured XML documents

and twig patterns into linear sequences, and then use subsequence matching and structural

refinements, instead of the tree pattern matching. We call the algorithms in the first catalog

to be stream-based algorithms and the second to be sequence-based algorithms.

10

TwigStack [6] is one of the well-known stream-based XML holistic query process

algorithms. It improved the PathStack which splits the twig query into several path queries,

processes only one path at a time and merges the results at last. In TwigStack, the twig

query is processed as a whole: streams of the element lists are scanned sequentially for every

element in the query, with stacks being utilized to store individual root-to-leaf solutions

(as same as PathStack does). The stacks hold partial solutions for the query unless each

individual elements gets its own solutions, merging which together gives solutions to the

whole query. The algorithm guarantees that each element pushed into the stack must

participate in at least one solution, so it does not produce any intermediate results that is

not in a final solution.

Recently, there are several algorithms using the sequence-based techniques to do

the twig pattern matching, which belong to the second catalog mentioned above. Generally,

those approaches convert the tree-structured XML documents and twig pattern into linear

sequences and then use subsequence matching together with structural refinements to do

the query process. The structural information should be kept in the linear sequences so

that the structural refinement can be executed to avoid false alarms in the result set.

ViST [15] converts the tree-structured data into only one sequence. Each node is

represented as a 2-tuple (label, prefix), where the prefix indicates the labels on the path

from the root to this node. The nodes appear in the sequence in the pre-order in the

tree. First, ViST will check whether the sequence converted from the twig pattern is a

subsequence of that of the documents, where it uses suffix-trees. And then, the structural

relationship of the twig and documents are checked as the structural refinements. When

11

both the subsequence relationship (called S-Ancestorship) and the structural relationship in

the original XML documents (called D-Ancestorship) hold, it is considered to be a solution

to the query.

PRIX [11] and LCS-TRIM [13] are also sequence-based algorithms where some

variations of Prüfer sequence are used. These two algorithms convert one XML document

into two linear sequences: numbered Prüfer sequence and labeled Prüfer sequence. They

used the post-order to unique numbering the tree nodes. PRIX uses several phases to do the

query process: (i) subsequence matching for the labeled Prüfer sequence, (ii) refinement by

connectedness, (iii)refinement by twig structure, (iv) refinement by matching leaf nodes and

then (v) processing wildcards if any. PRIX needs to keep the intermediate results for each

phase which cost much time and space. LCS-TRIM uses only two phases: subsequence

matching and structure matching, which can be put together and false positive matches

can be pruned early on the go. It uses the dynamic programming approach of the Longest

Common Subsequence (LCS) to find all subsequences of a query. It is shown to be upwards

of three orders of magnitude faster than PRIX and ViST.

2.3 Management for Data of Multiple Versions

Many applications tent to have variations for the data and the past data are also

of historic importance that needs to be kept. Therefore, the management (storage and

querying) of these kind of temporal data is acquired and attracts some research interests.

There are two kinds of näıve approaches: log-based approach and snapshot approach. Log-

based approach only store the log of all the modifications to the data. When querying for

12

the data at a specific time, it will reconstruct the data by redoing the modifications in the

log from the very beginning to the querying time, which is costly in time. The Snapshot

approach simply store every version of all the data. The parts which are not modified will

have many copies stored for different versions, which cost a lot of space. A more efficient

approach on both time and space is preferred to these two näıve approaches.

2.3.1 Multiversion B-Tree

Multiversion B-Tree (MVBT) [4] is an efficient approach to store and query linear

versioning data. The linear versioning data allows modification only to the latest version.

As the name suggests, the Multiversion B-Tree uses an indexing tree similar to B-Tree [7],

but the difference is that in MVBT, to compare the entries in one node to choose which

subtree to follow, both key and time values are used. Each data entry has a key value, a

start time (when it is inserted), an end time (when it is deleted, or ‘*’ to indicate it is not

yet deleted or still “alive”) and the information of the data entry if necessary. The index

entry has a key value, a start time and an end time (of all the entries in the subtree rooted

from the node it pointing to) and the pointer to the node of the next level. As B-Trees,

MVBT doesn’t allow underflow or overflow of physical entries in one node (which is called

weak version conditions in MVBT). It also has an additional strong version conditions to

constraint the number of alive entries inside one node. Merging or Splitting will took place

if any of the strong or weak version conditions doesn’t meet. The weak version condition

ensures the utilization of the space and the strong version condition puts the entries close

in time to be close in storage which ensures a short querying time.

13

Figure 2.9: A sample Multiversion B-Tree

Figure 2.9 illustrate an example of MVBT. We see the root index page R contains

four entries which direct search into different data pages. For example, a search for a key

between 10 and 45 and at time between 1 and 8 will go to the data page A. Because there

is only one entry 〈10, 1, ∗〉 in the page A that is alive, the entry is copied to a new node and

page A is considered died at time 8. This entry 〈10, 1, ∗〉 is merged with the alive entries

from the page B then further the overflow page is split to be two new pages C and D and

page B is also marked died at time 8. Though there are two copies of the alive entries, the

search is faster because the already died data will not be processed.

2.3.2 BT-Tree and BTR-Tree

The MVBT works fine for the linear time evolution temporal data, where a modi-

fication can only happen to the latest version, though it cannot support data with branched

14

versioning. Under some circumstances, modifications occur on not only the latest version,

but any historic version as well. The modification of a historical version will give a branch

on the evolution relationships between versions. We call these kind of data the data with

branched versioning to distinct from the linear versioning. We will use the following example

to illustrate this kind of data.

For example, Alice is making a travel plan for her vocation and she is still changing

the details where each modification gives a new version of her plan. For her, every new

version is created after some modification of the latest version. Bob wants to travel to the

same place, too. At time 8, Bob starts using the Alice’s plan at Version 5 and makes his

own modification according to his interests. So this change is on a historical version but not

the latest version (which should be Alice’s plan at time 7). And meanwhile, Alice is still

making her changes. At time 10, a third person David starts using Alice’s plan at Version

10 and also makes his own changes. The above are data for the travel plans with branched

versioning. Each person holds a different version of the data: we call Alice’s plan to be

Version 1, Bob’s Version 2 and David’s Version 3. And for each person has a linear time

evolution of the plan, we mark them with the time they are created: we call Alice’s plan

created at time 1 as Version 1.1, Bob’s plan created at time 12 as Version 2.12 and so on.

So each Version is represent as a 2-tuple with the version id and time, e.g. (1, 1) and (2,

12). In Figure 2.10, a version tree gives the relationship among those different versions.

Rather than this graphic view for the relationship of the versions, a version table

is used which records the information of evolutions of each version. Table 2.1 shows the

version table represent the same version relationship as in the version tree in Figure 2.10.

15

Figure 2.10: The version tree for the travel plan example

In our example, Bob’s first version of the travel plan was created at time 8, which is the

version (2, 8), inherit from Alice’s plan at time 5 which is (1, 5). So we record: a new

Version 2, starts at time 8, shares the same data with Version 1 at time 8. An entry (2,

1, 8, 5) is inserted into the version table correspondingly as shown in the second line. To

check the relationship between two versions, we can easily tell that a version with earlier

time is an ancestor of that of the same version but a later time. If the two version is not

with the same version id, we can check with this version table, to know their relationships.

Version id Ancestor version id Start time Share time

1 1 0 0
2 1 8 5
3 1 15 10

Table 2.1: The version table for the version tree in Figure 2.10

To effectively store and query is a main requirement for the data management. The

two näıve approaches mentioned above, log-based approach and snapshot approach, both

work for data with branched versioning, though the same problem, either time-consuming

or space-consuming, is still existing. MVBT cannot be easily adopted for this problem

because here, the same data may be shared across several branches, each of which may be

16

modified separately. MVBT cannot tell which version the modification is on or it has to

have multiple copies of the data to tell so, which may be inefficient. Moreover, Linan Jiang,

Betty Salzberg, et al. give some good solution in [8] [9] [12].

The BT-Tree [8] proposed a paginated access method for data with branched

versioning (or called “branched-and-temporal data” there), which was later improved by

the BTR-Tree [9] and better explained by a framework [12]. The main idea is to create a

tree as an index to fast lead the search to the page which contains the data. The data are

put into pages, and when a page is full, a version split or a version-and-key split will occur

according to different situation. A version split at version v will separate the data of a

descendant version of v from those who are not. Only alive records will be copied and again

it may cause another overflow. Consequently, an additional key split will occur, which will

make this split to be version-and-key split. The key split is a B-tree like split: a key split

at key k will separate values less than k from those greater than or equal to k.

The indexes of the data are also put into pages, which are called indexing pages.

The indexing tree is a binary tree where each node is either present a version (called version

split history or vsh) or present a key (called key split history or ksh). As the name suggested,

those nodes in the indexing are the history of the splits. A vsh is caused by a version split,

which leads the search according to the whether there is an ancestorship between the version

in the vsh and the version queried. A ksh is caused by a key split, which leads the search

of according to the key value as the normal B-Tree does. Follow the indexing tree, a search

with specified version and key will be fast located into one data page. Figure 2.11 shows a

sample of BT-Tree.

17

Figure 2.11: A sample BT-Tree

Figure 2.11 shows a BT-Tree with three index pages I2, I4 and I5, and five data

pages, from D1 to D5. I2 is the root for the BT-Tree, which leads the search of version

that is a descendant of version (1, 25) to the index page I5 and those not to I4. I5 leads

a search for key less than e to D3, and those greater or equal to e but less than g to D5

while those who are greater or equal to g to D4.

BTR-Tree [9] used the same main idea, though proposed a new splitting algorithm,

namely R-splitting. It decreased the amount of branching in pages while maintaining simple

posting and searching algorithms. Results show that the BTR-Tree improves the space

performance significantly.

18

2.4 Querying of XML Data with Multiple Versions

There is little research on the twig pattern matching over XML documents with

multiple versions. Zografoula Vagena, et al. proposed an algorithm for path queries over

XML documents with branched versioning in [14], which used a variation of BT-Tree [8] to

manage the data and use PathStack [6] to do the path query process, though twig query was

not supported. Adam Woss combined several existing method to solved the twig queries

over linear time evolution XML documents in [16]: MVBT-TwigStack uses MVBT [4] to

hold the temporal data and TwigStack [6] to do the twig pattern query process; MVBT-LCS

uses MVBT combined with LCS-TRIM [13] to do the sequence-based XML query matching;

and TLCS (Temporal LCS) relies on a timestamp XML data model. Those approaches work

fine for linear time evolution, though branched versioning XML data are not supported.

19

Chapter 3

Approach

Our approach focuses on combining modern holistic matching algorithm with the

branched versioning data management to operate the twig pattern query process over XML

documents. Though separately, there are approaches for holistic twig query matching and

branched versioning data management, changes are still necessary to be made for them to

work together. We propose a BT-List method to hold the branch versioning data, which

is a variation of BT-Tree [8] according to the purpose of XML query process. Then, we

combine the BT-List with the XML query process methods and proposed two approaches,

BT-TwigStack and BT-LCS.

3.1 BT-List

First consider the requirements for the branched versioning data management in

our problem. The query specifies a version time and also the twig pattern. All the data at

the query version time should be extracted from the database and put to the XML query

20

process part to do a static twig matching. Consider the time evolution, some data can

be shared across different versions. For example, Version 2 inherits the data entry e from

Version 1. To get all the data for Version 2 at some time t, that data entry e, though was

created in Version 1, needs also to be extracted. So, a query for all the data at version v,

time t requires the accesses to all the data of every ancestor version of (v, t). Considering

in the view of a version tree, we need all the data on the path from the root (Version (1, 1))

to the version (v, t).

BT-Tree [8] is an effective method to store and query branched versioning data,

where usually the query specifies both the version range and the key value, so using the

indexing tree, a search can fast locate a data page to get the result. Because in our query,

there is no key specified, but the data for all the keys should be extracted, BT-Tree doesn’t

guarantee a good performance. Because BT-Tree has version split and version-and-key

split, data are gathered together if they are close either in version values or in key values,

though what we want is the data gathered together only if they are close in version values.

Consider the difference, we proposed a variation of the BT-Tree, namely BT-List.

As the name suggested, BT-List focuses on the lists of keys and data of the same

version as query results, and it doesn’t have a tree to index the data. In BT-List, we have

lists of pages for different versions, so when querying a specified version, we can get that

list of pages for that specific version and create the results. We add pointers to each data

page (now called BT-Page) to indicate the next pages of the lists for different versions. And

each BT-List keeps all the pointer to the first BT-Page for each branch. With a queried

version, we can follow the pointers to get that list of BT-Pages that contain the data of that

21

version. Consider the data shared by different versions, the pointers of different versions

maybe point to the same page.

Figure 3.1: A sample BT-List

Figure 3.1 shows an example of BT-List. A BT-List has some headers which are

pointers to the first BT-Page of each version. Each BT-Page has pointers to the next page

for each version. BT-Page P1 is shared by both Version 1 and Version 2. Querying Version

2 of the time t, it will follow the pointers for Version 2 and access BT-Page P1, P4 and P5.

We also keep some rear pointers to the last page of each version. Because the temporal data

are inserted always to the leaves of the version tree as the time progresses, i.e. to the last

page of the list of a version, a fast locate to the rear of each version is required. Only when

new branch in the version tree is created, which would occur in the middle of the version

tree, we need to follow the pointers to locate the specific page for the new branch to start.

Data entries in the BT-Page are in order of the time (as they are inserted). One

BT-Page may contains data entries of different versions, though these versions must be

22

connected, called a version range. A version range is a connected part in the version tree

with only one start version and a set of end versions, which can be none or multiple versions.

The version range contains some branches that are descendants of the start version, and

end versions indicate that whether or not one branch is closed to the current time.

Figure 3.2: A sample of version ranges

Figure 3.2 shows an example of some version ranges. The version range in the

middle that is circled by dashed line has the start version (1, 7) and only one end version

(1, 20). The version that is a descendant of the start version but not descendant of any end

version belongs to the version range. This version range is closed to Version 1 after time

20, but open to Version 2, because there is no end version of Version 2.

The data are inserted into the BT-List in the order of the time. When a BT-Page

is overflow, we use some simplified splitting strategy of those in BT-Tree [8] or BTR-Tree [9].

Every BT-Page is owned by one version, though it may contain data for multiple versions.

The owning version is not necessary the same version as the start version. We will explain

this owning version in detail later. The first case of the split is that a split caused by a

new data entry on the owning version of the page will be a current version split. Figure 3.3

shows an example of this situation.

23

(a) P2 is full before split

(b) After the split by a new data entry to Version 1

Figure 3.3: Splits caused by the owning version of a page

We use the version tree to indicate the relationship of the versions and the version

ranges are circled for each BT-Page, with the pointers in the BT-Pages also illustrated in

the figure. Figure 3.3(a) shows the BT-List before the split, where P2 is already full. A

new data entry of Version 1 is then inserted. It should be put into BT-Page P2, which

causes an overflow. Because Version 1 is the owning version of P2, we use a simple split at

the current time, meaning that only the new record is put into a new page, only pointers

and the end version set will be change while anything else remains the same. Figure 3.3(b)

shows the BT-List after the current time split. A new page P3 is created which contains

only the new data entry of version 1. The old page P2 is closed for Version 1 at the current

time, and a pointer to the new page P3 is added for P2 indicating that the next BT-Page

to access for the data for Version 1 is P3.

24

The second case of the split is that a split caused by a new data entry on the

non-owning version path of the page will be a split at the born time of that non-owning

version. All the data of the descendant version of the born version is moved into the new

BT-Page. Depends on the number of data entries that is of the ancestor versions of the

born version, we will decide whether to copy those data to the new page or not. Figure 3.4

and Figure 3.5 illustrate the two situations in this case.

(a) P2 is full before split

(b) After the non-owning version split with some data copied

Figure 3.4: Non-owning version splits with data copied

Figure 3.4(a) shows the BT-List before an insertion. P2 is already full and the

owning version of P2 is V 1. A new data entry of V 2 is inserted, so a non-owning version

split will be occur. All the data of the descendant versions of the born version of V 2 is

moved into the new BT-Page P3. Now to access all the data of Version 2, we need to access

25

P1, P2 and P3. However, the needed data in P2 are only from the start version of P2 to

the born version of V 2. If there are not so many records of them (less then some threshold),

it’s better we copy them to the new page, so P2 is no longer required to access to get the

data for V 2. Figure 3.4(b) illustrates this situation. The data from the start version of P2

to the born version of V 2 are copied to the new page P3, so now to access all the data for

V 2, only P1 and P3 need to be accessed, but not P2. The pointers in the pages are also

modified to indicate this. Now, though the start version of P3 is the same of that of P2,

which belongs to V 1, the owning version of P2 is still V 2.

(a) P2 is full before split

(b) After the non-owning version split without any data copied

Figure 3.5: Non-owning version splits without any data copied

If there are too many records from the start version of P2 to the born version of

V 2, they are not copied to the new page. If we do so, its a waist of space having the same

copies and time will be spent to copy them; the new data page is more quickly to be full,

and more split will be occur; and there is not much time saved in the querying. Figure 3.5

26

illustrates this situation. In Figure 3.5(b), the new page P3 only contains the data since

the born of V 2. To access all the data for V 2, the pages P1, P2 and P3 will be accessed.

P3 is clearly owned by V 2 in this situation.

In all, BT-List is a variation of BT-Tree which focus on the function to get all

the data for some specified version. The tree indexing is not necessary here because there

won’t be much query to the middle of the version tree. Instead, pointers are used to make

a sequence scan of all the data for a specified version fast. Different split strategies are used

for different situation to make the storage and querying for the branched version data more

efficient.

3.2 BT-TwigStack

As the name suggested, BT-TwigStack uses BT-List to hold the data with branched

versioning and TwigStack to do the twig pattern query process. TwigStack [6] is a stream

based algorithm, to process a twig pattern query, the list of all the occurrences of each

element in the query is needed. So in the BT-TwigStack, the occurrences of each element

are stored in separate BT-List, i.e. one BT-List stores the data for one element. As men-

tioned in Section 2.1, the labeling scheme ORDPATH supports the dynamic updates of

XML documents. In BT-TwigStack, ORDPATH is used to represent the position of each

occurrence of each element. So the data stored inside BT-List are the ORDPATH labels.

To process a query, BT-Lists of the elements in the twig will extract all the ORD-

PATH labels of all occurrences of those elements at the querying version. For each element,

those ORDPATH labels are sorted according to their position in the XML document. Then,

27

those sorted ORDPATH lists of elements are pushed to TwigStack, where a twig pattern

matching can be done as if it is a static query process. It’s easy to check the position

relationship between two XML nodes by their ORDPATH labels, which makes it easy to

sort the list of data before pushing to the TwigStack.

3.3 BT-LCS

Also as the name suggested, BT-LCS uses BT-List to hold branched versioning

data and then LCS-TRIM approach is used to do the twig pattern query process. The

main idea of BT-LCS is similar to our BT-TwigStack: we stored and indexing the branched

versioning XML data using BT-List; when a query came, we get the XML document of the

queried version and do the twig pattern matching.

As one of the sequence based techniques, LCS-TRIM [13] requires both the XML

document and the twig query be first converted into Consolidated Prüfer Sequence (CPS),

so that subsequence matching (using the dynamic programming technique for the Longest

Common Subsequence problem) and structural refinement can later be carried on. A CPS

consists of two sequences, Numbered Prüfer Sequence (NPS) and Label Sequence (LS).

To construct the CPS for a XML document, we need to first number each element as in

the post-order, then still in the post-order, we record the numbers of their parents (to

construct NPS) and the label of itself (to construct the label sequence LS). Recall that the

data we stored in the BT-List are the ORDPATH labels of all the XML nodes, we need

to convert this list of ORDPATH labels of the nodes into CPS before we send the data to

LCS-TRIM. Because the structural relationship of two nodes can be easily told from their

28

ORDPATH labels, we reconstruct the XML document as in the tree structure and create

the corresponding CPS.

In LCS-TRIM, a good optimization is called Label Filtering, which will first prune

from the elements (or called labels there) not appeared in the twig query. As the number of

distinct elements in the data is usually a lot higher than that in the query, this optimization

improved the algorithm a lot in both time and space complexity.

In our BT-LCS approach, we store the temporal XML data in BT-Lists, one for

each element. This makes the Label Filtering optimization also available in the BT-LCS:

the BT-Lists of only the elements in the twig query are accessed, and only those XML nodes

are retrieved instead of the entire XML document at the queried version. This will decrease

a lot the size of the sequences we push to LCS-TRIM algorithm, though it also brings a

problem: we get separate XML nodes which are not necessarily connected (we still need

those unconnected nodes to represent the structural relationship between nodes), and this

also brings problem to create the Prüfer sequences. It doesn’t matter what real nodes are,

because they are not elements queried. We need only to preserve the structural relationship

of the nodes we need. To solve this problem, we insert pseudo nodes just to connect the

nodes, with some faked element label. Now, with this legal XML document, we can create

the Prüfer sequences and push to LCS-TRIM algorithm to do the twig pattern matching.

29

Chapter 4

Results

In this chapter, we experimentally evaluate our algorithms: BT-TwigStack and

BT-LCS, comparing with the traditional log-based approach as a baselines. In Section 4.1,

we discuss the settings of the experiments, where in Section 4.1.1 and Section 4.1.2, we

explain the data set and query set we used in the experiments respectively. In Section 4.2,

we compare the experimental result using different approaches for the twig queries over

XML Document. We consider the two parts of the algorithm: indexing process (in Section

4.2.1) and query process (in Section 4.2.2) separately.

4.1 Experimental Settings

All the experiments were performed on a system with an Intel Pentium 4 1.60GHz

CPU and 1 GB of main memory.

30

4.1.1 Data Set

We used the XMark [1] benchmark to generate the synthetic data sets for our

experiments. xmlgen [2] produces XML documents modeling an auction website, a typical

e-commerce application. We used a 600MB XML documents with more than 7 million

nodes.

We have created a simple program to simulate the time evolution of the XML

documents by applying a batch of inserts, removes and having more branches of version

evolutions. A new version branch is created occasionally inherit from a random historical

version. New XML nodes are inserted into random version branch that already exists.

And randomly we will have some existing node to be deleted. We have a 10% ratio for

the removal of the existing nodes. Each of these modification creates a new version in

the database, though in the reality, we can also have several modification to create a new

version. Though the simulation strategy makes the data randomly, we carefully guaranteed

that the data are fully legal and reasonable. Each version tend to have as many nodes as

each other. We use two data sets with branched versioning. D1 has 20 branches with 5

million time points and D2 has 20 branches with 7 million branches.

4.1.2 Query Set

For the structural queries over the XML documents with branched versioning, a

query is composed with a twig pattern and a version. The twig patterns are syntactically

similar to XQuery [5] notation, while the version needs to give both the version id and the

time. Table 4.1 lists the twig pattern part of the queries we used in our experiments. For

31

each twig pattern, we queried the latest time of the versions spanning different number of

versions.

Query id Query Expression

Q1 //item[//quantity="10"][//location="United States"]

Q2 //mailbox/mail[from="customer" AND to="service"]

Q3 //bidder[//date="6/12/2007"][//time="12:00"][//increase="7.5"]

Q4 //item[//mail/date="12/25/2007"][//payment="Credit Card"]

Table 4.1: The twig patten queries used in the experiments

4.2 Experimental Results

In this section, we conduct several experiments and compare the results. We divide

the entire temporal twig query process into two parts: indexing process and query process.

In the indexing process, no matter what kind of indexing method is used, the temporal XML

data are read and parsed and stored in some particular format for later temporal twig query

process. This process is only related to the data, but not queries. The second part is the

query process, where those stored temporal data are access to do the twig pattern matching

for particular versions. We analysis the experimental results for each parts separately.

4.2.1 Indexing Process

In this section, we consider the indexing part of the algorithms. This part is

separated from the parts of the query process. In this indexing process, BT-TwigStack

and BT-LCS are reading the temporal XML documents and creating the BT-Lists. BT-

TwigStack and BT-LCS use the same BT-List technique as the indexing process, both

32

store different elements of the XML document into separate BT-Lists. Though log-based

approach doesn’t have any indexing for the temporal data, it still needs time to read and

parse the temporal data and store in its own format for later use. We also use this time as

the baseline of the I/O of reading and parse the temporal data, to compare with the time

cost of BT-TwigStack and BT-LCS, which have both the I/O part and the construction of

the BT-List.

Figure 4.1: Indexing time used for different algorithms

Figure 4.1 demonstrates the time cost to build the BT-Lists for BT-TwigStack and

BT-LCS, compare with the I/O time for log-based, as the XML document grows in size.

We can see that it is very fast to construct BT-List, which is only about 20% of the time

of reading and parsing the same amount of temporal data. For a 500 MB XML documents

with 7.5 million time points across 20 versions, the indexing process can be done in about

2 minutes.

33

Figure 4.2: Storage usage of different algorithms

Figure 4.2 demonstrates the space used to hold the temporal XML data: BT-

Lists for BT-TwigStack and BT-LCS, the plain log for the log-based approach and we even

compare them with the snapshot indexing. From the figure, we can clearly see that the

log-based approach requires the minimal space usage, which because of no extra overhead

for any structural managements or indexing. The overhead for BT-Lists is mainly caused

by the extra copies of some data which makes the access of data more efficient. We can also

see that the overhead is within a very reasonable amount. On the other hand, the snapshot

method keeps each version separately, which waste a lot of space storing many copies of

the same data that has not been modified. We can see that snapshot exhausts the memory

very quickly.

34

4.2.2 Query Process

In this section, we consider the time cost for the temporal twig query of the three

algorithms. To do the twig query on a specified version of the data, the related XML data

need to be first retrieved (preprocess) and then the data are used in the XML twig matching

techniques.

In the preprocess, the log-based approach needs to reconstruct the XML document

at the queried time by redoing every modification of the time evolution. Though the re-

construction is only about the elements in the twig pattern, not necessarily the entire XML

document, all the log entries up to the time of the version queried need to be accessed.

If there are many versions in the database, especially when many of them doesn’t affect

the queried version (is not an ancestor version of the queried version), this process requires

more time, because a lot of unrelated data has to be accessed. The log-based approach here

is also using TwigStack technique for the twig query matching part, so before the list of

ORDPATH labels is pushed to TwigStack, it has to be sorted in order as required by the

TwigStack algorithm. Instead of first getting the list then sort it, we keep the list in order

as getting each occurrence of the elements.

The BT-TwigStack and BT-LCS ask the BT-List about the data at the version

queried. In both the two algorithms, different elements are stored into different BT-Lists.

So only those BT-Lists of the elements required in the query needs to be accessed. As

mentioned above, TwigStack requires the occurrences of the elements to be sorted, so we

need to sort the ORDPATH labels in BT-TwigStack for each elements. On the other hand,

LCS-TRIM needs the XML documents to be given in the form of Consolidated Prüfer

35

Sequence (CPS), so one more step is needed for BT-LCS to reconstruct a part of the XML

document and create the corresponding CPS.

Figure 4.3: Execution time of Q1 across different number of version branches for D1

Figure 4.3 - 4.6 demonstrates the time cost for the twig query process for Q1 - Q4

across different number of versions at the time point of 5 million for D1.

First we consider the data accessed by the query. The log-based approach spends

a huge amount of time accessing all the temporal data up to the queried time point. BT-

TwigStack and BT-LCS which are using BT-List access only the data of the elements in

the twig query and affects to the queried version (belongs to an ancestor version) Compared

with the log-based approach, BT-List eliminates the access to the data of two kinds: first

kind is the data which do not belong to an ancestor version of the queried version; and

second is the data of the elements that do not appear in the twig query. Both eliminations

guarantee that no solution is false deleted from the result. The less data to be accessed,

36

Figure 4.4: Execution time of Q2 across different number of version branches for D1

the less time it costs to do the query process. These eliminations make the algorithm much

more efficient.

Compared the BT-TwigStack with BT-LCS, they both use the same BT-List to

hold the temporal data, so they needs the same amount of time to access the BT-Pages

to get the XML nodes. However, the difference is, in BT-TwigStack, the XML nodes

need to be sorted as they appear in the pre-order of the XML tree by only comparing the

ORDPATH labels; while in BT-LCS, the XML tree need to be constructed, so that CPS

can be computed from the tree structure. In BT-TwigStack, we use a sorted list for the

ORDPATH labels for each element, at the same time we find a temporal data entry, we

insert them at the correct position so that the list is kept sorted, so it cost some time to

find the correct position to insert the data and possible moves of the data would also be

carried out. In the BT-LCS, as soon as we get a temporal data entry, we put it into the

37

Figure 4.5: Execution time of Q3 across different number of version branches for D1

tree according to the ORDPATH label. After the tree is constructed, we need one more

step to number the tree nodes according to the post-order and construct the CPS.

Figures 4.3 - 4.6 shows that BT-TwigStack and BT-LCS finishes the query much

faster than the log-based approach and BT-LCS almost always beat BT-TwigStack.

Figure 4.7 - 4.10 shows the execution time of several queries over a much larger

data set which contains about 7 million time points and 20 versions for D2. Still from

those figures, we can see that BT-TwigStack and BT-LCS beat the log-based approach

dramatically and BT-LCS is almost always better than BT-TwigStack.

38

Figure 4.6: Execution time of Q4 across different number of version branches for D1

Figure 4.7: Execution time of Q1 across different number of version branches for D2

39

Figure 4.8: Execution time of Q2 across different number of version branches for D2

Figure 4.9: Execution time of Q3 across different number of version branches for D2

40

Figure 4.10: Execution time of Q4 across different number of version branches for D2

41

Chapter 5

Conclusion

As XML usage continues to increase over the last decades, so does the impor-

tance to preserve the historical information of the documents. Some great amount research

interests have been paid on the problem of twig pattern query matching on the XML doc-

uments, though most of them are done for static XML documents. On the other hand, a

significant amount of work has focused on the managing and indexing of the temporal XML

documents, not only with the linear versioning data (where only the latest version can be

updated), but also branched versioning data (where both a historical version and the latest

version cane be modified, i.e. the version evolution is a tree with branches). Nevertheless,

the problem of querying the temporal XML document, especially the XML documents with

branched versioning has been relatively untouched.

In this thesis, we have proposed several algorithms for the structural queries over

temporal XML document with branched versioning. More specifically, we expended, mod-

ified and combined the current state-of-the-art techniques, for both static XML document

42

query process and temporal XML document indexing and management, to work together.

We first choose the ORDPATH as the labeling scheme for the XML documents to enable

efficient dynamic modifications in the sense that no tree-relabeling is required. We proposed

a BT-List approach to hold and index the data with branched versioning, which is later

integrated with two kinds of XML query matching algorithms, TwigStack and LCS-TRIM

as our overall algorithms for the problem: BT-TwigStack and BT-LCS. The experimental

results show that BT-List can efficiently index the data which required reasonable space and

time. The temporal twig query can be fast matches using our BT-TwigStack and BT-LCS

algorithms compared with log-based approaches.

43

Bibliography

[1] XMark: An XML benchmark project, 2003. http://www.xml-benchmark.org/.

[2] xmlgen: The benchmark data generator, 2003.
http://monetdb.cwi.nl/xml/generator.html.

[3] Shurug Al-Khalifa, H. V. Jagadish, Jignesh M. Patel, Yuqing Wu, Nick Koudas, and
Divesh Srivastava. Structural joins: A primitive for efficient xml query pattern match-
ing. In ICDE, pages 141–, 2002.

[4] Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and Peter Wid-
mayer. An asymptotically optimal multiversion b-tree. VLDB J., 5(4):264–275, 1996.

[5] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Robie,
and Jérôme Siméon. XQuery 1.0: An XML query language. Technical report, W3C,
January 2007.

[6] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: optimal xml
pattern matching. In SIGMOD Conference, pages 310–321, 2002.

[7] Douglas Comer. The ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137, 1979.

[8] Linan Jiang, Betty Salzberg, David B. Lomet, and Manuel Barrena Garćıa. The bt-tree:
A branched and temporal access method. In VLDB, pages 451–460, 2000.

[9] Linan Jiang, Betty Salzberg, David B. Lomet, and Manuel Barrena Garćıa. The btr-
tree: Path-defined version-range splitting in a branched and temporal structure. In
SSTD, pages 28–45, 2003.

[10] Patrick E. O’Neil, Elizabeth J. O’Neil, Shankar Pal, Istvan Cseri, Gideon Schaller, and
Nigel Westbury. Ordpaths: Insert-friendly xml node labels. In SIGMOD Conference,
pages 903–908, 2004.

[11] Praveen Rao and Bongki Moon. Prix: Indexing and querying xml using prüfer se-
quences. In ICDE, pages 288–300, 2004.

44

[12] Betty Salzberg, Linan Jiang, David B. Lomet, Manuel Barrena Garćıa, Jing Shan, and
Evangelos Kanoulas. A framework for access methods for versioned data. In EDBT,
pages 730–747, 2004.

[13] Shirish Tatikonda, Srinivasan Parthasarathy, and Matthew Goyder. Lcs-trim: Dynamic
programming meets xml indexing and querying. In VLDB, pages 63–74, 2007.

[14] Zografoula Vagena, Mirella Moura Moro, and Vassilis J. Tsotras. Supporting branched
versions on xml documents. In RIDE, pages 137–144, 2004.

[15] Haixun Wang, Sanghyun Park, Wei Fan, and Philip S. Yu. Vist: A dynamic index
method for querying xml data by tree structures. In SIGMOD Conference, pages
110–121, 2003.

[16] Adam Woss. Twig Queries Over Multiversion XML Documents. Master’s thesis, Uni-
versity of California, Riverside.

45

